Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cardpred Structured version   Visualization version   GIF version

Theorem cardpred 35066
Description: The cardinality function preserves predecessors. (Contributed by BTernaryTau, 18-Jul-2024.)
Assertion
Ref Expression
cardpred ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → Pred( E , (card “ 𝐴), (card‘𝐵)) = (card “ Pred( ≺ , 𝐴, 𝐵)))

Proof of Theorem cardpred
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cardf2 10012 . . 3 card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}⟶On
2 ffun 6750 . . . 4 (card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}⟶On → Fun card)
32funfnd 6609 . . 3 (card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}⟶On → card Fn dom card)
41, 3mp1i 13 . 2 ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → card Fn dom card)
5 fvex 6933 . . . . . 6 (card‘𝑦) ∈ V
65epeli 5601 . . . . 5 ((card‘𝑥) E (card‘𝑦) ↔ (card‘𝑥) ∈ (card‘𝑦))
7 cardsdom2 10057 . . . . 5 ((𝑥 ∈ dom card ∧ 𝑦 ∈ dom card) → ((card‘𝑥) ∈ (card‘𝑦) ↔ 𝑥𝑦))
86, 7bitr2id 284 . . . 4 ((𝑥 ∈ dom card ∧ 𝑦 ∈ dom card) → (𝑥𝑦 ↔ (card‘𝑥) E (card‘𝑦)))
98rgen2 3205 . . 3 𝑥 ∈ dom card∀𝑦 ∈ dom card(𝑥𝑦 ↔ (card‘𝑥) E (card‘𝑦))
109a1i 11 . 2 ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → ∀𝑥 ∈ dom card∀𝑦 ∈ dom card(𝑥𝑦 ↔ (card‘𝑥) E (card‘𝑦)))
11 simpl 482 . 2 ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → 𝐴 ⊆ dom card)
12 simpr 484 . 2 ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → 𝐵 ∈ dom card)
134, 10, 11, 12fnrelpredd 35065 1 ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → Pred( E , (card “ 𝐴), (card‘𝐵)) = (card “ Pred( ≺ , 𝐴, 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {cab 2717  wral 3067  wrex 3076  wss 3976   class class class wbr 5166   E cep 5598  dom cdm 5700  cima 5703  Predcpred 6331  Oncon0 6395   Fn wfn 6568  wf 6569  cfv 6573  cen 9000  csdm 9002  cardccrd 10004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-card 10008
This theorem is referenced by:  nummin  35067
  Copyright terms: Public domain W3C validator