![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fz1sbc | Structured version Visualization version GIF version |
Description: Quantification over a one-member finite set of sequential integers in terms of substitution. (Contributed by NM, 28-Nov-2005.) |
Ref | Expression |
---|---|
fz1sbc | ⊢ (𝑁 ∈ ℤ → (∀𝑘 ∈ (𝑁...𝑁)𝜑 ↔ [𝑁 / 𝑘]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbc6g 3708 | . 2 ⊢ (𝑁 ∈ ℤ → ([𝑁 / 𝑘]𝜑 ↔ ∀𝑘(𝑘 = 𝑁 → 𝜑))) | |
2 | df-ral 3094 | . . 3 ⊢ (∀𝑘 ∈ (𝑁...𝑁)𝜑 ↔ ∀𝑘(𝑘 ∈ (𝑁...𝑁) → 𝜑)) | |
3 | elfz1eq 12734 | . . . . . 6 ⊢ (𝑘 ∈ (𝑁...𝑁) → 𝑘 = 𝑁) | |
4 | elfz3 12733 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ (𝑁...𝑁)) | |
5 | eleq1 2854 | . . . . . . 7 ⊢ (𝑘 = 𝑁 → (𝑘 ∈ (𝑁...𝑁) ↔ 𝑁 ∈ (𝑁...𝑁))) | |
6 | 4, 5 | syl5ibrcom 239 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑘 = 𝑁 → 𝑘 ∈ (𝑁...𝑁))) |
7 | 3, 6 | impbid2 218 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑘 ∈ (𝑁...𝑁) ↔ 𝑘 = 𝑁)) |
8 | 7 | imbi1d 334 | . . . 4 ⊢ (𝑁 ∈ ℤ → ((𝑘 ∈ (𝑁...𝑁) → 𝜑) ↔ (𝑘 = 𝑁 → 𝜑))) |
9 | 8 | albidv 1879 | . . 3 ⊢ (𝑁 ∈ ℤ → (∀𝑘(𝑘 ∈ (𝑁...𝑁) → 𝜑) ↔ ∀𝑘(𝑘 = 𝑁 → 𝜑))) |
10 | 2, 9 | syl5rbb 276 | . 2 ⊢ (𝑁 ∈ ℤ → (∀𝑘(𝑘 = 𝑁 → 𝜑) ↔ ∀𝑘 ∈ (𝑁...𝑁)𝜑)) |
11 | 1, 10 | bitr2d 272 | 1 ⊢ (𝑁 ∈ ℤ → (∀𝑘 ∈ (𝑁...𝑁)𝜑 ↔ [𝑁 / 𝑘]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∀wal 1505 = wceq 1507 ∈ wcel 2050 ∀wral 3089 [wsbc 3682 (class class class)co 6976 ℤcz 11793 ...cfz 12708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-pre-lttri 10409 ax-pre-lttrn 10410 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-po 5326 df-so 5327 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-ov 6979 df-oprab 6980 df-mpo 6981 df-1st 7501 df-2nd 7502 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-neg 10673 df-z 11794 df-uz 12059 df-fz 12709 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |