Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lighneallem2 Structured version   Visualization version   GIF version

Theorem lighneallem2 46759
Description: Lemma 2 for lighneal 46764. (Contributed by AV, 13-Aug-2021.)
Assertion
Ref Expression
lighneallem2 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 2 ∥ 𝑁 ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → 𝑀 = 1)

Proof of Theorem lighneallem2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 evennn2n 16291 . . . 4 (𝑁 ∈ ℕ → (2 ∥ 𝑁 ↔ ∃𝑘 ∈ ℕ (2 · 𝑘) = 𝑁))
213ad2ant3 1132 . . 3 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 ∥ 𝑁 ↔ ∃𝑘 ∈ ℕ (2 · 𝑘) = 𝑁))
3 oveq2 7409 . . . . . . . . 9 (𝑁 = (2 · 𝑘) → (2↑𝑁) = (2↑(2 · 𝑘)))
43eqcoms 2732 . . . . . . . 8 ((2 · 𝑘) = 𝑁 → (2↑𝑁) = (2↑(2 · 𝑘)))
5 2cnd 12287 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 2 ∈ ℂ)
6 nncn 12217 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
75, 6mulcomd 11232 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (2 · 𝑘) = (𝑘 · 2))
87oveq2d 7417 . . . . . . . . . 10 (𝑘 ∈ ℕ → (2↑(2 · 𝑘)) = (2↑(𝑘 · 2)))
9 2nn0 12486 . . . . . . . . . . . 12 2 ∈ ℕ0
109a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 2 ∈ ℕ0)
11 nnnn0 12476 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
125, 10, 11expmuld 14111 . . . . . . . . . 10 (𝑘 ∈ ℕ → (2↑(𝑘 · 2)) = ((2↑𝑘)↑2))
138, 12eqtrd 2764 . . . . . . . . 9 (𝑘 ∈ ℕ → (2↑(2 · 𝑘)) = ((2↑𝑘)↑2))
1413adantl 481 . . . . . . . 8 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (2↑(2 · 𝑘)) = ((2↑𝑘)↑2))
154, 14sylan9eqr 2786 . . . . . . 7 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ ℕ) ∧ (2 · 𝑘) = 𝑁) → (2↑𝑁) = ((2↑𝑘)↑2))
1615oveq1d 7416 . . . . . 6 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ ℕ) ∧ (2 · 𝑘) = 𝑁) → ((2↑𝑁) − 1) = (((2↑𝑘)↑2) − 1))
1716eqeq1d 2726 . . . . 5 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ ℕ) ∧ (2 · 𝑘) = 𝑁) → (((2↑𝑁) − 1) = (𝑃𝑀) ↔ (((2↑𝑘)↑2) − 1) = (𝑃𝑀)))
18 elnn1uz2 12906 . . . . . . . 8 (𝑘 ∈ ℕ ↔ (𝑘 = 1 ∨ 𝑘 ∈ (ℤ‘2)))
19 oveq2 7409 . . . . . . . . . . . . . . . . 17 (𝑘 = 1 → (2↑𝑘) = (2↑1))
20 2cn 12284 . . . . . . . . . . . . . . . . . 18 2 ∈ ℂ
21 exp1 14030 . . . . . . . . . . . . . . . . . 18 (2 ∈ ℂ → (2↑1) = 2)
2220, 21ax-mp 5 . . . . . . . . . . . . . . . . 17 (2↑1) = 2
2319, 22eqtrdi 2780 . . . . . . . . . . . . . . . 16 (𝑘 = 1 → (2↑𝑘) = 2)
2423oveq1d 7416 . . . . . . . . . . . . . . 15 (𝑘 = 1 → ((2↑𝑘)↑2) = (2↑2))
2524oveq1d 7416 . . . . . . . . . . . . . 14 (𝑘 = 1 → (((2↑𝑘)↑2) − 1) = ((2↑2) − 1))
26 sq2 14158 . . . . . . . . . . . . . . . 16 (2↑2) = 4
2726oveq1i 7411 . . . . . . . . . . . . . . 15 ((2↑2) − 1) = (4 − 1)
28 4m1e3 12338 . . . . . . . . . . . . . . 15 (4 − 1) = 3
2927, 28eqtri 2752 . . . . . . . . . . . . . 14 ((2↑2) − 1) = 3
3025, 29eqtrdi 2780 . . . . . . . . . . . . 13 (𝑘 = 1 → (((2↑𝑘)↑2) − 1) = 3)
3130eqeq1d 2726 . . . . . . . . . . . 12 (𝑘 = 1 → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) ↔ 3 = (𝑃𝑀)))
3231adantr 480 . . . . . . . . . . 11 ((𝑘 = 1 ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) ↔ 3 = (𝑃𝑀)))
33 eqcom 2731 . . . . . . . . . . . . . 14 (3 = (𝑃𝑀) ↔ (𝑃𝑀) = 3)
34 eldifi 4118 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
35 prmnn 16608 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
36 nnre 12216 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ)
3734, 35, 363syl 18 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℝ)
38373ad2ant1 1130 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑃 ∈ ℝ)
39 nnnn0 12476 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
40393ad2ant2 1131 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℕ0)
4138, 40reexpcld 14125 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑃𝑀) ∈ ℝ)
4241adantr 480 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = 3) → (𝑃𝑀) ∈ ℝ)
43 simpr 484 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = 3) → (𝑃𝑀) = 3)
4442, 43eqled 11314 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = 3) → (𝑃𝑀) ≤ 3)
4544ex 412 . . . . . . . . . . . . . 14 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑃𝑀) = 3 → (𝑃𝑀) ≤ 3))
4633, 45biimtrid 241 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (3 = (𝑃𝑀) → (𝑃𝑀) ≤ 3))
4735nnred 12224 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
48 prmgt1 16631 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ ℙ → 1 < 𝑃)
4947, 48jca 511 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
5034, 49syl 17 . . . . . . . . . . . . . . . 16 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
51503ad2ant1 1130 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
52 nnz 12576 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
53523ad2ant2 1131 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℤ)
54 3rp 12977 . . . . . . . . . . . . . . . 16 3 ∈ ℝ+
5554a1i 11 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 3 ∈ ℝ+)
56 efexple 27130 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℝ ∧ 1 < 𝑃) ∧ 𝑀 ∈ ℤ ∧ 3 ∈ ℝ+) → ((𝑃𝑀) ≤ 3 ↔ 𝑀 ≤ (⌊‘((log‘3) / (log‘𝑃)))))
5751, 53, 55, 56syl3anc 1368 . . . . . . . . . . . . . 14 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑃𝑀) ≤ 3 ↔ 𝑀 ≤ (⌊‘((log‘3) / (log‘𝑃)))))
58 oddprmge3 16634 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ‘3))
59 eluzle 12832 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℤ‘3) → 3 ≤ 𝑃)
6058, 59syl 17 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ (ℙ ∖ {2}) → 3 ≤ 𝑃)
6154a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℙ ∖ {2}) → 3 ∈ ℝ+)
62 nnrp 12982 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ+)
6334, 35, 623syl 18 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℝ+)
6461, 63logled 26477 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ (ℙ ∖ {2}) → (3 ≤ 𝑃 ↔ (log‘3) ≤ (log‘𝑃)))
6560, 64mpbid 231 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℙ ∖ {2}) → (log‘3) ≤ (log‘𝑃))
66653ad2ant1 1130 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (log‘3) ≤ (log‘𝑃))
67 relogcl 26426 . . . . . . . . . . . . . . . . . 18 (3 ∈ ℝ+ → (log‘3) ∈ ℝ)
6854, 67ax-mp 5 . . . . . . . . . . . . . . . . 17 (log‘3) ∈ ℝ
69 rplogcl 26454 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (log‘𝑃) ∈ ℝ+)
7034, 49, 693syl 18 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ (ℙ ∖ {2}) → (log‘𝑃) ∈ ℝ+)
71703ad2ant1 1130 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (log‘𝑃) ∈ ℝ+)
72 divle1le 13041 . . . . . . . . . . . . . . . . 17 (((log‘3) ∈ ℝ ∧ (log‘𝑃) ∈ ℝ+) → (((log‘3) / (log‘𝑃)) ≤ 1 ↔ (log‘3) ≤ (log‘𝑃)))
7368, 71, 72sylancr 586 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((log‘3) / (log‘𝑃)) ≤ 1 ↔ (log‘3) ≤ (log‘𝑃)))
7466, 73mpbird 257 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((log‘3) / (log‘𝑃)) ≤ 1)
75 fldivle 13793 . . . . . . . . . . . . . . . . 17 (((log‘3) ∈ ℝ ∧ (log‘𝑃) ∈ ℝ+) → (⌊‘((log‘3) / (log‘𝑃))) ≤ ((log‘3) / (log‘𝑃)))
7668, 71, 75sylancr 586 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((log‘3) / (log‘𝑃))) ≤ ((log‘3) / (log‘𝑃)))
77 nnre 12216 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
78773ad2ant2 1131 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℝ)
7968a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ (ℙ ∖ {2}) → (log‘3) ∈ ℝ)
8062relogcld 26473 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℕ → (log‘𝑃) ∈ ℝ)
8134, 35, 803syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ (ℙ ∖ {2}) → (log‘𝑃) ∈ ℝ)
8235nnrpd 13011 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
83 1red 11212 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ ℙ → 1 ∈ ℝ)
8483, 48gtned 11346 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑃 ∈ ℙ → 𝑃 ≠ 1)
8582, 84jca 511 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℙ → (𝑃 ∈ ℝ+𝑃 ≠ 1))
86 logne0 26430 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 ∈ ℝ+𝑃 ≠ 1) → (log‘𝑃) ≠ 0)
8734, 85, 863syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ (ℙ ∖ {2}) → (log‘𝑃) ≠ 0)
8879, 81, 87redivcld 12039 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ (ℙ ∖ {2}) → ((log‘3) / (log‘𝑃)) ∈ ℝ)
8988flcld 13760 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℙ ∖ {2}) → (⌊‘((log‘3) / (log‘𝑃))) ∈ ℤ)
9089zred 12663 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℙ ∖ {2}) → (⌊‘((log‘3) / (log‘𝑃))) ∈ ℝ)
91903ad2ant1 1130 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((log‘3) / (log‘𝑃))) ∈ ℝ)
92883ad2ant1 1130 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((log‘3) / (log‘𝑃)) ∈ ℝ)
93 letr 11305 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℝ ∧ (⌊‘((log‘3) / (log‘𝑃))) ∈ ℝ ∧ ((log‘3) / (log‘𝑃)) ∈ ℝ) → ((𝑀 ≤ (⌊‘((log‘3) / (log‘𝑃))) ∧ (⌊‘((log‘3) / (log‘𝑃))) ≤ ((log‘3) / (log‘𝑃))) → 𝑀 ≤ ((log‘3) / (log‘𝑃))))
9478, 91, 92, 93syl3anc 1368 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 ≤ (⌊‘((log‘3) / (log‘𝑃))) ∧ (⌊‘((log‘3) / (log‘𝑃))) ≤ ((log‘3) / (log‘𝑃))) → 𝑀 ≤ ((log‘3) / (log‘𝑃))))
95 1red 11212 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 1 ∈ ℝ)
96 letr 11305 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℝ ∧ ((log‘3) / (log‘𝑃)) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑀 ≤ ((log‘3) / (log‘𝑃)) ∧ ((log‘3) / (log‘𝑃)) ≤ 1) → 𝑀 ≤ 1))
9778, 92, 95, 96syl3anc 1368 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 ≤ ((log‘3) / (log‘𝑃)) ∧ ((log‘3) / (log‘𝑃)) ≤ 1) → 𝑀 ≤ 1))
98 nnge1 12237 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℕ → 1 ≤ 𝑀)
99 eqcom 2731 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 = 1 ↔ 1 = 𝑀)
100 1red 11212 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑀 ∈ ℕ → 1 ∈ ℝ)
101100, 77letri3d 11353 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℕ → (1 = 𝑀 ↔ (1 ≤ 𝑀𝑀 ≤ 1)))
10299, 101bitr2id 284 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ → ((1 ≤ 𝑀𝑀 ≤ 1) ↔ 𝑀 = 1))
103102biimpd 228 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℕ → ((1 ≤ 𝑀𝑀 ≤ 1) → 𝑀 = 1))
10498, 103mpand 692 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ → (𝑀 ≤ 1 → 𝑀 = 1))
1051043ad2ant2 1131 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ≤ 1 → 𝑀 = 1))
10697, 105syld 47 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 ≤ ((log‘3) / (log‘𝑃)) ∧ ((log‘3) / (log‘𝑃)) ≤ 1) → 𝑀 = 1))
107106expd 415 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ≤ ((log‘3) / (log‘𝑃)) → (((log‘3) / (log‘𝑃)) ≤ 1 → 𝑀 = 1)))
10894, 107syld 47 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 ≤ (⌊‘((log‘3) / (log‘𝑃))) ∧ (⌊‘((log‘3) / (log‘𝑃))) ≤ ((log‘3) / (log‘𝑃))) → (((log‘3) / (log‘𝑃)) ≤ 1 → 𝑀 = 1)))
10976, 108mpan2d 691 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ≤ (⌊‘((log‘3) / (log‘𝑃))) → (((log‘3) / (log‘𝑃)) ≤ 1 → 𝑀 = 1)))
11074, 109mpid 44 . . . . . . . . . . . . . 14 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ≤ (⌊‘((log‘3) / (log‘𝑃))) → 𝑀 = 1))
11157, 110sylbid 239 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑃𝑀) ≤ 3 → 𝑀 = 1))
11246, 111syld 47 . . . . . . . . . . . 12 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (3 = (𝑃𝑀) → 𝑀 = 1))
113112adantl 481 . . . . . . . . . . 11 ((𝑘 = 1 ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (3 = (𝑃𝑀) → 𝑀 = 1))
11432, 113sylbid 239 . . . . . . . . . 10 ((𝑘 = 1 ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1))
115114ex 412 . . . . . . . . 9 (𝑘 = 1 → ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1)))
116 sq1 14156 . . . . . . . . . . . . . 14 (1↑2) = 1
117116eqcomi 2733 . . . . . . . . . . . . 13 1 = (1↑2)
118117oveq2i 7412 . . . . . . . . . . . 12 (((2↑𝑘)↑2) − 1) = (((2↑𝑘)↑2) − (1↑2))
119118eqeq1i 2729 . . . . . . . . . . 11 ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) ↔ (((2↑𝑘)↑2) − (1↑2)) = (𝑃𝑀))
120 eqcom 2731 . . . . . . . . . . . 12 ((((2↑𝑘)↑2) − (1↑2)) = (𝑃𝑀) ↔ (𝑃𝑀) = (((2↑𝑘)↑2) − (1↑2)))
1219a1i 11 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘2) → 2 ∈ ℕ0)
122 eluzge2nn0 12868 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘2) → 𝑘 ∈ ℕ0)
123121, 122nn0expcld 14206 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℤ‘2) → (2↑𝑘) ∈ ℕ0)
124123adantr 480 . . . . . . . . . . . . . 14 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (2↑𝑘) ∈ ℕ0)
125 1nn0 12485 . . . . . . . . . . . . . . 15 1 ∈ ℕ0
126125a1i 11 . . . . . . . . . . . . . 14 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → 1 ∈ ℕ0)
127 1p1e2 12334 . . . . . . . . . . . . . . . . 17 (1 + 1) = 2
12822eqcomi 2733 . . . . . . . . . . . . . . . . 17 2 = (2↑1)
129127, 128eqtri 2752 . . . . . . . . . . . . . . . 16 (1 + 1) = (2↑1)
130 eluz2gt1 12901 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘2) → 1 < 𝑘)
131 2re 12283 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ
132131a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (ℤ‘2) → 2 ∈ ℝ)
133 1zzd 12590 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (ℤ‘2) → 1 ∈ ℤ)
134 eluzelz 12829 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (ℤ‘2) → 𝑘 ∈ ℤ)
135 1lt2 12380 . . . . . . . . . . . . . . . . . . 19 1 < 2
136135a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (ℤ‘2) → 1 < 2)
137132, 133, 134, 136ltexp2d 14211 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘2) → (1 < 𝑘 ↔ (2↑1) < (2↑𝑘)))
138130, 137mpbid 231 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘2) → (2↑1) < (2↑𝑘))
139129, 138eqbrtrid 5173 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℤ‘2) → (1 + 1) < (2↑𝑘))
140139adantr 480 . . . . . . . . . . . . . 14 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (1 + 1) < (2↑𝑘))
14134, 39anim12i 612 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ) → (𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ0))
1421413adant3 1129 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ0))
143142adantl 481 . . . . . . . . . . . . . 14 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ0))
144 difsqpwdvds 16819 . . . . . . . . . . . . . 14 ((((2↑𝑘) ∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ (1 + 1) < (2↑𝑘)) ∧ (𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ0)) → ((𝑃𝑀) = (((2↑𝑘)↑2) − (1↑2)) → 𝑃 ∥ (2 · 1)))
145124, 126, 140, 143, 144syl31anc 1370 . . . . . . . . . . . . 13 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑃𝑀) = (((2↑𝑘)↑2) − (1↑2)) → 𝑃 ∥ (2 · 1)))
146 2t1e2 12372 . . . . . . . . . . . . . . . . . 18 (2 · 1) = 2
147146breq2i 5146 . . . . . . . . . . . . . . . . 17 (𝑃 ∥ (2 · 1) ↔ 𝑃 ∥ 2)
148 prmuz2 16630 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
14934, 148syl 17 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ‘2))
150 2prm 16626 . . . . . . . . . . . . . . . . . 18 2 ∈ ℙ
151 dvdsprm 16637 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ (ℤ‘2) ∧ 2 ∈ ℙ) → (𝑃 ∥ 2 ↔ 𝑃 = 2))
152149, 150, 151sylancl 585 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∥ 2 ↔ 𝑃 = 2))
153147, 152bitrid 283 . . . . . . . . . . . . . . . 16 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∥ (2 · 1) ↔ 𝑃 = 2))
154 eldifsn 4782 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
155 eqneqall 2943 . . . . . . . . . . . . . . . . . 18 (𝑃 = 2 → (𝑃 ≠ 2 → 𝑀 = 1))
156155com12 32 . . . . . . . . . . . . . . . . 17 (𝑃 ≠ 2 → (𝑃 = 2 → 𝑀 = 1))
157154, 156simplbiim 504 . . . . . . . . . . . . . . . 16 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 = 2 → 𝑀 = 1))
158153, 157sylbid 239 . . . . . . . . . . . . . . 15 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∥ (2 · 1) → 𝑀 = 1))
1591583ad2ant1 1130 . . . . . . . . . . . . . 14 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (2 · 1) → 𝑀 = 1))
160159adantl 481 . . . . . . . . . . . . 13 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (𝑃 ∥ (2 · 1) → 𝑀 = 1))
161145, 160syld 47 . . . . . . . . . . . 12 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑃𝑀) = (((2↑𝑘)↑2) − (1↑2)) → 𝑀 = 1))
162120, 161biimtrid 241 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((((2↑𝑘)↑2) − (1↑2)) = (𝑃𝑀) → 𝑀 = 1))
163119, 162biimtrid 241 . . . . . . . . . 10 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1))
164163ex 412 . . . . . . . . 9 (𝑘 ∈ (ℤ‘2) → ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1)))
165115, 164jaoi 854 . . . . . . . 8 ((𝑘 = 1 ∨ 𝑘 ∈ (ℤ‘2)) → ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1)))
16618, 165sylbi 216 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1)))
167166impcom 407 . . . . . 6 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1))
168167adantr 480 . . . . 5 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ ℕ) ∧ (2 · 𝑘) = 𝑁) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1))
16917, 168sylbid 239 . . . 4 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ ℕ) ∧ (2 · 𝑘) = 𝑁) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1))
170169rexlimdva2 3149 . . 3 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (∃𝑘 ∈ ℕ (2 · 𝑘) = 𝑁 → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))
1712, 170sylbid 239 . 2 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 ∥ 𝑁 → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))
1721713imp 1108 1 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 2 ∥ 𝑁 ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → 𝑀 = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 844  w3a 1084   = wceq 1533  wcel 2098  wne 2932  wrex 3062  cdif 3937  {csn 4620   class class class wbr 5138  cfv 6533  (class class class)co 7401  cc 11104  cr 11105  0cc0 11106  1c1 11107   + caddc 11109   · cmul 11111   < clt 11245  cle 11246  cmin 11441   / cdiv 11868  cn 12209  2c2 12264  3c3 12265  4c4 12266  0cn0 12469  cz 12555  cuz 12819  +crp 12971  cfl 13752  cexp 14024  cdvds 16194  cprime 16605  logclog 26405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-om 7849  df-1st 7968  df-2nd 7969  df-supp 8141  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-z 12556  df-dec 12675  df-uz 12820  df-q 12930  df-rp 12972  df-xneg 13089  df-xadd 13090  df-xmul 13091  df-ioo 13325  df-ioc 13326  df-ico 13327  df-icc 13328  df-fz 13482  df-fzo 13625  df-fl 13754  df-mod 13832  df-seq 13964  df-exp 14025  df-fac 14231  df-bc 14260  df-hash 14288  df-shft 15011  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-limsup 15412  df-clim 15429  df-rlim 15430  df-sum 15630  df-ef 16008  df-sin 16010  df-cos 16011  df-pi 16013  df-dvds 16195  df-gcd 16433  df-prm 16606  df-pc 16769  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17367  df-topn 17368  df-0g 17386  df-gsum 17387  df-topgen 17388  df-pt 17389  df-prds 17392  df-xrs 17447  df-qtop 17452  df-imas 17453  df-xps 17455  df-mre 17529  df-mrc 17530  df-acs 17532  df-mgm 18563  df-sgrp 18642  df-mnd 18658  df-submnd 18704  df-mulg 18986  df-cntz 19223  df-cmn 19692  df-psmet 21220  df-xmet 21221  df-met 21222  df-bl 21223  df-mopn 21224  df-fbas 21225  df-fg 21226  df-cnfld 21229  df-top 22718  df-topon 22735  df-topsp 22757  df-bases 22771  df-cld 22845  df-ntr 22846  df-cls 22847  df-nei 22924  df-lp 22962  df-perf 22963  df-cn 23053  df-cnp 23054  df-haus 23141  df-tx 23388  df-hmeo 23581  df-fil 23672  df-fm 23764  df-flim 23765  df-flf 23766  df-xms 24148  df-ms 24149  df-tms 24150  df-cncf 24720  df-limc 25717  df-dv 25718  df-log 26407
This theorem is referenced by:  lighneal  46764
  Copyright terms: Public domain W3C validator