Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lighneallem2 Structured version   Visualization version   GIF version

Theorem lighneallem2 43253
Description: Lemma 2 for lighneal 43258. (Contributed by AV, 13-Aug-2021.)
Assertion
Ref Expression
lighneallem2 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 2 ∥ 𝑁 ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → 𝑀 = 1)

Proof of Theorem lighneallem2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 evennn2n 15533 . . . 4 (𝑁 ∈ ℕ → (2 ∥ 𝑁 ↔ ∃𝑘 ∈ ℕ (2 · 𝑘) = 𝑁))
213ad2ant3 1128 . . 3 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 ∥ 𝑁 ↔ ∃𝑘 ∈ ℕ (2 · 𝑘) = 𝑁))
3 oveq2 7024 . . . . . . . . 9 (𝑁 = (2 · 𝑘) → (2↑𝑁) = (2↑(2 · 𝑘)))
43eqcoms 2803 . . . . . . . 8 ((2 · 𝑘) = 𝑁 → (2↑𝑁) = (2↑(2 · 𝑘)))
5 2cnd 11563 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 2 ∈ ℂ)
6 nncn 11494 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
75, 6mulcomd 10508 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (2 · 𝑘) = (𝑘 · 2))
87oveq2d 7032 . . . . . . . . . 10 (𝑘 ∈ ℕ → (2↑(2 · 𝑘)) = (2↑(𝑘 · 2)))
9 2nn0 11762 . . . . . . . . . . . 12 2 ∈ ℕ0
109a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 2 ∈ ℕ0)
11 nnnn0 11752 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
125, 10, 11expmuld 13363 . . . . . . . . . 10 (𝑘 ∈ ℕ → (2↑(𝑘 · 2)) = ((2↑𝑘)↑2))
138, 12eqtrd 2831 . . . . . . . . 9 (𝑘 ∈ ℕ → (2↑(2 · 𝑘)) = ((2↑𝑘)↑2))
1413adantl 482 . . . . . . . 8 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (2↑(2 · 𝑘)) = ((2↑𝑘)↑2))
154, 14sylan9eqr 2853 . . . . . . 7 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ ℕ) ∧ (2 · 𝑘) = 𝑁) → (2↑𝑁) = ((2↑𝑘)↑2))
1615oveq1d 7031 . . . . . 6 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ ℕ) ∧ (2 · 𝑘) = 𝑁) → ((2↑𝑁) − 1) = (((2↑𝑘)↑2) − 1))
1716eqeq1d 2797 . . . . 5 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ ℕ) ∧ (2 · 𝑘) = 𝑁) → (((2↑𝑁) − 1) = (𝑃𝑀) ↔ (((2↑𝑘)↑2) − 1) = (𝑃𝑀)))
18 elnn1uz2 12174 . . . . . . . 8 (𝑘 ∈ ℕ ↔ (𝑘 = 1 ∨ 𝑘 ∈ (ℤ‘2)))
19 oveq2 7024 . . . . . . . . . . . . . . . . 17 (𝑘 = 1 → (2↑𝑘) = (2↑1))
20 2cn 11560 . . . . . . . . . . . . . . . . . 18 2 ∈ ℂ
21 exp1 13285 . . . . . . . . . . . . . . . . . 18 (2 ∈ ℂ → (2↑1) = 2)
2220, 21ax-mp 5 . . . . . . . . . . . . . . . . 17 (2↑1) = 2
2319, 22syl6eq 2847 . . . . . . . . . . . . . . . 16 (𝑘 = 1 → (2↑𝑘) = 2)
2423oveq1d 7031 . . . . . . . . . . . . . . 15 (𝑘 = 1 → ((2↑𝑘)↑2) = (2↑2))
2524oveq1d 7031 . . . . . . . . . . . . . 14 (𝑘 = 1 → (((2↑𝑘)↑2) − 1) = ((2↑2) − 1))
26 sq2 13410 . . . . . . . . . . . . . . . 16 (2↑2) = 4
2726oveq1i 7026 . . . . . . . . . . . . . . 15 ((2↑2) − 1) = (4 − 1)
28 4m1e3 11614 . . . . . . . . . . . . . . 15 (4 − 1) = 3
2927, 28eqtri 2819 . . . . . . . . . . . . . 14 ((2↑2) − 1) = 3
3025, 29syl6eq 2847 . . . . . . . . . . . . 13 (𝑘 = 1 → (((2↑𝑘)↑2) − 1) = 3)
3130eqeq1d 2797 . . . . . . . . . . . 12 (𝑘 = 1 → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) ↔ 3 = (𝑃𝑀)))
3231adantr 481 . . . . . . . . . . 11 ((𝑘 = 1 ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) ↔ 3 = (𝑃𝑀)))
33 eqcom 2802 . . . . . . . . . . . . . 14 (3 = (𝑃𝑀) ↔ (𝑃𝑀) = 3)
34 eldifi 4024 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
35 prmnn 15847 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
36 nnre 11493 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ)
3734, 35, 363syl 18 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℝ)
38373ad2ant1 1126 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑃 ∈ ℝ)
39 nnnn0 11752 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
40393ad2ant2 1127 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℕ0)
4138, 40reexpcld 13377 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑃𝑀) ∈ ℝ)
4241adantr 481 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = 3) → (𝑃𝑀) ∈ ℝ)
43 simpr 485 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = 3) → (𝑃𝑀) = 3)
4442, 43eqled 10590 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = 3) → (𝑃𝑀) ≤ 3)
4544ex 413 . . . . . . . . . . . . . 14 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑃𝑀) = 3 → (𝑃𝑀) ≤ 3))
4633, 45syl5bi 243 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (3 = (𝑃𝑀) → (𝑃𝑀) ≤ 3))
4735nnred 11501 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
48 prmgt1 15870 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ ℙ → 1 < 𝑃)
4947, 48jca 512 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
5034, 49syl 17 . . . . . . . . . . . . . . . 16 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
51503ad2ant1 1126 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
52 nnz 11853 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
53523ad2ant2 1127 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℤ)
54 3rp 12245 . . . . . . . . . . . . . . . 16 3 ∈ ℝ+
5554a1i 11 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 3 ∈ ℝ+)
56 efexple 25539 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℝ ∧ 1 < 𝑃) ∧ 𝑀 ∈ ℤ ∧ 3 ∈ ℝ+) → ((𝑃𝑀) ≤ 3 ↔ 𝑀 ≤ (⌊‘((log‘3) / (log‘𝑃)))))
5751, 53, 55, 56syl3anc 1364 . . . . . . . . . . . . . 14 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑃𝑀) ≤ 3 ↔ 𝑀 ≤ (⌊‘((log‘3) / (log‘𝑃)))))
58 oddprmge3 15873 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ‘3))
59 eluzle 12106 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℤ‘3) → 3 ≤ 𝑃)
6058, 59syl 17 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ (ℙ ∖ {2}) → 3 ≤ 𝑃)
6154a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℙ ∖ {2}) → 3 ∈ ℝ+)
62 nnrp 12250 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ+)
6334, 35, 623syl 18 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℝ+)
6461, 63logled 24891 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ (ℙ ∖ {2}) → (3 ≤ 𝑃 ↔ (log‘3) ≤ (log‘𝑃)))
6560, 64mpbid 233 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℙ ∖ {2}) → (log‘3) ≤ (log‘𝑃))
66653ad2ant1 1126 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (log‘3) ≤ (log‘𝑃))
67 relogcl 24840 . . . . . . . . . . . . . . . . . 18 (3 ∈ ℝ+ → (log‘3) ∈ ℝ)
6854, 67ax-mp 5 . . . . . . . . . . . . . . . . 17 (log‘3) ∈ ℝ
69 rplogcl 24868 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (log‘𝑃) ∈ ℝ+)
7034, 49, 693syl 18 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ (ℙ ∖ {2}) → (log‘𝑃) ∈ ℝ+)
71703ad2ant1 1126 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (log‘𝑃) ∈ ℝ+)
72 divle1le 12309 . . . . . . . . . . . . . . . . 17 (((log‘3) ∈ ℝ ∧ (log‘𝑃) ∈ ℝ+) → (((log‘3) / (log‘𝑃)) ≤ 1 ↔ (log‘3) ≤ (log‘𝑃)))
7368, 71, 72sylancr 587 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((log‘3) / (log‘𝑃)) ≤ 1 ↔ (log‘3) ≤ (log‘𝑃)))
7466, 73mpbird 258 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((log‘3) / (log‘𝑃)) ≤ 1)
75 fldivle 13051 . . . . . . . . . . . . . . . . 17 (((log‘3) ∈ ℝ ∧ (log‘𝑃) ∈ ℝ+) → (⌊‘((log‘3) / (log‘𝑃))) ≤ ((log‘3) / (log‘𝑃)))
7668, 71, 75sylancr 587 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((log‘3) / (log‘𝑃))) ≤ ((log‘3) / (log‘𝑃)))
77 nnre 11493 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
78773ad2ant2 1127 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℝ)
7968a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ (ℙ ∖ {2}) → (log‘3) ∈ ℝ)
8062relogcld 24887 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℕ → (log‘𝑃) ∈ ℝ)
8134, 35, 803syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ (ℙ ∖ {2}) → (log‘𝑃) ∈ ℝ)
8235nnrpd 12279 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
83 1red 10488 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ ℙ → 1 ∈ ℝ)
8483, 48gtned 10622 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑃 ∈ ℙ → 𝑃 ≠ 1)
8582, 84jca 512 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℙ → (𝑃 ∈ ℝ+𝑃 ≠ 1))
86 logne0 24844 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 ∈ ℝ+𝑃 ≠ 1) → (log‘𝑃) ≠ 0)
8734, 85, 863syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ (ℙ ∖ {2}) → (log‘𝑃) ≠ 0)
8879, 81, 87redivcld 11316 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ (ℙ ∖ {2}) → ((log‘3) / (log‘𝑃)) ∈ ℝ)
8988flcld 13018 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℙ ∖ {2}) → (⌊‘((log‘3) / (log‘𝑃))) ∈ ℤ)
9089zred 11936 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℙ ∖ {2}) → (⌊‘((log‘3) / (log‘𝑃))) ∈ ℝ)
91903ad2ant1 1126 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((log‘3) / (log‘𝑃))) ∈ ℝ)
92883ad2ant1 1126 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((log‘3) / (log‘𝑃)) ∈ ℝ)
93 letr 10581 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℝ ∧ (⌊‘((log‘3) / (log‘𝑃))) ∈ ℝ ∧ ((log‘3) / (log‘𝑃)) ∈ ℝ) → ((𝑀 ≤ (⌊‘((log‘3) / (log‘𝑃))) ∧ (⌊‘((log‘3) / (log‘𝑃))) ≤ ((log‘3) / (log‘𝑃))) → 𝑀 ≤ ((log‘3) / (log‘𝑃))))
9478, 91, 92, 93syl3anc 1364 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 ≤ (⌊‘((log‘3) / (log‘𝑃))) ∧ (⌊‘((log‘3) / (log‘𝑃))) ≤ ((log‘3) / (log‘𝑃))) → 𝑀 ≤ ((log‘3) / (log‘𝑃))))
95 1red 10488 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 1 ∈ ℝ)
96 letr 10581 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℝ ∧ ((log‘3) / (log‘𝑃)) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑀 ≤ ((log‘3) / (log‘𝑃)) ∧ ((log‘3) / (log‘𝑃)) ≤ 1) → 𝑀 ≤ 1))
9778, 92, 95, 96syl3anc 1364 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 ≤ ((log‘3) / (log‘𝑃)) ∧ ((log‘3) / (log‘𝑃)) ≤ 1) → 𝑀 ≤ 1))
98 nnge1 11513 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℕ → 1 ≤ 𝑀)
99 eqcom 2802 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 = 1 ↔ 1 = 𝑀)
100 1red 10488 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑀 ∈ ℕ → 1 ∈ ℝ)
101100, 77letri3d 10629 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℕ → (1 = 𝑀 ↔ (1 ≤ 𝑀𝑀 ≤ 1)))
10299, 101syl5rbb 285 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ → ((1 ≤ 𝑀𝑀 ≤ 1) ↔ 𝑀 = 1))
103102biimpd 230 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℕ → ((1 ≤ 𝑀𝑀 ≤ 1) → 𝑀 = 1))
10498, 103mpand 691 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ → (𝑀 ≤ 1 → 𝑀 = 1))
1051043ad2ant2 1127 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ≤ 1 → 𝑀 = 1))
10697, 105syld 47 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 ≤ ((log‘3) / (log‘𝑃)) ∧ ((log‘3) / (log‘𝑃)) ≤ 1) → 𝑀 = 1))
107106expd 416 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ≤ ((log‘3) / (log‘𝑃)) → (((log‘3) / (log‘𝑃)) ≤ 1 → 𝑀 = 1)))
10894, 107syld 47 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 ≤ (⌊‘((log‘3) / (log‘𝑃))) ∧ (⌊‘((log‘3) / (log‘𝑃))) ≤ ((log‘3) / (log‘𝑃))) → (((log‘3) / (log‘𝑃)) ≤ 1 → 𝑀 = 1)))
10976, 108mpan2d 690 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ≤ (⌊‘((log‘3) / (log‘𝑃))) → (((log‘3) / (log‘𝑃)) ≤ 1 → 𝑀 = 1)))
11074, 109mpid 44 . . . . . . . . . . . . . 14 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ≤ (⌊‘((log‘3) / (log‘𝑃))) → 𝑀 = 1))
11157, 110sylbid 241 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑃𝑀) ≤ 3 → 𝑀 = 1))
11246, 111syld 47 . . . . . . . . . . . 12 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (3 = (𝑃𝑀) → 𝑀 = 1))
113112adantl 482 . . . . . . . . . . 11 ((𝑘 = 1 ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (3 = (𝑃𝑀) → 𝑀 = 1))
11432, 113sylbid 241 . . . . . . . . . 10 ((𝑘 = 1 ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1))
115114ex 413 . . . . . . . . 9 (𝑘 = 1 → ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1)))
116 sq1 13408 . . . . . . . . . . . . . 14 (1↑2) = 1
117116eqcomi 2804 . . . . . . . . . . . . 13 1 = (1↑2)
118117oveq2i 7027 . . . . . . . . . . . 12 (((2↑𝑘)↑2) − 1) = (((2↑𝑘)↑2) − (1↑2))
119118eqeq1i 2800 . . . . . . . . . . 11 ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) ↔ (((2↑𝑘)↑2) − (1↑2)) = (𝑃𝑀))
120 eqcom 2802 . . . . . . . . . . . 12 ((((2↑𝑘)↑2) − (1↑2)) = (𝑃𝑀) ↔ (𝑃𝑀) = (((2↑𝑘)↑2) − (1↑2)))
1219a1i 11 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘2) → 2 ∈ ℕ0)
122 eluzge2nn0 12136 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘2) → 𝑘 ∈ ℕ0)
123121, 122nn0expcld 13457 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℤ‘2) → (2↑𝑘) ∈ ℕ0)
124123adantr 481 . . . . . . . . . . . . . 14 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (2↑𝑘) ∈ ℕ0)
125 1nn0 11761 . . . . . . . . . . . . . . 15 1 ∈ ℕ0
126125a1i 11 . . . . . . . . . . . . . 14 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → 1 ∈ ℕ0)
127 1p1e2 11610 . . . . . . . . . . . . . . . . 17 (1 + 1) = 2
12822eqcomi 2804 . . . . . . . . . . . . . . . . 17 2 = (2↑1)
129127, 128eqtri 2819 . . . . . . . . . . . . . . . 16 (1 + 1) = (2↑1)
130 eluz2gt1 12169 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘2) → 1 < 𝑘)
131 2re 11559 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ
132131a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (ℤ‘2) → 2 ∈ ℝ)
133 1zzd 11862 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (ℤ‘2) → 1 ∈ ℤ)
134 eluzelz 12103 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (ℤ‘2) → 𝑘 ∈ ℤ)
135 1lt2 11656 . . . . . . . . . . . . . . . . . . 19 1 < 2
136135a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (ℤ‘2) → 1 < 2)
137132, 133, 134, 136ltexp2d 13464 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘2) → (1 < 𝑘 ↔ (2↑1) < (2↑𝑘)))
138130, 137mpbid 233 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘2) → (2↑1) < (2↑𝑘))
139129, 138eqbrtrid 4997 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℤ‘2) → (1 + 1) < (2↑𝑘))
140139adantr 481 . . . . . . . . . . . . . 14 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (1 + 1) < (2↑𝑘))
14134, 39anim12i 612 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ) → (𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ0))
1421413adant3 1125 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ0))
143142adantl 482 . . . . . . . . . . . . . 14 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ0))
144 difsqpwdvds 16052 . . . . . . . . . . . . . 14 ((((2↑𝑘) ∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ (1 + 1) < (2↑𝑘)) ∧ (𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ0)) → ((𝑃𝑀) = (((2↑𝑘)↑2) − (1↑2)) → 𝑃 ∥ (2 · 1)))
145124, 126, 140, 143, 144syl31anc 1366 . . . . . . . . . . . . 13 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑃𝑀) = (((2↑𝑘)↑2) − (1↑2)) → 𝑃 ∥ (2 · 1)))
146 2t1e2 11648 . . . . . . . . . . . . . . . . . 18 (2 · 1) = 2
147146breq2i 4970 . . . . . . . . . . . . . . . . 17 (𝑃 ∥ (2 · 1) ↔ 𝑃 ∥ 2)
148 prmuz2 15869 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
14934, 148syl 17 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ‘2))
150 2prm 15865 . . . . . . . . . . . . . . . . . 18 2 ∈ ℙ
151 dvdsprm 15876 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ (ℤ‘2) ∧ 2 ∈ ℙ) → (𝑃 ∥ 2 ↔ 𝑃 = 2))
152149, 150, 151sylancl 586 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∥ 2 ↔ 𝑃 = 2))
153147, 152syl5bb 284 . . . . . . . . . . . . . . . 16 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∥ (2 · 1) ↔ 𝑃 = 2))
154 eldifsn 4626 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
155 eqneqall 2995 . . . . . . . . . . . . . . . . . 18 (𝑃 = 2 → (𝑃 ≠ 2 → 𝑀 = 1))
156155com12 32 . . . . . . . . . . . . . . . . 17 (𝑃 ≠ 2 → (𝑃 = 2 → 𝑀 = 1))
157154, 156simplbiim 505 . . . . . . . . . . . . . . . 16 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 = 2 → 𝑀 = 1))
158153, 157sylbid 241 . . . . . . . . . . . . . . 15 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∥ (2 · 1) → 𝑀 = 1))
1591583ad2ant1 1126 . . . . . . . . . . . . . 14 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (2 · 1) → 𝑀 = 1))
160159adantl 482 . . . . . . . . . . . . 13 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (𝑃 ∥ (2 · 1) → 𝑀 = 1))
161145, 160syld 47 . . . . . . . . . . . 12 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑃𝑀) = (((2↑𝑘)↑2) − (1↑2)) → 𝑀 = 1))
162120, 161syl5bi 243 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((((2↑𝑘)↑2) − (1↑2)) = (𝑃𝑀) → 𝑀 = 1))
163119, 162syl5bi 243 . . . . . . . . . 10 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1))
164163ex 413 . . . . . . . . 9 (𝑘 ∈ (ℤ‘2) → ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1)))
165115, 164jaoi 852 . . . . . . . 8 ((𝑘 = 1 ∨ 𝑘 ∈ (ℤ‘2)) → ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1)))
16618, 165sylbi 218 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1)))
167166impcom 408 . . . . . 6 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1))
168167adantr 481 . . . . 5 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ ℕ) ∧ (2 · 𝑘) = 𝑁) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1))
16917, 168sylbid 241 . . . 4 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ ℕ) ∧ (2 · 𝑘) = 𝑁) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1))
170169rexlimdva2 3250 . . 3 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (∃𝑘 ∈ ℕ (2 · 𝑘) = 𝑁 → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))
1712, 170sylbid 241 . 2 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 ∥ 𝑁 → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))
1721713imp 1104 1 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 2 ∥ 𝑁 ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → 𝑀 = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wo 842  w3a 1080   = wceq 1522  wcel 2081  wne 2984  wrex 3106  cdif 3856  {csn 4472   class class class wbr 4962  cfv 6225  (class class class)co 7016  cc 10381  cr 10382  0cc0 10383  1c1 10384   + caddc 10386   · cmul 10388   < clt 10521  cle 10522  cmin 10717   / cdiv 11145  cn 11486  2c2 11540  3c3 11541  4c4 11542  0cn0 11745  cz 11829  cuz 12093  +crp 12239  cfl 13010  cexp 13279  cdvds 15440  cprime 15844  logclog 24819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461  ax-addf 10462  ax-mulf 10463
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-of 7267  df-om 7437  df-1st 7545  df-2nd 7546  df-supp 7682  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-oadd 7957  df-er 8139  df-map 8258  df-pm 8259  df-ixp 8311  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-fsupp 8680  df-fi 8721  df-sup 8752  df-inf 8753  df-oi 8820  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-z 11830  df-dec 11948  df-uz 12094  df-q 12198  df-rp 12240  df-xneg 12357  df-xadd 12358  df-xmul 12359  df-ioo 12592  df-ioc 12593  df-ico 12594  df-icc 12595  df-fz 12743  df-fzo 12884  df-fl 13012  df-mod 13088  df-seq 13220  df-exp 13280  df-fac 13484  df-bc 13513  df-hash 13541  df-shft 14260  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-limsup 14662  df-clim 14679  df-rlim 14680  df-sum 14877  df-ef 15254  df-sin 15256  df-cos 15257  df-pi 15259  df-dvds 15441  df-gcd 15677  df-prm 15845  df-pc 16003  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-starv 16409  df-sca 16410  df-vsca 16411  df-ip 16412  df-tset 16413  df-ple 16414  df-ds 16416  df-unif 16417  df-hom 16418  df-cco 16419  df-rest 16525  df-topn 16526  df-0g 16544  df-gsum 16545  df-topgen 16546  df-pt 16547  df-prds 16550  df-xrs 16604  df-qtop 16609  df-imas 16610  df-xps 16612  df-mre 16686  df-mrc 16687  df-acs 16689  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-submnd 17775  df-mulg 17982  df-cntz 18188  df-cmn 18635  df-psmet 20219  df-xmet 20220  df-met 20221  df-bl 20222  df-mopn 20223  df-fbas 20224  df-fg 20225  df-cnfld 20228  df-top 21186  df-topon 21203  df-topsp 21225  df-bases 21238  df-cld 21311  df-ntr 21312  df-cls 21313  df-nei 21390  df-lp 21428  df-perf 21429  df-cn 21519  df-cnp 21520  df-haus 21607  df-tx 21854  df-hmeo 22047  df-fil 22138  df-fm 22230  df-flim 22231  df-flf 22232  df-xms 22613  df-ms 22614  df-tms 22615  df-cncf 23169  df-limc 24147  df-dv 24148  df-log 24821
This theorem is referenced by:  lighneal  43258
  Copyright terms: Public domain W3C validator