Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cardpred Structured version   Visualization version   GIF version

Theorem cardpred 34081
Description: The cardinality function preserves predecessors. (Contributed by BTernaryTau, 18-Jul-2024.)
Assertion
Ref Expression
cardpred ((𝐴 βŠ† dom card ∧ 𝐡 ∈ dom card) β†’ Pred( E , (card β€œ 𝐴), (cardβ€˜π΅)) = (card β€œ Pred( β‰Ί , 𝐴, 𝐡)))

Proof of Theorem cardpred
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cardf2 9934 . . 3 card:{π‘₯ ∣ βˆƒπ‘¦ ∈ On 𝑦 β‰ˆ π‘₯}⟢On
2 ffun 6717 . . . 4 (card:{π‘₯ ∣ βˆƒπ‘¦ ∈ On 𝑦 β‰ˆ π‘₯}⟢On β†’ Fun card)
32funfnd 6576 . . 3 (card:{π‘₯ ∣ βˆƒπ‘¦ ∈ On 𝑦 β‰ˆ π‘₯}⟢On β†’ card Fn dom card)
41, 3mp1i 13 . 2 ((𝐴 βŠ† dom card ∧ 𝐡 ∈ dom card) β†’ card Fn dom card)
5 fvex 6901 . . . . . 6 (cardβ€˜π‘¦) ∈ V
65epeli 5581 . . . . 5 ((cardβ€˜π‘₯) E (cardβ€˜π‘¦) ↔ (cardβ€˜π‘₯) ∈ (cardβ€˜π‘¦))
7 cardsdom2 9979 . . . . 5 ((π‘₯ ∈ dom card ∧ 𝑦 ∈ dom card) β†’ ((cardβ€˜π‘₯) ∈ (cardβ€˜π‘¦) ↔ π‘₯ β‰Ί 𝑦))
86, 7bitr2id 283 . . . 4 ((π‘₯ ∈ dom card ∧ 𝑦 ∈ dom card) β†’ (π‘₯ β‰Ί 𝑦 ↔ (cardβ€˜π‘₯) E (cardβ€˜π‘¦)))
98rgen2 3197 . . 3 βˆ€π‘₯ ∈ dom cardβˆ€π‘¦ ∈ dom card(π‘₯ β‰Ί 𝑦 ↔ (cardβ€˜π‘₯) E (cardβ€˜π‘¦))
109a1i 11 . 2 ((𝐴 βŠ† dom card ∧ 𝐡 ∈ dom card) β†’ βˆ€π‘₯ ∈ dom cardβˆ€π‘¦ ∈ dom card(π‘₯ β‰Ί 𝑦 ↔ (cardβ€˜π‘₯) E (cardβ€˜π‘¦)))
11 simpl 483 . 2 ((𝐴 βŠ† dom card ∧ 𝐡 ∈ dom card) β†’ 𝐴 βŠ† dom card)
12 simpr 485 . 2 ((𝐴 βŠ† dom card ∧ 𝐡 ∈ dom card) β†’ 𝐡 ∈ dom card)
134, 10, 11, 12fnrelpredd 34080 1 ((𝐴 βŠ† dom card ∧ 𝐡 ∈ dom card) β†’ Pred( E , (card β€œ 𝐴), (cardβ€˜π΅)) = (card β€œ Pred( β‰Ί , 𝐴, 𝐡)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {cab 2709  βˆ€wral 3061  βˆƒwrex 3070   βŠ† wss 3947   class class class wbr 5147   E cep 5578  dom cdm 5675   β€œ cima 5678  Predcpred 6296  Oncon0 6361   Fn wfn 6535  βŸΆwf 6536  β€˜cfv 6540   β‰ˆ cen 8932   β‰Ί csdm 8934  cardccrd 9926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-card 9930
This theorem is referenced by:  nummin  34082
  Copyright terms: Public domain W3C validator