![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fz1sbc | Structured version Visualization version GIF version |
Description: Quantification over a one-member finite set of sequential integers in terms of substitution. (Contributed by NM, 28-Nov-2005.) |
Ref | Expression |
---|---|
fz1sbc | ⊢ (𝑁 ∈ ℤ → (∀𝑘 ∈ (𝑁...𝑁)𝜑 ↔ [𝑁 / 𝑘]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbc6g 3770 | . 2 ⊢ (𝑁 ∈ ℤ → ([𝑁 / 𝑘]𝜑 ↔ ∀𝑘(𝑘 = 𝑁 → 𝜑))) | |
2 | df-ral 3066 | . . 3 ⊢ (∀𝑘 ∈ (𝑁...𝑁)𝜑 ↔ ∀𝑘(𝑘 ∈ (𝑁...𝑁) → 𝜑)) | |
3 | elfz1eq 13453 | . . . . . 6 ⊢ (𝑘 ∈ (𝑁...𝑁) → 𝑘 = 𝑁) | |
4 | elfz3 13452 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ (𝑁...𝑁)) | |
5 | eleq1 2826 | . . . . . . 7 ⊢ (𝑘 = 𝑁 → (𝑘 ∈ (𝑁...𝑁) ↔ 𝑁 ∈ (𝑁...𝑁))) | |
6 | 4, 5 | syl5ibrcom 247 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑘 = 𝑁 → 𝑘 ∈ (𝑁...𝑁))) |
7 | 3, 6 | impbid2 225 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑘 ∈ (𝑁...𝑁) ↔ 𝑘 = 𝑁)) |
8 | 7 | imbi1d 342 | . . . 4 ⊢ (𝑁 ∈ ℤ → ((𝑘 ∈ (𝑁...𝑁) → 𝜑) ↔ (𝑘 = 𝑁 → 𝜑))) |
9 | 8 | albidv 1924 | . . 3 ⊢ (𝑁 ∈ ℤ → (∀𝑘(𝑘 ∈ (𝑁...𝑁) → 𝜑) ↔ ∀𝑘(𝑘 = 𝑁 → 𝜑))) |
10 | 2, 9 | bitr2id 284 | . 2 ⊢ (𝑁 ∈ ℤ → (∀𝑘(𝑘 = 𝑁 → 𝜑) ↔ ∀𝑘 ∈ (𝑁...𝑁)𝜑)) |
11 | 1, 10 | bitr2d 280 | 1 ⊢ (𝑁 ∈ ℤ → (∀𝑘 ∈ (𝑁...𝑁)𝜑 ↔ [𝑁 / 𝑘]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1540 = wceq 1542 ∈ wcel 2107 ∀wral 3065 [wsbc 3740 (class class class)co 7358 ℤcz 12500 ...cfz 13425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11108 ax-resscn 11109 ax-pre-lttri 11126 ax-pre-lttrn 11127 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-po 5546 df-so 5547 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-ov 7361 df-oprab 7362 df-mpo 7363 df-1st 7922 df-2nd 7923 df-er 8649 df-en 8885 df-dom 8886 df-sdom 8887 df-pnf 11192 df-mnf 11193 df-xr 11194 df-ltxr 11195 df-le 11196 df-neg 11389 df-z 12501 df-uz 12765 df-fz 13426 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |