Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > atlltn0 | Structured version Visualization version GIF version |
Description: A lattice element greater than zero is nonzero. (Contributed by NM, 1-Jun-2012.) |
Ref | Expression |
---|---|
atlltne0.b | ⊢ 𝐵 = (Base‘𝐾) |
atlltne0.s | ⊢ < = (lt‘𝐾) |
atlltne0.z | ⊢ 0 = (0.‘𝐾) |
Ref | Expression |
---|---|
atlltn0 | ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → ( 0 < 𝑋 ↔ 𝑋 ≠ 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 487 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ AtLat) | |
2 | atlltne0.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
3 | atlltne0.z | . . . . 5 ⊢ 0 = (0.‘𝐾) | |
4 | 2, 3 | atl0cl 36880 | . . . 4 ⊢ (𝐾 ∈ AtLat → 0 ∈ 𝐵) |
5 | 4 | adantr 485 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
6 | simpr 489 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
7 | eqid 2759 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
8 | atlltne0.s | . . . 4 ⊢ < = (lt‘𝐾) | |
9 | 7, 8 | pltval 17637 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ( 0 < 𝑋 ↔ ( 0 (le‘𝐾)𝑋 ∧ 0 ≠ 𝑋))) |
10 | 1, 5, 6, 9 | syl3anc 1369 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → ( 0 < 𝑋 ↔ ( 0 (le‘𝐾)𝑋 ∧ 0 ≠ 𝑋))) |
11 | necom 3005 | . . 3 ⊢ (𝑋 ≠ 0 ↔ 0 ≠ 𝑋) | |
12 | 2, 7, 3 | atl0le 36881 | . . . 4 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → 0 (le‘𝐾)𝑋) |
13 | 12 | biantrurd 537 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → ( 0 ≠ 𝑋 ↔ ( 0 (le‘𝐾)𝑋 ∧ 0 ≠ 𝑋))) |
14 | 11, 13 | syl5rbb 287 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → (( 0 (le‘𝐾)𝑋 ∧ 0 ≠ 𝑋) ↔ 𝑋 ≠ 0 )) |
15 | 10, 14 | bitrd 282 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → ( 0 < 𝑋 ↔ 𝑋 ≠ 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 class class class wbr 5033 ‘cfv 6336 Basecbs 16542 lecple 16631 ltcplt 17618 0.cp0 17714 AtLatcal 36841 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-plt 17635 df-glb 17652 df-p0 17716 df-atl 36875 |
This theorem is referenced by: isat3 36884 |
Copyright terms: Public domain | W3C validator |