| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opltn0 | Structured version Visualization version GIF version | ||
| Description: A lattice element greater than zero is nonzero. TODO: is this needed? (Contributed by NM, 1-Jun-2012.) |
| Ref | Expression |
|---|---|
| opltne0.b | ⊢ 𝐵 = (Base‘𝐾) |
| opltne0.s | ⊢ < = (lt‘𝐾) |
| opltne0.z | ⊢ 0 = (0.‘𝐾) |
| Ref | Expression |
|---|---|
| opltn0 | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( 0 < 𝑋 ↔ 𝑋 ≠ 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ OP) | |
| 2 | opltne0.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | opltne0.z | . . . . 5 ⊢ 0 = (0.‘𝐾) | |
| 4 | 2, 3 | op0cl 39223 | . . . 4 ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
| 5 | 4 | adantr 480 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
| 6 | simpr 484 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 7 | eqid 2731 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 8 | opltne0.s | . . . 4 ⊢ < = (lt‘𝐾) | |
| 9 | 7, 8 | pltval 18231 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ( 0 < 𝑋 ↔ ( 0 (le‘𝐾)𝑋 ∧ 0 ≠ 𝑋))) |
| 10 | 1, 5, 6, 9 | syl3anc 1373 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( 0 < 𝑋 ↔ ( 0 (le‘𝐾)𝑋 ∧ 0 ≠ 𝑋))) |
| 11 | necom 2981 | . . 3 ⊢ (𝑋 ≠ 0 ↔ 0 ≠ 𝑋) | |
| 12 | 2, 7, 3 | op0le 39225 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 0 (le‘𝐾)𝑋) |
| 13 | 12 | biantrurd 532 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( 0 ≠ 𝑋 ↔ ( 0 (le‘𝐾)𝑋 ∧ 0 ≠ 𝑋))) |
| 14 | 11, 13 | bitr2id 284 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (( 0 (le‘𝐾)𝑋 ∧ 0 ≠ 𝑋) ↔ 𝑋 ≠ 0 )) |
| 15 | 10, 14 | bitrd 279 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( 0 < 𝑋 ↔ 𝑋 ≠ 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5086 ‘cfv 6476 Basecbs 17115 lecple 17163 ltcplt 18209 0.cp0 18322 OPcops 39211 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-plt 18229 df-glb 18246 df-p0 18324 df-oposet 39215 |
| This theorem is referenced by: atle 39475 dalemcea 39699 2atm2atN 39824 dia2dimlem2 41104 dia2dimlem3 41105 |
| Copyright terms: Public domain | W3C validator |