Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atlltn0 Structured version   Visualization version   GIF version

Theorem atlltn0 38165
Description: A lattice element greater than zero is nonzero. (Contributed by NM, 1-Jun-2012.)
Hypotheses
Ref Expression
atlltne0.b 𝐵 = (Base‘𝐾)
atlltne0.s < = (lt‘𝐾)
atlltne0.z 0 = (0.‘𝐾)
Assertion
Ref Expression
atlltn0 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → ( 0 < 𝑋𝑋0 ))

Proof of Theorem atlltn0
StepHypRef Expression
1 simpl 484 . . 3 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → 𝐾 ∈ AtLat)
2 atlltne0.b . . . . 5 𝐵 = (Base‘𝐾)
3 atlltne0.z . . . . 5 0 = (0.‘𝐾)
42, 3atl0cl 38162 . . . 4 (𝐾 ∈ AtLat → 0𝐵)
54adantr 482 . . 3 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → 0𝐵)
6 simpr 486 . . 3 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → 𝑋𝐵)
7 eqid 2733 . . . 4 (le‘𝐾) = (le‘𝐾)
8 atlltne0.s . . . 4 < = (lt‘𝐾)
97, 8pltval 18282 . . 3 ((𝐾 ∈ AtLat ∧ 0𝐵𝑋𝐵) → ( 0 < 𝑋 ↔ ( 0 (le‘𝐾)𝑋0𝑋)))
101, 5, 6, 9syl3anc 1372 . 2 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → ( 0 < 𝑋 ↔ ( 0 (le‘𝐾)𝑋0𝑋)))
11 necom 2995 . . 3 (𝑋00𝑋)
122, 7, 3atl0le 38163 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → 0 (le‘𝐾)𝑋)
1312biantrurd 534 . . 3 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → ( 0𝑋 ↔ ( 0 (le‘𝐾)𝑋0𝑋)))
1411, 13bitr2id 284 . 2 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → (( 0 (le‘𝐾)𝑋0𝑋) ↔ 𝑋0 ))
1510, 14bitrd 279 1 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → ( 0 < 𝑋𝑋0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2941   class class class wbr 5148  cfv 6541  Basecbs 17141  lecple 17201  ltcplt 18258  0.cp0 18373  AtLatcal 38123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7362  df-plt 18280  df-glb 18297  df-p0 18375  df-atl 38157
This theorem is referenced by:  isat3  38166
  Copyright terms: Public domain W3C validator