| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fz1sbc | Structured version Visualization version GIF version | ||
| Description: Quantification over a one-member finite set of sequential integers in terms of substitution. (Contributed by NM, 28-Nov-2005.) |
| Ref | Expression |
|---|---|
| fz1sbc | ⊢ (𝑁 ∈ ℤ → (∀𝑘 ∈ (𝑁...𝑁)𝜑 ↔ [𝑁 / 𝑘]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbc6g 3766 | . 2 ⊢ (𝑁 ∈ ℤ → ([𝑁 / 𝑘]𝜑 ↔ ∀𝑘(𝑘 = 𝑁 → 𝜑))) | |
| 2 | df-ral 3048 | . . 3 ⊢ (∀𝑘 ∈ (𝑁...𝑁)𝜑 ↔ ∀𝑘(𝑘 ∈ (𝑁...𝑁) → 𝜑)) | |
| 3 | elfz1eq 13435 | . . . . . 6 ⊢ (𝑘 ∈ (𝑁...𝑁) → 𝑘 = 𝑁) | |
| 4 | elfz3 13434 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ (𝑁...𝑁)) | |
| 5 | eleq1 2819 | . . . . . . 7 ⊢ (𝑘 = 𝑁 → (𝑘 ∈ (𝑁...𝑁) ↔ 𝑁 ∈ (𝑁...𝑁))) | |
| 6 | 4, 5 | syl5ibrcom 247 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑘 = 𝑁 → 𝑘 ∈ (𝑁...𝑁))) |
| 7 | 3, 6 | impbid2 226 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑘 ∈ (𝑁...𝑁) ↔ 𝑘 = 𝑁)) |
| 8 | 7 | imbi1d 341 | . . . 4 ⊢ (𝑁 ∈ ℤ → ((𝑘 ∈ (𝑁...𝑁) → 𝜑) ↔ (𝑘 = 𝑁 → 𝜑))) |
| 9 | 8 | albidv 1921 | . . 3 ⊢ (𝑁 ∈ ℤ → (∀𝑘(𝑘 ∈ (𝑁...𝑁) → 𝜑) ↔ ∀𝑘(𝑘 = 𝑁 → 𝜑))) |
| 10 | 2, 9 | bitr2id 284 | . 2 ⊢ (𝑁 ∈ ℤ → (∀𝑘(𝑘 = 𝑁 → 𝜑) ↔ ∀𝑘 ∈ (𝑁...𝑁)𝜑)) |
| 11 | 1, 10 | bitr2d 280 | 1 ⊢ (𝑁 ∈ ℤ → (∀𝑘 ∈ (𝑁...𝑁)𝜑 ↔ [𝑁 / 𝑘]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 ∈ wcel 2111 ∀wral 3047 [wsbc 3736 (class class class)co 7346 ℤcz 12468 ...cfz 13407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-neg 11347 df-z 12469 df-uz 12733 df-fz 13408 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |