Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cardpred Structured version   Visualization version   GIF version

Theorem cardpred 35059
Description: The cardinality function preserves predecessors. (Contributed by BTernaryTau, 18-Jul-2024.)
Assertion
Ref Expression
cardpred ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → Pred( E , (card “ 𝐴), (card‘𝐵)) = (card “ Pred( ≺ , 𝐴, 𝐵)))

Proof of Theorem cardpred
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cardf2 9858 . . 3 card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}⟶On
2 ffun 6659 . . . 4 (card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}⟶On → Fun card)
32funfnd 6517 . . 3 (card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}⟶On → card Fn dom card)
41, 3mp1i 13 . 2 ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → card Fn dom card)
5 fvex 6839 . . . . . 6 (card‘𝑦) ∈ V
65epeli 5525 . . . . 5 ((card‘𝑥) E (card‘𝑦) ↔ (card‘𝑥) ∈ (card‘𝑦))
7 cardsdom2 9903 . . . . 5 ((𝑥 ∈ dom card ∧ 𝑦 ∈ dom card) → ((card‘𝑥) ∈ (card‘𝑦) ↔ 𝑥𝑦))
86, 7bitr2id 284 . . . 4 ((𝑥 ∈ dom card ∧ 𝑦 ∈ dom card) → (𝑥𝑦 ↔ (card‘𝑥) E (card‘𝑦)))
98rgen2 3169 . . 3 𝑥 ∈ dom card∀𝑦 ∈ dom card(𝑥𝑦 ↔ (card‘𝑥) E (card‘𝑦))
109a1i 11 . 2 ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → ∀𝑥 ∈ dom card∀𝑦 ∈ dom card(𝑥𝑦 ↔ (card‘𝑥) E (card‘𝑦)))
11 simpl 482 . 2 ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → 𝐴 ⊆ dom card)
12 simpr 484 . 2 ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → 𝐵 ∈ dom card)
134, 10, 11, 12fnrelpredd 35058 1 ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → Pred( E , (card “ 𝐴), (card‘𝐵)) = (card “ Pred( ≺ , 𝐴, 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  wss 3905   class class class wbr 5095   E cep 5522  dom cdm 5623  cima 5626  Predcpred 6252  Oncon0 6311   Fn wfn 6481  wf 6482  cfv 6486  cen 8876  csdm 8878  cardccrd 9850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-card 9854
This theorem is referenced by:  nummin  35060
  Copyright terms: Public domain W3C validator