Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cardpred Structured version   Visualization version   GIF version

Theorem cardpred 33062
Description: The cardinality function preserves predecessors. (Contributed by BTernaryTau, 18-Jul-2024.)
Assertion
Ref Expression
cardpred ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → Pred( E , (card “ 𝐴), (card‘𝐵)) = (card “ Pred( ≺ , 𝐴, 𝐵)))

Proof of Theorem cardpred
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cardf2 9701 . . 3 card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}⟶On
2 ffun 6603 . . . 4 (card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}⟶On → Fun card)
32funfnd 6465 . . 3 (card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}⟶On → card Fn dom card)
41, 3mp1i 13 . 2 ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → card Fn dom card)
5 fvex 6787 . . . . . 6 (card‘𝑦) ∈ V
65epeli 5497 . . . . 5 ((card‘𝑥) E (card‘𝑦) ↔ (card‘𝑥) ∈ (card‘𝑦))
7 cardsdom2 9746 . . . . 5 ((𝑥 ∈ dom card ∧ 𝑦 ∈ dom card) → ((card‘𝑥) ∈ (card‘𝑦) ↔ 𝑥𝑦))
86, 7bitr2id 284 . . . 4 ((𝑥 ∈ dom card ∧ 𝑦 ∈ dom card) → (𝑥𝑦 ↔ (card‘𝑥) E (card‘𝑦)))
98rgen2 3120 . . 3 𝑥 ∈ dom card∀𝑦 ∈ dom card(𝑥𝑦 ↔ (card‘𝑥) E (card‘𝑦))
109a1i 11 . 2 ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → ∀𝑥 ∈ dom card∀𝑦 ∈ dom card(𝑥𝑦 ↔ (card‘𝑥) E (card‘𝑦)))
11 simpl 483 . 2 ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → 𝐴 ⊆ dom card)
12 simpr 485 . 2 ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → 𝐵 ∈ dom card)
134, 10, 11, 12fnrelpredd 33061 1 ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → Pred( E , (card “ 𝐴), (card‘𝐵)) = (card “ Pred( ≺ , 𝐴, 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {cab 2715  wral 3064  wrex 3065  wss 3887   class class class wbr 5074   E cep 5494  dom cdm 5589  cima 5592  Predcpred 6201  Oncon0 6266   Fn wfn 6428  wf 6429  cfv 6433  cen 8730  csdm 8732  cardccrd 9693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-card 9697
This theorem is referenced by:  nummin  33063
  Copyright terms: Public domain W3C validator