![]() |
Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cardpred | Structured version Visualization version GIF version |
Description: The cardinality function preserves predecessors. (Contributed by BTernaryTau, 18-Jul-2024.) |
Ref | Expression |
---|---|
cardpred | β’ ((π΄ β dom card β§ π΅ β dom card) β Pred( E , (card β π΄), (cardβπ΅)) = (card β Pred( βΊ , π΄, π΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardf2 9934 | . . 3 β’ card:{π₯ β£ βπ¦ β On π¦ β π₯}βΆOn | |
2 | ffun 6717 | . . . 4 β’ (card:{π₯ β£ βπ¦ β On π¦ β π₯}βΆOn β Fun card) | |
3 | 2 | funfnd 6576 | . . 3 β’ (card:{π₯ β£ βπ¦ β On π¦ β π₯}βΆOn β card Fn dom card) |
4 | 1, 3 | mp1i 13 | . 2 β’ ((π΄ β dom card β§ π΅ β dom card) β card Fn dom card) |
5 | fvex 6901 | . . . . . 6 β’ (cardβπ¦) β V | |
6 | 5 | epeli 5581 | . . . . 5 β’ ((cardβπ₯) E (cardβπ¦) β (cardβπ₯) β (cardβπ¦)) |
7 | cardsdom2 9979 | . . . . 5 β’ ((π₯ β dom card β§ π¦ β dom card) β ((cardβπ₯) β (cardβπ¦) β π₯ βΊ π¦)) | |
8 | 6, 7 | bitr2id 283 | . . . 4 β’ ((π₯ β dom card β§ π¦ β dom card) β (π₯ βΊ π¦ β (cardβπ₯) E (cardβπ¦))) |
9 | 8 | rgen2 3197 | . . 3 β’ βπ₯ β dom cardβπ¦ β dom card(π₯ βΊ π¦ β (cardβπ₯) E (cardβπ¦)) |
10 | 9 | a1i 11 | . 2 β’ ((π΄ β dom card β§ π΅ β dom card) β βπ₯ β dom cardβπ¦ β dom card(π₯ βΊ π¦ β (cardβπ₯) E (cardβπ¦))) |
11 | simpl 483 | . 2 β’ ((π΄ β dom card β§ π΅ β dom card) β π΄ β dom card) | |
12 | simpr 485 | . 2 β’ ((π΄ β dom card β§ π΅ β dom card) β π΅ β dom card) | |
13 | 4, 10, 11, 12 | fnrelpredd 34080 | 1 β’ ((π΄ β dom card β§ π΅ β dom card) β Pred( E , (card β π΄), (cardβπ΅)) = (card β Pred( βΊ , π΄, π΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 {cab 2709 βwral 3061 βwrex 3070 β wss 3947 class class class wbr 5147 E cep 5578 dom cdm 5675 β cima 5678 Predcpred 6296 Oncon0 6361 Fn wfn 6535 βΆwf 6536 βcfv 6540 β cen 8932 βΊ csdm 8934 cardccrd 9926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-card 9930 |
This theorem is referenced by: nummin 34082 |
Copyright terms: Public domain | W3C validator |