![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opltn0 | Structured version Visualization version GIF version |
Description: A lattice element greater than zero is nonzero. TODO: is this needed? (Contributed by NM, 1-Jun-2012.) |
Ref | Expression |
---|---|
opltne0.b | ⊢ 𝐵 = (Base‘𝐾) |
opltne0.s | ⊢ < = (lt‘𝐾) |
opltne0.z | ⊢ 0 = (0.‘𝐾) |
Ref | Expression |
---|---|
opltn0 | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( 0 < 𝑋 ↔ 𝑋 ≠ 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ OP) | |
2 | opltne0.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
3 | opltne0.z | . . . . 5 ⊢ 0 = (0.‘𝐾) | |
4 | 2, 3 | op0cl 38520 | . . . 4 ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
5 | 4 | adantr 480 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
6 | simpr 484 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
7 | eqid 2731 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
8 | opltne0.s | . . . 4 ⊢ < = (lt‘𝐾) | |
9 | 7, 8 | pltval 18295 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ( 0 < 𝑋 ↔ ( 0 (le‘𝐾)𝑋 ∧ 0 ≠ 𝑋))) |
10 | 1, 5, 6, 9 | syl3anc 1370 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( 0 < 𝑋 ↔ ( 0 (le‘𝐾)𝑋 ∧ 0 ≠ 𝑋))) |
11 | necom 2993 | . . 3 ⊢ (𝑋 ≠ 0 ↔ 0 ≠ 𝑋) | |
12 | 2, 7, 3 | op0le 38522 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 0 (le‘𝐾)𝑋) |
13 | 12 | biantrurd 532 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( 0 ≠ 𝑋 ↔ ( 0 (le‘𝐾)𝑋 ∧ 0 ≠ 𝑋))) |
14 | 11, 13 | bitr2id 284 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (( 0 (le‘𝐾)𝑋 ∧ 0 ≠ 𝑋) ↔ 𝑋 ≠ 0 )) |
15 | 10, 14 | bitrd 279 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( 0 < 𝑋 ↔ 𝑋 ≠ 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 class class class wbr 5148 ‘cfv 6543 Basecbs 17151 lecple 17211 ltcplt 18271 0.cp0 18386 OPcops 38508 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-plt 18293 df-glb 18310 df-p0 18388 df-oposet 38512 |
This theorem is referenced by: atle 38773 dalemcea 38997 2atm2atN 39122 dia2dimlem2 40402 dia2dimlem3 40403 |
Copyright terms: Public domain | W3C validator |