Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cardpred | Structured version Visualization version GIF version |
Description: The cardinality function preserves predecessors. (Contributed by BTernaryTau, 18-Jul-2024.) |
Ref | Expression |
---|---|
cardpred | ⊢ ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → Pred( E , (card “ 𝐴), (card‘𝐵)) = (card “ Pred( ≺ , 𝐴, 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardf2 9632 | . . 3 ⊢ card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦 ≈ 𝑥}⟶On | |
2 | ffun 6587 | . . . 4 ⊢ (card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦 ≈ 𝑥}⟶On → Fun card) | |
3 | 2 | funfnd 6449 | . . 3 ⊢ (card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦 ≈ 𝑥}⟶On → card Fn dom card) |
4 | 1, 3 | mp1i 13 | . 2 ⊢ ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → card Fn dom card) |
5 | fvex 6769 | . . . . . 6 ⊢ (card‘𝑦) ∈ V | |
6 | 5 | epeli 5488 | . . . . 5 ⊢ ((card‘𝑥) E (card‘𝑦) ↔ (card‘𝑥) ∈ (card‘𝑦)) |
7 | cardsdom2 9677 | . . . . 5 ⊢ ((𝑥 ∈ dom card ∧ 𝑦 ∈ dom card) → ((card‘𝑥) ∈ (card‘𝑦) ↔ 𝑥 ≺ 𝑦)) | |
8 | 6, 7 | bitr2id 283 | . . . 4 ⊢ ((𝑥 ∈ dom card ∧ 𝑦 ∈ dom card) → (𝑥 ≺ 𝑦 ↔ (card‘𝑥) E (card‘𝑦))) |
9 | 8 | rgen2 3126 | . . 3 ⊢ ∀𝑥 ∈ dom card∀𝑦 ∈ dom card(𝑥 ≺ 𝑦 ↔ (card‘𝑥) E (card‘𝑦)) |
10 | 9 | a1i 11 | . 2 ⊢ ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → ∀𝑥 ∈ dom card∀𝑦 ∈ dom card(𝑥 ≺ 𝑦 ↔ (card‘𝑥) E (card‘𝑦))) |
11 | simpl 482 | . 2 ⊢ ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → 𝐴 ⊆ dom card) | |
12 | simpr 484 | . 2 ⊢ ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → 𝐵 ∈ dom card) | |
13 | 4, 10, 11, 12 | fnrelpredd 32961 | 1 ⊢ ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → Pred( E , (card “ 𝐴), (card‘𝐵)) = (card “ Pred( ≺ , 𝐴, 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2715 ∀wral 3063 ∃wrex 3064 ⊆ wss 3883 class class class wbr 5070 E cep 5485 dom cdm 5580 “ cima 5583 Predcpred 6190 Oncon0 6251 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 ≈ cen 8688 ≺ csdm 8690 cardccrd 9624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-card 9628 |
This theorem is referenced by: nummin 32963 |
Copyright terms: Public domain | W3C validator |