Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cardpred Structured version   Visualization version   GIF version

Theorem cardpred 35095
Description: The cardinality function preserves predecessors. (Contributed by BTernaryTau, 18-Jul-2024.)
Assertion
Ref Expression
cardpred ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → Pred( E , (card “ 𝐴), (card‘𝐵)) = (card “ Pred( ≺ , 𝐴, 𝐵)))

Proof of Theorem cardpred
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cardf2 9831 . . 3 card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}⟶On
2 ffun 6649 . . . 4 (card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}⟶On → Fun card)
32funfnd 6507 . . 3 (card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}⟶On → card Fn dom card)
41, 3mp1i 13 . 2 ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → card Fn dom card)
5 fvex 6830 . . . . . 6 (card‘𝑦) ∈ V
65epeli 5513 . . . . 5 ((card‘𝑥) E (card‘𝑦) ↔ (card‘𝑥) ∈ (card‘𝑦))
7 cardsdom2 9876 . . . . 5 ((𝑥 ∈ dom card ∧ 𝑦 ∈ dom card) → ((card‘𝑥) ∈ (card‘𝑦) ↔ 𝑥𝑦))
86, 7bitr2id 284 . . . 4 ((𝑥 ∈ dom card ∧ 𝑦 ∈ dom card) → (𝑥𝑦 ↔ (card‘𝑥) E (card‘𝑦)))
98rgen2 3172 . . 3 𝑥 ∈ dom card∀𝑦 ∈ dom card(𝑥𝑦 ↔ (card‘𝑥) E (card‘𝑦))
109a1i 11 . 2 ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → ∀𝑥 ∈ dom card∀𝑦 ∈ dom card(𝑥𝑦 ↔ (card‘𝑥) E (card‘𝑦)))
11 simpl 482 . 2 ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → 𝐴 ⊆ dom card)
12 simpr 484 . 2 ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → 𝐵 ∈ dom card)
134, 10, 11, 12fnrelpredd 35094 1 ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → Pred( E , (card “ 𝐴), (card‘𝐵)) = (card “ Pred( ≺ , 𝐴, 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {cab 2709  wral 3047  wrex 3056  wss 3897   class class class wbr 5086   E cep 5510  dom cdm 5611  cima 5614  Predcpred 6242  Oncon0 6301   Fn wfn 6471  wf 6472  cfv 6476  cen 8861  csdm 8863  cardccrd 9823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-card 9827
This theorem is referenced by:  nummin  35096
  Copyright terms: Public domain W3C validator