Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opltn0 Structured version   Visualization version   GIF version

Theorem opltn0 39146
Description: A lattice element greater than zero is nonzero. TODO: is this needed? (Contributed by NM, 1-Jun-2012.)
Hypotheses
Ref Expression
opltne0.b 𝐵 = (Base‘𝐾)
opltne0.s < = (lt‘𝐾)
opltne0.z 0 = (0.‘𝐾)
Assertion
Ref Expression
opltn0 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 0 < 𝑋𝑋0 ))

Proof of Theorem opltn0
StepHypRef Expression
1 simpl 482 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 𝐾 ∈ OP)
2 opltne0.b . . . . 5 𝐵 = (Base‘𝐾)
3 opltne0.z . . . . 5 0 = (0.‘𝐾)
42, 3op0cl 39140 . . . 4 (𝐾 ∈ OP → 0𝐵)
54adantr 480 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 0𝐵)
6 simpr 484 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 𝑋𝐵)
7 eqid 2740 . . . 4 (le‘𝐾) = (le‘𝐾)
8 opltne0.s . . . 4 < = (lt‘𝐾)
97, 8pltval 18402 . . 3 ((𝐾 ∈ OP ∧ 0𝐵𝑋𝐵) → ( 0 < 𝑋 ↔ ( 0 (le‘𝐾)𝑋0𝑋)))
101, 5, 6, 9syl3anc 1371 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 0 < 𝑋 ↔ ( 0 (le‘𝐾)𝑋0𝑋)))
11 necom 3000 . . 3 (𝑋00𝑋)
122, 7, 3op0le 39142 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 0 (le‘𝐾)𝑋)
1312biantrurd 532 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 0𝑋 ↔ ( 0 (le‘𝐾)𝑋0𝑋)))
1411, 13bitr2id 284 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵) → (( 0 (le‘𝐾)𝑋0𝑋) ↔ 𝑋0 ))
1510, 14bitrd 279 1 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 0 < 𝑋𝑋0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  Basecbs 17258  lecple 17318  ltcplt 18378  0.cp0 18493  OPcops 39128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-plt 18400  df-glb 18417  df-p0 18495  df-oposet 39132
This theorem is referenced by:  atle  39393  dalemcea  39617  2atm2atN  39742  dia2dimlem2  41022  dia2dimlem3  41023
  Copyright terms: Public domain W3C validator