Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lighneallem2 Structured version   Visualization version   GIF version

Theorem lighneallem2 44117
Description: Lemma 2 for lighneal 44122. (Contributed by AV, 13-Aug-2021.)
Assertion
Ref Expression
lighneallem2 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 2 ∥ 𝑁 ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → 𝑀 = 1)

Proof of Theorem lighneallem2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 evennn2n 15696 . . . 4 (𝑁 ∈ ℕ → (2 ∥ 𝑁 ↔ ∃𝑘 ∈ ℕ (2 · 𝑘) = 𝑁))
213ad2ant3 1132 . . 3 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 ∥ 𝑁 ↔ ∃𝑘 ∈ ℕ (2 · 𝑘) = 𝑁))
3 oveq2 7147 . . . . . . . . 9 (𝑁 = (2 · 𝑘) → (2↑𝑁) = (2↑(2 · 𝑘)))
43eqcoms 2809 . . . . . . . 8 ((2 · 𝑘) = 𝑁 → (2↑𝑁) = (2↑(2 · 𝑘)))
5 2cnd 11707 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 2 ∈ ℂ)
6 nncn 11637 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
75, 6mulcomd 10655 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (2 · 𝑘) = (𝑘 · 2))
87oveq2d 7155 . . . . . . . . . 10 (𝑘 ∈ ℕ → (2↑(2 · 𝑘)) = (2↑(𝑘 · 2)))
9 2nn0 11906 . . . . . . . . . . . 12 2 ∈ ℕ0
109a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 2 ∈ ℕ0)
11 nnnn0 11896 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
125, 10, 11expmuld 13513 . . . . . . . . . 10 (𝑘 ∈ ℕ → (2↑(𝑘 · 2)) = ((2↑𝑘)↑2))
138, 12eqtrd 2836 . . . . . . . . 9 (𝑘 ∈ ℕ → (2↑(2 · 𝑘)) = ((2↑𝑘)↑2))
1413adantl 485 . . . . . . . 8 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (2↑(2 · 𝑘)) = ((2↑𝑘)↑2))
154, 14sylan9eqr 2858 . . . . . . 7 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ ℕ) ∧ (2 · 𝑘) = 𝑁) → (2↑𝑁) = ((2↑𝑘)↑2))
1615oveq1d 7154 . . . . . 6 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ ℕ) ∧ (2 · 𝑘) = 𝑁) → ((2↑𝑁) − 1) = (((2↑𝑘)↑2) − 1))
1716eqeq1d 2803 . . . . 5 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ ℕ) ∧ (2 · 𝑘) = 𝑁) → (((2↑𝑁) − 1) = (𝑃𝑀) ↔ (((2↑𝑘)↑2) − 1) = (𝑃𝑀)))
18 elnn1uz2 12317 . . . . . . . 8 (𝑘 ∈ ℕ ↔ (𝑘 = 1 ∨ 𝑘 ∈ (ℤ‘2)))
19 oveq2 7147 . . . . . . . . . . . . . . . . 17 (𝑘 = 1 → (2↑𝑘) = (2↑1))
20 2cn 11704 . . . . . . . . . . . . . . . . . 18 2 ∈ ℂ
21 exp1 13435 . . . . . . . . . . . . . . . . . 18 (2 ∈ ℂ → (2↑1) = 2)
2220, 21ax-mp 5 . . . . . . . . . . . . . . . . 17 (2↑1) = 2
2319, 22eqtrdi 2852 . . . . . . . . . . . . . . . 16 (𝑘 = 1 → (2↑𝑘) = 2)
2423oveq1d 7154 . . . . . . . . . . . . . . 15 (𝑘 = 1 → ((2↑𝑘)↑2) = (2↑2))
2524oveq1d 7154 . . . . . . . . . . . . . 14 (𝑘 = 1 → (((2↑𝑘)↑2) − 1) = ((2↑2) − 1))
26 sq2 13560 . . . . . . . . . . . . . . . 16 (2↑2) = 4
2726oveq1i 7149 . . . . . . . . . . . . . . 15 ((2↑2) − 1) = (4 − 1)
28 4m1e3 11758 . . . . . . . . . . . . . . 15 (4 − 1) = 3
2927, 28eqtri 2824 . . . . . . . . . . . . . 14 ((2↑2) − 1) = 3
3025, 29eqtrdi 2852 . . . . . . . . . . . . 13 (𝑘 = 1 → (((2↑𝑘)↑2) − 1) = 3)
3130eqeq1d 2803 . . . . . . . . . . . 12 (𝑘 = 1 → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) ↔ 3 = (𝑃𝑀)))
3231adantr 484 . . . . . . . . . . 11 ((𝑘 = 1 ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) ↔ 3 = (𝑃𝑀)))
33 eqcom 2808 . . . . . . . . . . . . . 14 (3 = (𝑃𝑀) ↔ (𝑃𝑀) = 3)
34 eldifi 4057 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
35 prmnn 16012 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
36 nnre 11636 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ)
3734, 35, 363syl 18 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℝ)
38373ad2ant1 1130 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑃 ∈ ℝ)
39 nnnn0 11896 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
40393ad2ant2 1131 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℕ0)
4138, 40reexpcld 13527 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑃𝑀) ∈ ℝ)
4241adantr 484 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = 3) → (𝑃𝑀) ∈ ℝ)
43 simpr 488 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = 3) → (𝑃𝑀) = 3)
4442, 43eqled 10736 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = 3) → (𝑃𝑀) ≤ 3)
4544ex 416 . . . . . . . . . . . . . 14 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑃𝑀) = 3 → (𝑃𝑀) ≤ 3))
4633, 45syl5bi 245 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (3 = (𝑃𝑀) → (𝑃𝑀) ≤ 3))
4735nnred 11644 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
48 prmgt1 16035 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ ℙ → 1 < 𝑃)
4947, 48jca 515 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
5034, 49syl 17 . . . . . . . . . . . . . . . 16 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
51503ad2ant1 1130 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
52 nnz 11996 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
53523ad2ant2 1131 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℤ)
54 3rp 12387 . . . . . . . . . . . . . . . 16 3 ∈ ℝ+
5554a1i 11 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 3 ∈ ℝ+)
56 efexple 25869 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℝ ∧ 1 < 𝑃) ∧ 𝑀 ∈ ℤ ∧ 3 ∈ ℝ+) → ((𝑃𝑀) ≤ 3 ↔ 𝑀 ≤ (⌊‘((log‘3) / (log‘𝑃)))))
5751, 53, 55, 56syl3anc 1368 . . . . . . . . . . . . . 14 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑃𝑀) ≤ 3 ↔ 𝑀 ≤ (⌊‘((log‘3) / (log‘𝑃)))))
58 oddprmge3 16038 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ‘3))
59 eluzle 12248 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℤ‘3) → 3 ≤ 𝑃)
6058, 59syl 17 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ (ℙ ∖ {2}) → 3 ≤ 𝑃)
6154a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℙ ∖ {2}) → 3 ∈ ℝ+)
62 nnrp 12392 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ+)
6334, 35, 623syl 18 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℝ+)
6461, 63logled 25222 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ (ℙ ∖ {2}) → (3 ≤ 𝑃 ↔ (log‘3) ≤ (log‘𝑃)))
6560, 64mpbid 235 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℙ ∖ {2}) → (log‘3) ≤ (log‘𝑃))
66653ad2ant1 1130 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (log‘3) ≤ (log‘𝑃))
67 relogcl 25171 . . . . . . . . . . . . . . . . . 18 (3 ∈ ℝ+ → (log‘3) ∈ ℝ)
6854, 67ax-mp 5 . . . . . . . . . . . . . . . . 17 (log‘3) ∈ ℝ
69 rplogcl 25199 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (log‘𝑃) ∈ ℝ+)
7034, 49, 693syl 18 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ (ℙ ∖ {2}) → (log‘𝑃) ∈ ℝ+)
71703ad2ant1 1130 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (log‘𝑃) ∈ ℝ+)
72 divle1le 12451 . . . . . . . . . . . . . . . . 17 (((log‘3) ∈ ℝ ∧ (log‘𝑃) ∈ ℝ+) → (((log‘3) / (log‘𝑃)) ≤ 1 ↔ (log‘3) ≤ (log‘𝑃)))
7368, 71, 72sylancr 590 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((log‘3) / (log‘𝑃)) ≤ 1 ↔ (log‘3) ≤ (log‘𝑃)))
7466, 73mpbird 260 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((log‘3) / (log‘𝑃)) ≤ 1)
75 fldivle 13200 . . . . . . . . . . . . . . . . 17 (((log‘3) ∈ ℝ ∧ (log‘𝑃) ∈ ℝ+) → (⌊‘((log‘3) / (log‘𝑃))) ≤ ((log‘3) / (log‘𝑃)))
7668, 71, 75sylancr 590 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((log‘3) / (log‘𝑃))) ≤ ((log‘3) / (log‘𝑃)))
77 nnre 11636 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
78773ad2ant2 1131 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℝ)
7968a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ (ℙ ∖ {2}) → (log‘3) ∈ ℝ)
8062relogcld 25218 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℕ → (log‘𝑃) ∈ ℝ)
8134, 35, 803syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ (ℙ ∖ {2}) → (log‘𝑃) ∈ ℝ)
8235nnrpd 12421 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
83 1red 10635 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ ℙ → 1 ∈ ℝ)
8483, 48gtned 10768 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑃 ∈ ℙ → 𝑃 ≠ 1)
8582, 84jca 515 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℙ → (𝑃 ∈ ℝ+𝑃 ≠ 1))
86 logne0 25175 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 ∈ ℝ+𝑃 ≠ 1) → (log‘𝑃) ≠ 0)
8734, 85, 863syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ (ℙ ∖ {2}) → (log‘𝑃) ≠ 0)
8879, 81, 87redivcld 11461 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ (ℙ ∖ {2}) → ((log‘3) / (log‘𝑃)) ∈ ℝ)
8988flcld 13167 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℙ ∖ {2}) → (⌊‘((log‘3) / (log‘𝑃))) ∈ ℤ)
9089zred 12079 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℙ ∖ {2}) → (⌊‘((log‘3) / (log‘𝑃))) ∈ ℝ)
91903ad2ant1 1130 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((log‘3) / (log‘𝑃))) ∈ ℝ)
92883ad2ant1 1130 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((log‘3) / (log‘𝑃)) ∈ ℝ)
93 letr 10727 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℝ ∧ (⌊‘((log‘3) / (log‘𝑃))) ∈ ℝ ∧ ((log‘3) / (log‘𝑃)) ∈ ℝ) → ((𝑀 ≤ (⌊‘((log‘3) / (log‘𝑃))) ∧ (⌊‘((log‘3) / (log‘𝑃))) ≤ ((log‘3) / (log‘𝑃))) → 𝑀 ≤ ((log‘3) / (log‘𝑃))))
9478, 91, 92, 93syl3anc 1368 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 ≤ (⌊‘((log‘3) / (log‘𝑃))) ∧ (⌊‘((log‘3) / (log‘𝑃))) ≤ ((log‘3) / (log‘𝑃))) → 𝑀 ≤ ((log‘3) / (log‘𝑃))))
95 1red 10635 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 1 ∈ ℝ)
96 letr 10727 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℝ ∧ ((log‘3) / (log‘𝑃)) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑀 ≤ ((log‘3) / (log‘𝑃)) ∧ ((log‘3) / (log‘𝑃)) ≤ 1) → 𝑀 ≤ 1))
9778, 92, 95, 96syl3anc 1368 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 ≤ ((log‘3) / (log‘𝑃)) ∧ ((log‘3) / (log‘𝑃)) ≤ 1) → 𝑀 ≤ 1))
98 nnge1 11657 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℕ → 1 ≤ 𝑀)
99 eqcom 2808 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 = 1 ↔ 1 = 𝑀)
100 1red 10635 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑀 ∈ ℕ → 1 ∈ ℝ)
101100, 77letri3d 10775 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℕ → (1 = 𝑀 ↔ (1 ≤ 𝑀𝑀 ≤ 1)))
10299, 101syl5rbb 287 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ → ((1 ≤ 𝑀𝑀 ≤ 1) ↔ 𝑀 = 1))
103102biimpd 232 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℕ → ((1 ≤ 𝑀𝑀 ≤ 1) → 𝑀 = 1))
10498, 103mpand 694 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ → (𝑀 ≤ 1 → 𝑀 = 1))
1051043ad2ant2 1131 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ≤ 1 → 𝑀 = 1))
10697, 105syld 47 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 ≤ ((log‘3) / (log‘𝑃)) ∧ ((log‘3) / (log‘𝑃)) ≤ 1) → 𝑀 = 1))
107106expd 419 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ≤ ((log‘3) / (log‘𝑃)) → (((log‘3) / (log‘𝑃)) ≤ 1 → 𝑀 = 1)))
10894, 107syld 47 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 ≤ (⌊‘((log‘3) / (log‘𝑃))) ∧ (⌊‘((log‘3) / (log‘𝑃))) ≤ ((log‘3) / (log‘𝑃))) → (((log‘3) / (log‘𝑃)) ≤ 1 → 𝑀 = 1)))
10976, 108mpan2d 693 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ≤ (⌊‘((log‘3) / (log‘𝑃))) → (((log‘3) / (log‘𝑃)) ≤ 1 → 𝑀 = 1)))
11074, 109mpid 44 . . . . . . . . . . . . . 14 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ≤ (⌊‘((log‘3) / (log‘𝑃))) → 𝑀 = 1))
11157, 110sylbid 243 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑃𝑀) ≤ 3 → 𝑀 = 1))
11246, 111syld 47 . . . . . . . . . . . 12 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (3 = (𝑃𝑀) → 𝑀 = 1))
113112adantl 485 . . . . . . . . . . 11 ((𝑘 = 1 ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (3 = (𝑃𝑀) → 𝑀 = 1))
11432, 113sylbid 243 . . . . . . . . . 10 ((𝑘 = 1 ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1))
115114ex 416 . . . . . . . . 9 (𝑘 = 1 → ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1)))
116 sq1 13558 . . . . . . . . . . . . . 14 (1↑2) = 1
117116eqcomi 2810 . . . . . . . . . . . . 13 1 = (1↑2)
118117oveq2i 7150 . . . . . . . . . . . 12 (((2↑𝑘)↑2) − 1) = (((2↑𝑘)↑2) − (1↑2))
119118eqeq1i 2806 . . . . . . . . . . 11 ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) ↔ (((2↑𝑘)↑2) − (1↑2)) = (𝑃𝑀))
120 eqcom 2808 . . . . . . . . . . . 12 ((((2↑𝑘)↑2) − (1↑2)) = (𝑃𝑀) ↔ (𝑃𝑀) = (((2↑𝑘)↑2) − (1↑2)))
1219a1i 11 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘2) → 2 ∈ ℕ0)
122 eluzge2nn0 12279 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘2) → 𝑘 ∈ ℕ0)
123121, 122nn0expcld 13607 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℤ‘2) → (2↑𝑘) ∈ ℕ0)
124123adantr 484 . . . . . . . . . . . . . 14 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (2↑𝑘) ∈ ℕ0)
125 1nn0 11905 . . . . . . . . . . . . . . 15 1 ∈ ℕ0
126125a1i 11 . . . . . . . . . . . . . 14 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → 1 ∈ ℕ0)
127 1p1e2 11754 . . . . . . . . . . . . . . . . 17 (1 + 1) = 2
12822eqcomi 2810 . . . . . . . . . . . . . . . . 17 2 = (2↑1)
129127, 128eqtri 2824 . . . . . . . . . . . . . . . 16 (1 + 1) = (2↑1)
130 eluz2gt1 12312 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘2) → 1 < 𝑘)
131 2re 11703 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ
132131a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (ℤ‘2) → 2 ∈ ℝ)
133 1zzd 12005 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (ℤ‘2) → 1 ∈ ℤ)
134 eluzelz 12245 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (ℤ‘2) → 𝑘 ∈ ℤ)
135 1lt2 11800 . . . . . . . . . . . . . . . . . . 19 1 < 2
136135a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (ℤ‘2) → 1 < 2)
137132, 133, 134, 136ltexp2d 13614 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘2) → (1 < 𝑘 ↔ (2↑1) < (2↑𝑘)))
138130, 137mpbid 235 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘2) → (2↑1) < (2↑𝑘))
139129, 138eqbrtrid 5068 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℤ‘2) → (1 + 1) < (2↑𝑘))
140139adantr 484 . . . . . . . . . . . . . 14 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (1 + 1) < (2↑𝑘))
14134, 39anim12i 615 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ) → (𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ0))
1421413adant3 1129 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ0))
143142adantl 485 . . . . . . . . . . . . . 14 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ0))
144 difsqpwdvds 16217 . . . . . . . . . . . . . 14 ((((2↑𝑘) ∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ (1 + 1) < (2↑𝑘)) ∧ (𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ0)) → ((𝑃𝑀) = (((2↑𝑘)↑2) − (1↑2)) → 𝑃 ∥ (2 · 1)))
145124, 126, 140, 143, 144syl31anc 1370 . . . . . . . . . . . . 13 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑃𝑀) = (((2↑𝑘)↑2) − (1↑2)) → 𝑃 ∥ (2 · 1)))
146 2t1e2 11792 . . . . . . . . . . . . . . . . . 18 (2 · 1) = 2
147146breq2i 5041 . . . . . . . . . . . . . . . . 17 (𝑃 ∥ (2 · 1) ↔ 𝑃 ∥ 2)
148 prmuz2 16034 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
14934, 148syl 17 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ‘2))
150 2prm 16030 . . . . . . . . . . . . . . . . . 18 2 ∈ ℙ
151 dvdsprm 16041 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ (ℤ‘2) ∧ 2 ∈ ℙ) → (𝑃 ∥ 2 ↔ 𝑃 = 2))
152149, 150, 151sylancl 589 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∥ 2 ↔ 𝑃 = 2))
153147, 152syl5bb 286 . . . . . . . . . . . . . . . 16 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∥ (2 · 1) ↔ 𝑃 = 2))
154 eldifsn 4683 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
155 eqneqall 3001 . . . . . . . . . . . . . . . . . 18 (𝑃 = 2 → (𝑃 ≠ 2 → 𝑀 = 1))
156155com12 32 . . . . . . . . . . . . . . . . 17 (𝑃 ≠ 2 → (𝑃 = 2 → 𝑀 = 1))
157154, 156simplbiim 508 . . . . . . . . . . . . . . . 16 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 = 2 → 𝑀 = 1))
158153, 157sylbid 243 . . . . . . . . . . . . . . 15 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∥ (2 · 1) → 𝑀 = 1))
1591583ad2ant1 1130 . . . . . . . . . . . . . 14 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (2 · 1) → 𝑀 = 1))
160159adantl 485 . . . . . . . . . . . . 13 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (𝑃 ∥ (2 · 1) → 𝑀 = 1))
161145, 160syld 47 . . . . . . . . . . . 12 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑃𝑀) = (((2↑𝑘)↑2) − (1↑2)) → 𝑀 = 1))
162120, 161syl5bi 245 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((((2↑𝑘)↑2) − (1↑2)) = (𝑃𝑀) → 𝑀 = 1))
163119, 162syl5bi 245 . . . . . . . . . 10 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1))
164163ex 416 . . . . . . . . 9 (𝑘 ∈ (ℤ‘2) → ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1)))
165115, 164jaoi 854 . . . . . . . 8 ((𝑘 = 1 ∨ 𝑘 ∈ (ℤ‘2)) → ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1)))
16618, 165sylbi 220 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1)))
167166impcom 411 . . . . . 6 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1))
168167adantr 484 . . . . 5 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ ℕ) ∧ (2 · 𝑘) = 𝑁) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1))
16917, 168sylbid 243 . . . 4 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ ℕ) ∧ (2 · 𝑘) = 𝑁) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1))
170169rexlimdva2 3249 . . 3 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (∃𝑘 ∈ ℕ (2 · 𝑘) = 𝑁 → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))
1712, 170sylbid 243 . 2 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 ∥ 𝑁 → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))
1721713imp 1108 1 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 2 ∥ 𝑁 ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → 𝑀 = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2112  wne 2990  wrex 3110  cdif 3881  {csn 4528   class class class wbr 5033  cfv 6328  (class class class)co 7139  cc 10528  cr 10529  0cc0 10530  1c1 10531   + caddc 10533   · cmul 10535   < clt 10668  cle 10669  cmin 10863   / cdiv 11290  cn 11629  2c2 11684  3c3 11685  4c4 11686  0cn0 11889  cz 11973  cuz 12235  +crp 12381  cfl 13159  cexp 13429  cdvds 15603  cprime 16009  logclog 25150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430  df-fac 13634  df-bc 13663  df-hash 13691  df-shft 14422  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-limsup 14824  df-clim 14841  df-rlim 14842  df-sum 15039  df-ef 15417  df-sin 15419  df-cos 15420  df-pi 15422  df-dvds 15604  df-gcd 15838  df-prm 16010  df-pc 16168  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-starv 16576  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-unif 16584  df-hom 16585  df-cco 16586  df-rest 16692  df-topn 16693  df-0g 16711  df-gsum 16712  df-topgen 16713  df-pt 16714  df-prds 16717  df-xrs 16771  df-qtop 16776  df-imas 16777  df-xps 16779  df-mre 16853  df-mrc 16854  df-acs 16856  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-submnd 17953  df-mulg 18221  df-cntz 18443  df-cmn 18904  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-mopn 20091  df-fbas 20092  df-fg 20093  df-cnfld 20096  df-top 21503  df-topon 21520  df-topsp 21542  df-bases 21555  df-cld 21628  df-ntr 21629  df-cls 21630  df-nei 21707  df-lp 21745  df-perf 21746  df-cn 21836  df-cnp 21837  df-haus 21924  df-tx 22171  df-hmeo 22364  df-fil 22455  df-fm 22547  df-flim 22548  df-flf 22549  df-xms 22931  df-ms 22932  df-tms 22933  df-cncf 23487  df-limc 24473  df-dv 24474  df-log 25152
This theorem is referenced by:  lighneal  44122
  Copyright terms: Public domain W3C validator