| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opltn0 | Structured version Visualization version GIF version | ||
| Description: A lattice element greater than zero is nonzero. TODO: is this needed? (Contributed by NM, 1-Jun-2012.) |
| Ref | Expression |
|---|---|
| opltne0.b | ⊢ 𝐵 = (Base‘𝐾) |
| opltne0.s | ⊢ < = (lt‘𝐾) |
| opltne0.z | ⊢ 0 = (0.‘𝐾) |
| Ref | Expression |
|---|---|
| opltn0 | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( 0 < 𝑋 ↔ 𝑋 ≠ 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ OP) | |
| 2 | opltne0.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | opltne0.z | . . . . 5 ⊢ 0 = (0.‘𝐾) | |
| 4 | 2, 3 | op0cl 39356 | . . . 4 ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
| 5 | 4 | adantr 480 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
| 6 | simpr 484 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 7 | eqid 2733 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 8 | opltne0.s | . . . 4 ⊢ < = (lt‘𝐾) | |
| 9 | 7, 8 | pltval 18244 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ( 0 < 𝑋 ↔ ( 0 (le‘𝐾)𝑋 ∧ 0 ≠ 𝑋))) |
| 10 | 1, 5, 6, 9 | syl3anc 1373 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( 0 < 𝑋 ↔ ( 0 (le‘𝐾)𝑋 ∧ 0 ≠ 𝑋))) |
| 11 | necom 2982 | . . 3 ⊢ (𝑋 ≠ 0 ↔ 0 ≠ 𝑋) | |
| 12 | 2, 7, 3 | op0le 39358 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 0 (le‘𝐾)𝑋) |
| 13 | 12 | biantrurd 532 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( 0 ≠ 𝑋 ↔ ( 0 (le‘𝐾)𝑋 ∧ 0 ≠ 𝑋))) |
| 14 | 11, 13 | bitr2id 284 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (( 0 (le‘𝐾)𝑋 ∧ 0 ≠ 𝑋) ↔ 𝑋 ≠ 0 )) |
| 15 | 10, 14 | bitrd 279 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( 0 < 𝑋 ↔ 𝑋 ≠ 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 class class class wbr 5095 ‘cfv 6489 Basecbs 17127 lecple 17175 ltcplt 18222 0.cp0 18335 OPcops 39344 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-plt 18242 df-glb 18259 df-p0 18337 df-oposet 39348 |
| This theorem is referenced by: atle 39608 dalemcea 39832 2atm2atN 39957 dia2dimlem2 41237 dia2dimlem3 41238 |
| Copyright terms: Public domain | W3C validator |