Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atlltn0 Structured version   Visualization version   GIF version

Theorem atlltn0 36883
 Description: A lattice element greater than zero is nonzero. (Contributed by NM, 1-Jun-2012.)
Hypotheses
Ref Expression
atlltne0.b 𝐵 = (Base‘𝐾)
atlltne0.s < = (lt‘𝐾)
atlltne0.z 0 = (0.‘𝐾)
Assertion
Ref Expression
atlltn0 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → ( 0 < 𝑋𝑋0 ))

Proof of Theorem atlltn0
StepHypRef Expression
1 simpl 487 . . 3 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → 𝐾 ∈ AtLat)
2 atlltne0.b . . . . 5 𝐵 = (Base‘𝐾)
3 atlltne0.z . . . . 5 0 = (0.‘𝐾)
42, 3atl0cl 36880 . . . 4 (𝐾 ∈ AtLat → 0𝐵)
54adantr 485 . . 3 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → 0𝐵)
6 simpr 489 . . 3 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → 𝑋𝐵)
7 eqid 2759 . . . 4 (le‘𝐾) = (le‘𝐾)
8 atlltne0.s . . . 4 < = (lt‘𝐾)
97, 8pltval 17637 . . 3 ((𝐾 ∈ AtLat ∧ 0𝐵𝑋𝐵) → ( 0 < 𝑋 ↔ ( 0 (le‘𝐾)𝑋0𝑋)))
101, 5, 6, 9syl3anc 1369 . 2 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → ( 0 < 𝑋 ↔ ( 0 (le‘𝐾)𝑋0𝑋)))
11 necom 3005 . . 3 (𝑋00𝑋)
122, 7, 3atl0le 36881 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → 0 (le‘𝐾)𝑋)
1312biantrurd 537 . . 3 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → ( 0𝑋 ↔ ( 0 (le‘𝐾)𝑋0𝑋)))
1411, 13syl5rbb 287 . 2 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → (( 0 (le‘𝐾)𝑋0𝑋) ↔ 𝑋0 ))
1510, 14bitrd 282 1 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → ( 0 < 𝑋𝑋0 ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 400   = wceq 1539   ∈ wcel 2112   ≠ wne 2952   class class class wbr 5033  ‘cfv 6336  Basecbs 16542  lecple 16631  ltcplt 17618  0.cp0 17714  AtLatcal 36841 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5431  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-plt 17635  df-glb 17652  df-p0 17716  df-atl 36875 This theorem is referenced by:  isat3  36884
 Copyright terms: Public domain W3C validator