![]() |
Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cardpred | Structured version Visualization version GIF version |
Description: The cardinality function preserves predecessors. (Contributed by BTernaryTau, 18-Jul-2024.) |
Ref | Expression |
---|---|
cardpred | β’ ((π΄ β dom card β§ π΅ β dom card) β Pred( E , (card β π΄), (cardβπ΅)) = (card β Pred( βΊ , π΄, π΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardf2 9940 | . . 3 β’ card:{π₯ β£ βπ¦ β On π¦ β π₯}βΆOn | |
2 | ffun 6714 | . . . 4 β’ (card:{π₯ β£ βπ¦ β On π¦ β π₯}βΆOn β Fun card) | |
3 | 2 | funfnd 6573 | . . 3 β’ (card:{π₯ β£ βπ¦ β On π¦ β π₯}βΆOn β card Fn dom card) |
4 | 1, 3 | mp1i 13 | . 2 β’ ((π΄ β dom card β§ π΅ β dom card) β card Fn dom card) |
5 | fvex 6898 | . . . . . 6 β’ (cardβπ¦) β V | |
6 | 5 | epeli 5575 | . . . . 5 β’ ((cardβπ₯) E (cardβπ¦) β (cardβπ₯) β (cardβπ¦)) |
7 | cardsdom2 9985 | . . . . 5 β’ ((π₯ β dom card β§ π¦ β dom card) β ((cardβπ₯) β (cardβπ¦) β π₯ βΊ π¦)) | |
8 | 6, 7 | bitr2id 284 | . . . 4 β’ ((π₯ β dom card β§ π¦ β dom card) β (π₯ βΊ π¦ β (cardβπ₯) E (cardβπ¦))) |
9 | 8 | rgen2 3191 | . . 3 β’ βπ₯ β dom cardβπ¦ β dom card(π₯ βΊ π¦ β (cardβπ₯) E (cardβπ¦)) |
10 | 9 | a1i 11 | . 2 β’ ((π΄ β dom card β§ π΅ β dom card) β βπ₯ β dom cardβπ¦ β dom card(π₯ βΊ π¦ β (cardβπ₯) E (cardβπ¦))) |
11 | simpl 482 | . 2 β’ ((π΄ β dom card β§ π΅ β dom card) β π΄ β dom card) | |
12 | simpr 484 | . 2 β’ ((π΄ β dom card β§ π΅ β dom card) β π΅ β dom card) | |
13 | 4, 10, 11, 12 | fnrelpredd 34621 | 1 β’ ((π΄ β dom card β§ π΅ β dom card) β Pred( E , (card β π΄), (cardβπ΅)) = (card β Pred( βΊ , π΄, π΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 {cab 2703 βwral 3055 βwrex 3064 β wss 3943 class class class wbr 5141 E cep 5572 dom cdm 5669 β cima 5672 Predcpred 6293 Oncon0 6358 Fn wfn 6532 βΆwf 6533 βcfv 6537 β cen 8938 βΊ csdm 8940 cardccrd 9932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-card 9936 |
This theorem is referenced by: nummin 34623 |
Copyright terms: Public domain | W3C validator |