![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > atlltn0 | Structured version Visualization version GIF version |
Description: A lattice element greater than zero is nonzero. (Contributed by NM, 1-Jun-2012.) |
Ref | Expression |
---|---|
atlltne0.b | ⊢ 𝐵 = (Base‘𝐾) |
atlltne0.s | ⊢ < = (lt‘𝐾) |
atlltne0.z | ⊢ 0 = (0.‘𝐾) |
Ref | Expression |
---|---|
atlltn0 | ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → ( 0 < 𝑋 ↔ 𝑋 ≠ 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 484 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ AtLat) | |
2 | atlltne0.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
3 | atlltne0.z | . . . . 5 ⊢ 0 = (0.‘𝐾) | |
4 | 2, 3 | atl0cl 38162 | . . . 4 ⊢ (𝐾 ∈ AtLat → 0 ∈ 𝐵) |
5 | 4 | adantr 482 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
6 | simpr 486 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
7 | eqid 2733 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
8 | atlltne0.s | . . . 4 ⊢ < = (lt‘𝐾) | |
9 | 7, 8 | pltval 18282 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ( 0 < 𝑋 ↔ ( 0 (le‘𝐾)𝑋 ∧ 0 ≠ 𝑋))) |
10 | 1, 5, 6, 9 | syl3anc 1372 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → ( 0 < 𝑋 ↔ ( 0 (le‘𝐾)𝑋 ∧ 0 ≠ 𝑋))) |
11 | necom 2995 | . . 3 ⊢ (𝑋 ≠ 0 ↔ 0 ≠ 𝑋) | |
12 | 2, 7, 3 | atl0le 38163 | . . . 4 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → 0 (le‘𝐾)𝑋) |
13 | 12 | biantrurd 534 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → ( 0 ≠ 𝑋 ↔ ( 0 (le‘𝐾)𝑋 ∧ 0 ≠ 𝑋))) |
14 | 11, 13 | bitr2id 284 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → (( 0 (le‘𝐾)𝑋 ∧ 0 ≠ 𝑋) ↔ 𝑋 ≠ 0 )) |
15 | 10, 14 | bitrd 279 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → ( 0 < 𝑋 ↔ 𝑋 ≠ 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 class class class wbr 5148 ‘cfv 6541 Basecbs 17141 lecple 17201 ltcplt 18258 0.cp0 18373 AtLatcal 38123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7362 df-plt 18280 df-glb 18297 df-p0 18375 df-atl 38157 |
This theorem is referenced by: isat3 38166 |
Copyright terms: Public domain | W3C validator |