|   | Mathbox for BTernaryTau | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cardpred | Structured version Visualization version GIF version | ||
| Description: The cardinality function preserves predecessors. (Contributed by BTernaryTau, 18-Jul-2024.) | 
| Ref | Expression | 
|---|---|
| cardpred | ⊢ ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → Pred( E , (card “ 𝐴), (card‘𝐵)) = (card “ Pred( ≺ , 𝐴, 𝐵))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cardf2 9984 | . . 3 ⊢ card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦 ≈ 𝑥}⟶On | |
| 2 | ffun 6738 | . . . 4 ⊢ (card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦 ≈ 𝑥}⟶On → Fun card) | |
| 3 | 2 | funfnd 6596 | . . 3 ⊢ (card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦 ≈ 𝑥}⟶On → card Fn dom card) | 
| 4 | 1, 3 | mp1i 13 | . 2 ⊢ ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → card Fn dom card) | 
| 5 | fvex 6918 | . . . . . 6 ⊢ (card‘𝑦) ∈ V | |
| 6 | 5 | epeli 5585 | . . . . 5 ⊢ ((card‘𝑥) E (card‘𝑦) ↔ (card‘𝑥) ∈ (card‘𝑦)) | 
| 7 | cardsdom2 10029 | . . . . 5 ⊢ ((𝑥 ∈ dom card ∧ 𝑦 ∈ dom card) → ((card‘𝑥) ∈ (card‘𝑦) ↔ 𝑥 ≺ 𝑦)) | |
| 8 | 6, 7 | bitr2id 284 | . . . 4 ⊢ ((𝑥 ∈ dom card ∧ 𝑦 ∈ dom card) → (𝑥 ≺ 𝑦 ↔ (card‘𝑥) E (card‘𝑦))) | 
| 9 | 8 | rgen2 3198 | . . 3 ⊢ ∀𝑥 ∈ dom card∀𝑦 ∈ dom card(𝑥 ≺ 𝑦 ↔ (card‘𝑥) E (card‘𝑦)) | 
| 10 | 9 | a1i 11 | . 2 ⊢ ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → ∀𝑥 ∈ dom card∀𝑦 ∈ dom card(𝑥 ≺ 𝑦 ↔ (card‘𝑥) E (card‘𝑦))) | 
| 11 | simpl 482 | . 2 ⊢ ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → 𝐴 ⊆ dom card) | |
| 12 | simpr 484 | . 2 ⊢ ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → 𝐵 ∈ dom card) | |
| 13 | 4, 10, 11, 12 | fnrelpredd 35104 | 1 ⊢ ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → Pred( E , (card “ 𝐴), (card‘𝐵)) = (card “ Pred( ≺ , 𝐴, 𝐵))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cab 2713 ∀wral 3060 ∃wrex 3069 ⊆ wss 3950 class class class wbr 5142 E cep 5582 dom cdm 5684 “ cima 5687 Predcpred 6319 Oncon0 6383 Fn wfn 6555 ⟶wf 6556 ‘cfv 6560 ≈ cen 8983 ≺ csdm 8985 cardccrd 9976 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-card 9980 | 
| This theorem is referenced by: nummin 35106 | 
| Copyright terms: Public domain | W3C validator |