![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > atlltn0 | Structured version Visualization version GIF version |
Description: A lattice element greater than zero is nonzero. (Contributed by NM, 1-Jun-2012.) |
Ref | Expression |
---|---|
atlltne0.b | β’ π΅ = (BaseβπΎ) |
atlltne0.s | β’ < = (ltβπΎ) |
atlltne0.z | β’ 0 = (0.βπΎ) |
Ref | Expression |
---|---|
atlltn0 | β’ ((πΎ β AtLat β§ π β π΅) β ( 0 < π β π β 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . 3 β’ ((πΎ β AtLat β§ π β π΅) β πΎ β AtLat) | |
2 | atlltne0.b | . . . . 5 β’ π΅ = (BaseβπΎ) | |
3 | atlltne0.z | . . . . 5 β’ 0 = (0.βπΎ) | |
4 | 2, 3 | atl0cl 38161 | . . . 4 β’ (πΎ β AtLat β 0 β π΅) |
5 | 4 | adantr 481 | . . 3 β’ ((πΎ β AtLat β§ π β π΅) β 0 β π΅) |
6 | simpr 485 | . . 3 β’ ((πΎ β AtLat β§ π β π΅) β π β π΅) | |
7 | eqid 2732 | . . . 4 β’ (leβπΎ) = (leβπΎ) | |
8 | atlltne0.s | . . . 4 β’ < = (ltβπΎ) | |
9 | 7, 8 | pltval 18281 | . . 3 β’ ((πΎ β AtLat β§ 0 β π΅ β§ π β π΅) β ( 0 < π β ( 0 (leβπΎ)π β§ 0 β π))) |
10 | 1, 5, 6, 9 | syl3anc 1371 | . 2 β’ ((πΎ β AtLat β§ π β π΅) β ( 0 < π β ( 0 (leβπΎ)π β§ 0 β π))) |
11 | necom 2994 | . . 3 β’ (π β 0 β 0 β π) | |
12 | 2, 7, 3 | atl0le 38162 | . . . 4 β’ ((πΎ β AtLat β§ π β π΅) β 0 (leβπΎ)π) |
13 | 12 | biantrurd 533 | . . 3 β’ ((πΎ β AtLat β§ π β π΅) β ( 0 β π β ( 0 (leβπΎ)π β§ 0 β π))) |
14 | 11, 13 | bitr2id 283 | . 2 β’ ((πΎ β AtLat β§ π β π΅) β (( 0 (leβπΎ)π β§ 0 β π) β π β 0 )) |
15 | 10, 14 | bitrd 278 | 1 β’ ((πΎ β AtLat β§ π β π΅) β ( 0 < π β π β 0 )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 β wne 2940 class class class wbr 5147 βcfv 6540 Basecbs 17140 lecple 17200 ltcplt 18257 0.cp0 18372 AtLatcal 38122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-plt 18279 df-glb 18296 df-p0 18374 df-atl 38156 |
This theorem is referenced by: isat3 38165 |
Copyright terms: Public domain | W3C validator |