Step | Hyp | Ref
| Expression |
1 | | evennn2n 15988 |
. . . 4
⊢ (𝑁 ∈ ℕ → (2
∥ 𝑁 ↔
∃𝑘 ∈ ℕ (2
· 𝑘) = 𝑁)) |
2 | 1 | 3ad2ant3 1133 |
. . 3
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (2 ∥ 𝑁 ↔
∃𝑘 ∈ ℕ (2
· 𝑘) = 𝑁)) |
3 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑁 = (2 · 𝑘) → (2↑𝑁) = (2↑(2 · 𝑘))) |
4 | 3 | eqcoms 2746 |
. . . . . . . 8
⊢ ((2
· 𝑘) = 𝑁 → (2↑𝑁) = (2↑(2 · 𝑘))) |
5 | | 2cnd 11981 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ → 2 ∈
ℂ) |
6 | | nncn 11911 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℂ) |
7 | 5, 6 | mulcomd 10927 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → (2
· 𝑘) = (𝑘 · 2)) |
8 | 7 | oveq2d 7271 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ →
(2↑(2 · 𝑘)) =
(2↑(𝑘 ·
2))) |
9 | | 2nn0 12180 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℕ0 |
10 | 9 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → 2 ∈
ℕ0) |
11 | | nnnn0 12170 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ0) |
12 | 5, 10, 11 | expmuld 13795 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ →
(2↑(𝑘 · 2)) =
((2↑𝑘)↑2)) |
13 | 8, 12 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ →
(2↑(2 · 𝑘)) =
((2↑𝑘)↑2)) |
14 | 13 | adantl 481 |
. . . . . . . 8
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ 𝑘 ∈ ℕ)
→ (2↑(2 · 𝑘)) = ((2↑𝑘)↑2)) |
15 | 4, 14 | sylan9eqr 2801 |
. . . . . . 7
⊢ ((((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ 𝑘 ∈ ℕ)
∧ (2 · 𝑘) =
𝑁) → (2↑𝑁) = ((2↑𝑘)↑2)) |
16 | 15 | oveq1d 7270 |
. . . . . 6
⊢ ((((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ 𝑘 ∈ ℕ)
∧ (2 · 𝑘) =
𝑁) → ((2↑𝑁) − 1) = (((2↑𝑘)↑2) −
1)) |
17 | 16 | eqeq1d 2740 |
. . . . 5
⊢ ((((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ 𝑘 ∈ ℕ)
∧ (2 · 𝑘) =
𝑁) → (((2↑𝑁) − 1) = (𝑃↑𝑀) ↔ (((2↑𝑘)↑2) − 1) = (𝑃↑𝑀))) |
18 | | elnn1uz2 12594 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ ↔ (𝑘 = 1 ∨ 𝑘 ∈
(ℤ≥‘2))) |
19 | | oveq2 7263 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 1 → (2↑𝑘) = (2↑1)) |
20 | | 2cn 11978 |
. . . . . . . . . . . . . . . . . 18
⊢ 2 ∈
ℂ |
21 | | exp1 13716 |
. . . . . . . . . . . . . . . . . 18
⊢ (2 ∈
ℂ → (2↑1) = 2) |
22 | 20, 21 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
(2↑1) = 2 |
23 | 19, 22 | eqtrdi 2795 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 1 → (2↑𝑘) = 2) |
24 | 23 | oveq1d 7270 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 1 → ((2↑𝑘)↑2) =
(2↑2)) |
25 | 24 | oveq1d 7270 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 1 → (((2↑𝑘)↑2) − 1) =
((2↑2) − 1)) |
26 | | sq2 13842 |
. . . . . . . . . . . . . . . 16
⊢
(2↑2) = 4 |
27 | 26 | oveq1i 7265 |
. . . . . . . . . . . . . . 15
⊢
((2↑2) − 1) = (4 − 1) |
28 | | 4m1e3 12032 |
. . . . . . . . . . . . . . 15
⊢ (4
− 1) = 3 |
29 | 27, 28 | eqtri 2766 |
. . . . . . . . . . . . . 14
⊢
((2↑2) − 1) = 3 |
30 | 25, 29 | eqtrdi 2795 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 1 → (((2↑𝑘)↑2) − 1) =
3) |
31 | 30 | eqeq1d 2740 |
. . . . . . . . . . . 12
⊢ (𝑘 = 1 → ((((2↑𝑘)↑2) − 1) = (𝑃↑𝑀) ↔ 3 = (𝑃↑𝑀))) |
32 | 31 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑘 = 1 ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) →
((((2↑𝑘)↑2)
− 1) = (𝑃↑𝑀) ↔ 3 = (𝑃↑𝑀))) |
33 | | eqcom 2745 |
. . . . . . . . . . . . . 14
⊢ (3 =
(𝑃↑𝑀) ↔ (𝑃↑𝑀) = 3) |
34 | | eldifi 4057 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 𝑃 ∈
ℙ) |
35 | | prmnn 16307 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
36 | | nnre 11910 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑃 ∈ ℕ → 𝑃 ∈
ℝ) |
37 | 34, 35, 36 | 3syl 18 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 𝑃 ∈
ℝ) |
38 | 37 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ 𝑃 ∈
ℝ) |
39 | | nnnn0 12170 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℕ0) |
40 | 39 | 3ad2ant2 1132 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ 𝑀 ∈
ℕ0) |
41 | 38, 40 | reexpcld 13809 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (𝑃↑𝑀) ∈
ℝ) |
42 | 41 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (𝑃↑𝑀) = 3) → (𝑃↑𝑀) ∈ ℝ) |
43 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (𝑃↑𝑀) = 3) → (𝑃↑𝑀) = 3) |
44 | 42, 43 | eqled 11008 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (𝑃↑𝑀) = 3) → (𝑃↑𝑀) ≤ 3) |
45 | 44 | ex 412 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ ((𝑃↑𝑀) = 3 → (𝑃↑𝑀) ≤ 3)) |
46 | 33, 45 | syl5bi 241 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (3 = (𝑃↑𝑀) → (𝑃↑𝑀) ≤ 3)) |
47 | 35 | nnred 11918 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℝ) |
48 | | prmgt1 16330 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑃 ∈ ℙ → 1 <
𝑃) |
49 | 47, 48 | jca 511 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑃 ∈ ℙ → (𝑃 ∈ ℝ ∧ 1 <
𝑃)) |
50 | 34, 49 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (𝑃 ∈ ℝ
∧ 1 < 𝑃)) |
51 | 50 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (𝑃 ∈ ℝ
∧ 1 < 𝑃)) |
52 | | nnz 12272 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℤ) |
53 | 52 | 3ad2ant2 1132 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ 𝑀 ∈
ℤ) |
54 | | 3rp 12665 |
. . . . . . . . . . . . . . . 16
⊢ 3 ∈
ℝ+ |
55 | 54 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ 3 ∈ ℝ+) |
56 | | efexple 26334 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃 ∈ ℝ ∧ 1 <
𝑃) ∧ 𝑀 ∈ ℤ ∧ 3 ∈
ℝ+) → ((𝑃↑𝑀) ≤ 3 ↔ 𝑀 ≤ (⌊‘((log‘3) /
(log‘𝑃))))) |
57 | 51, 53, 55, 56 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ ((𝑃↑𝑀) ≤ 3 ↔ 𝑀 ≤
(⌊‘((log‘3) / (log‘𝑃))))) |
58 | | oddprmge3 16333 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 𝑃 ∈
(ℤ≥‘3)) |
59 | | eluzle 12524 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑃 ∈
(ℤ≥‘3) → 3 ≤ 𝑃) |
60 | 58, 59 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 3 ≤ 𝑃) |
61 | 54 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 3 ∈ ℝ+) |
62 | | nnrp 12670 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑃 ∈ ℕ → 𝑃 ∈
ℝ+) |
63 | 34, 35, 62 | 3syl 18 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 𝑃 ∈
ℝ+) |
64 | 61, 63 | logled 25687 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (3 ≤ 𝑃 ↔
(log‘3) ≤ (log‘𝑃))) |
65 | 60, 64 | mpbid 231 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (log‘3) ≤ (log‘𝑃)) |
66 | 65 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (log‘3) ≤ (log‘𝑃)) |
67 | | relogcl 25636 |
. . . . . . . . . . . . . . . . . 18
⊢ (3 ∈
ℝ+ → (log‘3) ∈ ℝ) |
68 | 54, 67 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
(log‘3) ∈ ℝ |
69 | | rplogcl 25664 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑃 ∈ ℝ ∧ 1 <
𝑃) → (log‘𝑃) ∈
ℝ+) |
70 | 34, 49, 69 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (log‘𝑃) ∈
ℝ+) |
71 | 70 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (log‘𝑃) ∈
ℝ+) |
72 | | divle1le 12729 |
. . . . . . . . . . . . . . . . 17
⊢
(((log‘3) ∈ ℝ ∧ (log‘𝑃) ∈ ℝ+) →
(((log‘3) / (log‘𝑃)) ≤ 1 ↔ (log‘3) ≤
(log‘𝑃))) |
73 | 68, 71, 72 | sylancr 586 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (((log‘3) / (log‘𝑃)) ≤ 1 ↔ (log‘3) ≤
(log‘𝑃))) |
74 | 66, 73 | mpbird 256 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ ((log‘3) / (log‘𝑃)) ≤ 1) |
75 | | fldivle 13479 |
. . . . . . . . . . . . . . . . 17
⊢
(((log‘3) ∈ ℝ ∧ (log‘𝑃) ∈ ℝ+) →
(⌊‘((log‘3) / (log‘𝑃))) ≤ ((log‘3) / (log‘𝑃))) |
76 | 68, 71, 75 | sylancr 586 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (⌊‘((log‘3) / (log‘𝑃))) ≤ ((log‘3) / (log‘𝑃))) |
77 | | nnre 11910 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℝ) |
78 | 77 | 3ad2ant2 1132 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ 𝑀 ∈
ℝ) |
79 | 68 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (log‘3) ∈ ℝ) |
80 | 62 | relogcld 25683 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑃 ∈ ℕ →
(log‘𝑃) ∈
ℝ) |
81 | 34, 35, 80 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (log‘𝑃) ∈
ℝ) |
82 | 35 | nnrpd 12699 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℝ+) |
83 | | 1red 10907 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑃 ∈ ℙ → 1 ∈
ℝ) |
84 | 83, 48 | gtned 11040 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑃 ∈ ℙ → 𝑃 ≠ 1) |
85 | 82, 84 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑃 ∈ ℙ → (𝑃 ∈ ℝ+
∧ 𝑃 ≠
1)) |
86 | | logne0 25640 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑃 ∈ ℝ+
∧ 𝑃 ≠ 1) →
(log‘𝑃) ≠
0) |
87 | 34, 85, 86 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (log‘𝑃) ≠
0) |
88 | 79, 81, 87 | redivcld 11733 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ ((log‘3) / (log‘𝑃)) ∈ ℝ) |
89 | 88 | flcld 13446 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (⌊‘((log‘3) / (log‘𝑃))) ∈ ℤ) |
90 | 89 | zred 12355 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (⌊‘((log‘3) / (log‘𝑃))) ∈ ℝ) |
91 | 90 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (⌊‘((log‘3) / (log‘𝑃))) ∈ ℝ) |
92 | 88 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ ((log‘3) / (log‘𝑃)) ∈ ℝ) |
93 | | letr 10999 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀 ∈ ℝ ∧
(⌊‘((log‘3) / (log‘𝑃))) ∈ ℝ ∧ ((log‘3) /
(log‘𝑃)) ∈
ℝ) → ((𝑀 ≤
(⌊‘((log‘3) / (log‘𝑃))) ∧ (⌊‘((log‘3) /
(log‘𝑃))) ≤
((log‘3) / (log‘𝑃))) → 𝑀 ≤ ((log‘3) / (log‘𝑃)))) |
94 | 78, 91, 92, 93 | syl3anc 1369 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ ((𝑀 ≤
(⌊‘((log‘3) / (log‘𝑃))) ∧ (⌊‘((log‘3) /
(log‘𝑃))) ≤
((log‘3) / (log‘𝑃))) → 𝑀 ≤ ((log‘3) / (log‘𝑃)))) |
95 | | 1red 10907 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ 1 ∈ ℝ) |
96 | | letr 10999 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑀 ∈ ℝ ∧
((log‘3) / (log‘𝑃)) ∈ ℝ ∧ 1 ∈ ℝ)
→ ((𝑀 ≤
((log‘3) / (log‘𝑃)) ∧ ((log‘3) / (log‘𝑃)) ≤ 1) → 𝑀 ≤ 1)) |
97 | 78, 92, 95, 96 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ ((𝑀 ≤
((log‘3) / (log‘𝑃)) ∧ ((log‘3) / (log‘𝑃)) ≤ 1) → 𝑀 ≤ 1)) |
98 | | nnge1 11931 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑀 ∈ ℕ → 1 ≤
𝑀) |
99 | | eqcom 2745 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑀 = 1 ↔ 1 = 𝑀) |
100 | | 1red 10907 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑀 ∈ ℕ → 1 ∈
ℝ) |
101 | 100, 77 | letri3d 11047 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑀 ∈ ℕ → (1 =
𝑀 ↔ (1 ≤ 𝑀 ∧ 𝑀 ≤ 1))) |
102 | 99, 101 | bitr2id 283 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑀 ∈ ℕ → ((1 ≤
𝑀 ∧ 𝑀 ≤ 1) ↔ 𝑀 = 1)) |
103 | 102 | biimpd 228 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑀 ∈ ℕ → ((1 ≤
𝑀 ∧ 𝑀 ≤ 1) → 𝑀 = 1)) |
104 | 98, 103 | mpand 691 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑀 ∈ ℕ → (𝑀 ≤ 1 → 𝑀 = 1)) |
105 | 104 | 3ad2ant2 1132 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (𝑀 ≤ 1 →
𝑀 = 1)) |
106 | 97, 105 | syld 47 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ ((𝑀 ≤
((log‘3) / (log‘𝑃)) ∧ ((log‘3) / (log‘𝑃)) ≤ 1) → 𝑀 = 1)) |
107 | 106 | expd 415 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (𝑀 ≤
((log‘3) / (log‘𝑃)) → (((log‘3) / (log‘𝑃)) ≤ 1 → 𝑀 = 1))) |
108 | 94, 107 | syld 47 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ ((𝑀 ≤
(⌊‘((log‘3) / (log‘𝑃))) ∧ (⌊‘((log‘3) /
(log‘𝑃))) ≤
((log‘3) / (log‘𝑃))) → (((log‘3) /
(log‘𝑃)) ≤ 1
→ 𝑀 =
1))) |
109 | 76, 108 | mpan2d 690 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (𝑀 ≤
(⌊‘((log‘3) / (log‘𝑃))) → (((log‘3) /
(log‘𝑃)) ≤ 1
→ 𝑀 =
1))) |
110 | 74, 109 | mpid 44 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (𝑀 ≤
(⌊‘((log‘3) / (log‘𝑃))) → 𝑀 = 1)) |
111 | 57, 110 | sylbid 239 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ ((𝑃↑𝑀) ≤ 3 → 𝑀 = 1)) |
112 | 46, 111 | syld 47 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (3 = (𝑃↑𝑀) → 𝑀 = 1)) |
113 | 112 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑘 = 1 ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (3 =
(𝑃↑𝑀) → 𝑀 = 1)) |
114 | 32, 113 | sylbid 239 |
. . . . . . . . . 10
⊢ ((𝑘 = 1 ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) →
((((2↑𝑘)↑2)
− 1) = (𝑃↑𝑀) → 𝑀 = 1)) |
115 | 114 | ex 412 |
. . . . . . . . 9
⊢ (𝑘 = 1 → ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) →
((((2↑𝑘)↑2)
− 1) = (𝑃↑𝑀) → 𝑀 = 1))) |
116 | | sq1 13840 |
. . . . . . . . . . . . . 14
⊢
(1↑2) = 1 |
117 | 116 | eqcomi 2747 |
. . . . . . . . . . . . 13
⊢ 1 =
(1↑2) |
118 | 117 | oveq2i 7266 |
. . . . . . . . . . . 12
⊢
(((2↑𝑘)↑2)
− 1) = (((2↑𝑘)↑2) −
(1↑2)) |
119 | 118 | eqeq1i 2743 |
. . . . . . . . . . 11
⊢
((((2↑𝑘)↑2) − 1) = (𝑃↑𝑀) ↔ (((2↑𝑘)↑2) − (1↑2)) = (𝑃↑𝑀)) |
120 | | eqcom 2745 |
. . . . . . . . . . . 12
⊢
((((2↑𝑘)↑2) − (1↑2)) = (𝑃↑𝑀) ↔ (𝑃↑𝑀) = (((2↑𝑘)↑2) −
(1↑2))) |
121 | 9 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈
(ℤ≥‘2) → 2 ∈
ℕ0) |
122 | | eluzge2nn0 12556 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈
(ℤ≥‘2) → 𝑘 ∈ ℕ0) |
123 | 121, 122 | nn0expcld 13889 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈
(ℤ≥‘2) → (2↑𝑘) ∈
ℕ0) |
124 | 123 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈
(ℤ≥‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) →
(2↑𝑘) ∈
ℕ0) |
125 | | 1nn0 12179 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℕ0 |
126 | 125 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈
(ℤ≥‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → 1
∈ ℕ0) |
127 | | 1p1e2 12028 |
. . . . . . . . . . . . . . . . 17
⊢ (1 + 1) =
2 |
128 | 22 | eqcomi 2747 |
. . . . . . . . . . . . . . . . 17
⊢ 2 =
(2↑1) |
129 | 127, 128 | eqtri 2766 |
. . . . . . . . . . . . . . . 16
⊢ (1 + 1) =
(2↑1) |
130 | | eluz2gt1 12589 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈
(ℤ≥‘2) → 1 < 𝑘) |
131 | | 2re 11977 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 ∈
ℝ |
132 | 131 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈
(ℤ≥‘2) → 2 ∈ ℝ) |
133 | | 1zzd 12281 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈
(ℤ≥‘2) → 1 ∈ ℤ) |
134 | | eluzelz 12521 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈
(ℤ≥‘2) → 𝑘 ∈ ℤ) |
135 | | 1lt2 12074 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 <
2 |
136 | 135 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈
(ℤ≥‘2) → 1 < 2) |
137 | 132, 133,
134, 136 | ltexp2d 13896 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈
(ℤ≥‘2) → (1 < 𝑘 ↔ (2↑1) < (2↑𝑘))) |
138 | 130, 137 | mpbid 231 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈
(ℤ≥‘2) → (2↑1) < (2↑𝑘)) |
139 | 129, 138 | eqbrtrid 5105 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈
(ℤ≥‘2) → (1 + 1) < (2↑𝑘)) |
140 | 139 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈
(ℤ≥‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (1 + 1)
< (2↑𝑘)) |
141 | 34, 39 | anim12i 612 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ)
→ (𝑃 ∈ ℙ
∧ 𝑀 ∈
ℕ0)) |
142 | 141 | 3adant3 1130 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (𝑃 ∈ ℙ
∧ 𝑀 ∈
ℕ0)) |
143 | 142 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈
(ℤ≥‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (𝑃 ∈ ℙ ∧ 𝑀 ∈
ℕ0)) |
144 | | difsqpwdvds 16516 |
. . . . . . . . . . . . . 14
⊢
((((2↑𝑘) ∈
ℕ0 ∧ 1 ∈ ℕ0 ∧ (1 + 1) <
(2↑𝑘)) ∧ (𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ0))
→ ((𝑃↑𝑀) = (((2↑𝑘)↑2) − (1↑2)) → 𝑃 ∥ (2 ·
1))) |
145 | 124, 126,
140, 143, 144 | syl31anc 1371 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈
(ℤ≥‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑃↑𝑀) = (((2↑𝑘)↑2) − (1↑2)) → 𝑃 ∥ (2 ·
1))) |
146 | | 2t1e2 12066 |
. . . . . . . . . . . . . . . . . 18
⊢ (2
· 1) = 2 |
147 | 146 | breq2i 5078 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑃 ∥ (2 · 1) ↔
𝑃 ∥
2) |
148 | | prmuz2 16329 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
(ℤ≥‘2)) |
149 | 34, 148 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 𝑃 ∈
(ℤ≥‘2)) |
150 | | 2prm 16325 |
. . . . . . . . . . . . . . . . . 18
⊢ 2 ∈
ℙ |
151 | | dvdsprm 16336 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ 2 ∈ ℙ) → (𝑃 ∥ 2 ↔ 𝑃 = 2)) |
152 | 149, 150,
151 | sylancl 585 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (𝑃 ∥ 2 ↔
𝑃 = 2)) |
153 | 147, 152 | syl5bb 282 |
. . . . . . . . . . . . . . . 16
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (𝑃 ∥ (2
· 1) ↔ 𝑃 =
2)) |
154 | | eldifsn 4717 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑃 ∈ (ℙ ∖ {2})
↔ (𝑃 ∈ ℙ
∧ 𝑃 ≠
2)) |
155 | | eqneqall 2953 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑃 = 2 → (𝑃 ≠ 2 → 𝑀 = 1)) |
156 | 155 | com12 32 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑃 ≠ 2 → (𝑃 = 2 → 𝑀 = 1)) |
157 | 154, 156 | simplbiim 504 |
. . . . . . . . . . . . . . . 16
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (𝑃 = 2 → 𝑀 = 1)) |
158 | 153, 157 | sylbid 239 |
. . . . . . . . . . . . . . 15
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (𝑃 ∥ (2
· 1) → 𝑀 =
1)) |
159 | 158 | 3ad2ant1 1131 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (𝑃 ∥ (2
· 1) → 𝑀 =
1)) |
160 | 159 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈
(ℤ≥‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (𝑃 ∥ (2 · 1) →
𝑀 = 1)) |
161 | 145, 160 | syld 47 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈
(ℤ≥‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑃↑𝑀) = (((2↑𝑘)↑2) − (1↑2)) → 𝑀 = 1)) |
162 | 120, 161 | syl5bi 241 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈
(ℤ≥‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) →
((((2↑𝑘)↑2)
− (1↑2)) = (𝑃↑𝑀) → 𝑀 = 1)) |
163 | 119, 162 | syl5bi 241 |
. . . . . . . . . 10
⊢ ((𝑘 ∈
(ℤ≥‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) →
((((2↑𝑘)↑2)
− 1) = (𝑃↑𝑀) → 𝑀 = 1)) |
164 | 163 | ex 412 |
. . . . . . . . 9
⊢ (𝑘 ∈
(ℤ≥‘2) → ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) →
((((2↑𝑘)↑2)
− 1) = (𝑃↑𝑀) → 𝑀 = 1))) |
165 | 115, 164 | jaoi 853 |
. . . . . . . 8
⊢ ((𝑘 = 1 ∨ 𝑘 ∈ (ℤ≥‘2))
→ ((𝑃 ∈ (ℙ
∖ {2}) ∧ 𝑀 ∈
ℕ ∧ 𝑁 ∈
ℕ) → ((((2↑𝑘)↑2) − 1) = (𝑃↑𝑀) → 𝑀 = 1))) |
166 | 18, 165 | sylbi 216 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ ((((2↑𝑘)↑2) − 1) = (𝑃↑𝑀) → 𝑀 = 1))) |
167 | 166 | impcom 407 |
. . . . . 6
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ 𝑘 ∈ ℕ)
→ ((((2↑𝑘)↑2) − 1) = (𝑃↑𝑀) → 𝑀 = 1)) |
168 | 167 | adantr 480 |
. . . . 5
⊢ ((((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ 𝑘 ∈ ℕ)
∧ (2 · 𝑘) =
𝑁) → ((((2↑𝑘)↑2) − 1) = (𝑃↑𝑀) → 𝑀 = 1)) |
169 | 17, 168 | sylbid 239 |
. . . 4
⊢ ((((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ 𝑘 ∈ ℕ)
∧ (2 · 𝑘) =
𝑁) → (((2↑𝑁) − 1) = (𝑃↑𝑀) → 𝑀 = 1)) |
170 | 169 | rexlimdva2 3215 |
. . 3
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (∃𝑘 ∈
ℕ (2 · 𝑘) =
𝑁 → (((2↑𝑁) − 1) = (𝑃↑𝑀) → 𝑀 = 1))) |
171 | 2, 170 | sylbid 239 |
. 2
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (2 ∥ 𝑁 →
(((2↑𝑁) − 1) =
(𝑃↑𝑀) → 𝑀 = 1))) |
172 | 171 | 3imp 1109 |
1
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ 2 ∥ 𝑁 ∧
((2↑𝑁) − 1) =
(𝑃↑𝑀)) → 𝑀 = 1) |