![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fz1sbc | Structured version Visualization version GIF version |
Description: Quantification over a one-member finite set of sequential integers in terms of substitution. (Contributed by NM, 28-Nov-2005.) |
Ref | Expression |
---|---|
fz1sbc | ⊢ (𝑁 ∈ ℤ → (∀𝑘 ∈ (𝑁...𝑁)𝜑 ↔ [𝑁 / 𝑘]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbc6g 3808 | . 2 ⊢ (𝑁 ∈ ℤ → ([𝑁 / 𝑘]𝜑 ↔ ∀𝑘(𝑘 = 𝑁 → 𝜑))) | |
2 | df-ral 3063 | . . 3 ⊢ (∀𝑘 ∈ (𝑁...𝑁)𝜑 ↔ ∀𝑘(𝑘 ∈ (𝑁...𝑁) → 𝜑)) | |
3 | elfz1eq 13512 | . . . . . 6 ⊢ (𝑘 ∈ (𝑁...𝑁) → 𝑘 = 𝑁) | |
4 | elfz3 13511 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ (𝑁...𝑁)) | |
5 | eleq1 2822 | . . . . . . 7 ⊢ (𝑘 = 𝑁 → (𝑘 ∈ (𝑁...𝑁) ↔ 𝑁 ∈ (𝑁...𝑁))) | |
6 | 4, 5 | syl5ibrcom 246 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑘 = 𝑁 → 𝑘 ∈ (𝑁...𝑁))) |
7 | 3, 6 | impbid2 225 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑘 ∈ (𝑁...𝑁) ↔ 𝑘 = 𝑁)) |
8 | 7 | imbi1d 342 | . . . 4 ⊢ (𝑁 ∈ ℤ → ((𝑘 ∈ (𝑁...𝑁) → 𝜑) ↔ (𝑘 = 𝑁 → 𝜑))) |
9 | 8 | albidv 1924 | . . 3 ⊢ (𝑁 ∈ ℤ → (∀𝑘(𝑘 ∈ (𝑁...𝑁) → 𝜑) ↔ ∀𝑘(𝑘 = 𝑁 → 𝜑))) |
10 | 2, 9 | bitr2id 284 | . 2 ⊢ (𝑁 ∈ ℤ → (∀𝑘(𝑘 = 𝑁 → 𝜑) ↔ ∀𝑘 ∈ (𝑁...𝑁)𝜑)) |
11 | 1, 10 | bitr2d 280 | 1 ⊢ (𝑁 ∈ ℤ → (∀𝑘 ∈ (𝑁...𝑁)𝜑 ↔ [𝑁 / 𝑘]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1540 = wceq 1542 ∈ wcel 2107 ∀wral 3062 [wsbc 3778 (class class class)co 7409 ℤcz 12558 ...cfz 13484 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-pre-lttri 11184 ax-pre-lttrn 11185 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-neg 11447 df-z 12559 df-uz 12823 df-fz 13485 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |