Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atlltn0 Structured version   Visualization version   GIF version

Theorem atlltn0 39307
Description: A lattice element greater than zero is nonzero. (Contributed by NM, 1-Jun-2012.)
Hypotheses
Ref Expression
atlltne0.b 𝐵 = (Base‘𝐾)
atlltne0.s < = (lt‘𝐾)
atlltne0.z 0 = (0.‘𝐾)
Assertion
Ref Expression
atlltn0 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → ( 0 < 𝑋𝑋0 ))

Proof of Theorem atlltn0
StepHypRef Expression
1 simpl 482 . . 3 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → 𝐾 ∈ AtLat)
2 atlltne0.b . . . . 5 𝐵 = (Base‘𝐾)
3 atlltne0.z . . . . 5 0 = (0.‘𝐾)
42, 3atl0cl 39304 . . . 4 (𝐾 ∈ AtLat → 0𝐵)
54adantr 480 . . 3 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → 0𝐵)
6 simpr 484 . . 3 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → 𝑋𝐵)
7 eqid 2737 . . . 4 (le‘𝐾) = (le‘𝐾)
8 atlltne0.s . . . 4 < = (lt‘𝐾)
97, 8pltval 18377 . . 3 ((𝐾 ∈ AtLat ∧ 0𝐵𝑋𝐵) → ( 0 < 𝑋 ↔ ( 0 (le‘𝐾)𝑋0𝑋)))
101, 5, 6, 9syl3anc 1373 . 2 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → ( 0 < 𝑋 ↔ ( 0 (le‘𝐾)𝑋0𝑋)))
11 necom 2994 . . 3 (𝑋00𝑋)
122, 7, 3atl0le 39305 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → 0 (le‘𝐾)𝑋)
1312biantrurd 532 . . 3 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → ( 0𝑋 ↔ ( 0 (le‘𝐾)𝑋0𝑋)))
1411, 13bitr2id 284 . 2 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → (( 0 (le‘𝐾)𝑋0𝑋) ↔ 𝑋0 ))
1510, 14bitrd 279 1 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → ( 0 < 𝑋𝑋0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940   class class class wbr 5143  cfv 6561  Basecbs 17247  lecple 17304  ltcplt 18354  0.cp0 18468  AtLatcal 39265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-plt 18375  df-glb 18392  df-p0 18470  df-atl 39299
This theorem is referenced by:  isat3  39308
  Copyright terms: Public domain W3C validator