![]() |
Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cardpred | Structured version Visualization version GIF version |
Description: The cardinality function preserves predecessors. (Contributed by BTernaryTau, 18-Jul-2024.) |
Ref | Expression |
---|---|
cardpred | ⊢ ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → Pred( E , (card “ 𝐴), (card‘𝐵)) = (card “ Pred( ≺ , 𝐴, 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardf2 9925 | . . 3 ⊢ card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦 ≈ 𝑥}⟶On | |
2 | ffun 6710 | . . . 4 ⊢ (card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦 ≈ 𝑥}⟶On → Fun card) | |
3 | 2 | funfnd 6571 | . . 3 ⊢ (card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦 ≈ 𝑥}⟶On → card Fn dom card) |
4 | 1, 3 | mp1i 13 | . 2 ⊢ ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → card Fn dom card) |
5 | fvex 6894 | . . . . . 6 ⊢ (card‘𝑦) ∈ V | |
6 | 5 | epeli 5578 | . . . . 5 ⊢ ((card‘𝑥) E (card‘𝑦) ↔ (card‘𝑥) ∈ (card‘𝑦)) |
7 | cardsdom2 9970 | . . . . 5 ⊢ ((𝑥 ∈ dom card ∧ 𝑦 ∈ dom card) → ((card‘𝑥) ∈ (card‘𝑦) ↔ 𝑥 ≺ 𝑦)) | |
8 | 6, 7 | bitr2id 284 | . . . 4 ⊢ ((𝑥 ∈ dom card ∧ 𝑦 ∈ dom card) → (𝑥 ≺ 𝑦 ↔ (card‘𝑥) E (card‘𝑦))) |
9 | 8 | rgen2 3198 | . . 3 ⊢ ∀𝑥 ∈ dom card∀𝑦 ∈ dom card(𝑥 ≺ 𝑦 ↔ (card‘𝑥) E (card‘𝑦)) |
10 | 9 | a1i 11 | . 2 ⊢ ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → ∀𝑥 ∈ dom card∀𝑦 ∈ dom card(𝑥 ≺ 𝑦 ↔ (card‘𝑥) E (card‘𝑦))) |
11 | simpl 484 | . 2 ⊢ ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → 𝐴 ⊆ dom card) | |
12 | simpr 486 | . 2 ⊢ ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → 𝐵 ∈ dom card) | |
13 | 4, 10, 11, 12 | fnrelpredd 34023 | 1 ⊢ ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → Pred( E , (card “ 𝐴), (card‘𝐵)) = (card “ Pred( ≺ , 𝐴, 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {cab 2710 ∀wral 3062 ∃wrex 3071 ⊆ wss 3946 class class class wbr 5144 E cep 5575 dom cdm 5672 “ cima 5675 Predcpred 6291 Oncon0 6356 Fn wfn 6530 ⟶wf 6531 ‘cfv 6535 ≈ cen 8924 ≺ csdm 8926 cardccrd 9917 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4905 df-int 4947 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6292 df-ord 6359 df-on 6360 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-er 8691 df-en 8928 df-dom 8929 df-sdom 8930 df-card 9921 |
This theorem is referenced by: nummin 34025 |
Copyright terms: Public domain | W3C validator |