Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cardpred | Structured version Visualization version GIF version |
Description: The cardinality function preserves predecessors. (Contributed by BTernaryTau, 18-Jul-2024.) |
Ref | Expression |
---|---|
cardpred | ⊢ ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → Pred( E , (card “ 𝐴), (card‘𝐵)) = (card “ Pred( ≺ , 𝐴, 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardf2 9701 | . . 3 ⊢ card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦 ≈ 𝑥}⟶On | |
2 | ffun 6603 | . . . 4 ⊢ (card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦 ≈ 𝑥}⟶On → Fun card) | |
3 | 2 | funfnd 6465 | . . 3 ⊢ (card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦 ≈ 𝑥}⟶On → card Fn dom card) |
4 | 1, 3 | mp1i 13 | . 2 ⊢ ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → card Fn dom card) |
5 | fvex 6787 | . . . . . 6 ⊢ (card‘𝑦) ∈ V | |
6 | 5 | epeli 5497 | . . . . 5 ⊢ ((card‘𝑥) E (card‘𝑦) ↔ (card‘𝑥) ∈ (card‘𝑦)) |
7 | cardsdom2 9746 | . . . . 5 ⊢ ((𝑥 ∈ dom card ∧ 𝑦 ∈ dom card) → ((card‘𝑥) ∈ (card‘𝑦) ↔ 𝑥 ≺ 𝑦)) | |
8 | 6, 7 | bitr2id 284 | . . . 4 ⊢ ((𝑥 ∈ dom card ∧ 𝑦 ∈ dom card) → (𝑥 ≺ 𝑦 ↔ (card‘𝑥) E (card‘𝑦))) |
9 | 8 | rgen2 3120 | . . 3 ⊢ ∀𝑥 ∈ dom card∀𝑦 ∈ dom card(𝑥 ≺ 𝑦 ↔ (card‘𝑥) E (card‘𝑦)) |
10 | 9 | a1i 11 | . 2 ⊢ ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → ∀𝑥 ∈ dom card∀𝑦 ∈ dom card(𝑥 ≺ 𝑦 ↔ (card‘𝑥) E (card‘𝑦))) |
11 | simpl 483 | . 2 ⊢ ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → 𝐴 ⊆ dom card) | |
12 | simpr 485 | . 2 ⊢ ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → 𝐵 ∈ dom card) | |
13 | 4, 10, 11, 12 | fnrelpredd 33061 | 1 ⊢ ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → Pred( E , (card “ 𝐴), (card‘𝐵)) = (card “ Pred( ≺ , 𝐴, 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 ∀wral 3064 ∃wrex 3065 ⊆ wss 3887 class class class wbr 5074 E cep 5494 dom cdm 5589 “ cima 5592 Predcpred 6201 Oncon0 6266 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 ≈ cen 8730 ≺ csdm 8732 cardccrd 9693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-card 9697 |
This theorem is referenced by: nummin 33063 |
Copyright terms: Public domain | W3C validator |