| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ressply1mon1p | Structured version Visualization version GIF version | ||
| Description: The monic polynomials of a restricted polynomial algebra. (Contributed by Thierry Arnoux, 21-Jan-2025.) |
| Ref | Expression |
|---|---|
| ressply.1 | ⊢ 𝑆 = (Poly1‘𝑅) |
| ressply.2 | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
| ressply.3 | ⊢ 𝑈 = (Poly1‘𝐻) |
| ressply.4 | ⊢ 𝐵 = (Base‘𝑈) |
| ressply.5 | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
| ressply1mon1p.m | ⊢ 𝑀 = (Monic1p‘𝑅) |
| ressply1mon1p.n | ⊢ 𝑁 = (Monic1p‘𝐻) |
| Ref | Expression |
|---|---|
| ressply1mon1p | ⊢ (𝜑 → 𝑁 = (𝐵 ∩ 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressply.1 | . . . . . 6 ⊢ 𝑆 = (Poly1‘𝑅) | |
| 2 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 3 | eqid 2731 | . . . . . 6 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 4 | eqid 2731 | . . . . . 6 ⊢ (deg1‘𝑅) = (deg1‘𝑅) | |
| 5 | ressply1mon1p.m | . . . . . 6 ⊢ 𝑀 = (Monic1p‘𝑅) | |
| 6 | eqid 2731 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 7 | 1, 2, 3, 4, 5, 6 | ismon1p 26081 | . . . . 5 ⊢ (𝑝 ∈ 𝑀 ↔ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g‘𝑆) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅))) |
| 8 | 7 | anbi2i 623 | . . . 4 ⊢ ((𝑝 ∈ 𝐵 ∧ 𝑝 ∈ 𝑀) ↔ (𝑝 ∈ 𝐵 ∧ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g‘𝑆) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅)))) |
| 9 | ressply.2 | . . . . . . . . . . 11 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
| 10 | ressply.3 | . . . . . . . . . . 11 ⊢ 𝑈 = (Poly1‘𝐻) | |
| 11 | ressply.4 | . . . . . . . . . . 11 ⊢ 𝐵 = (Base‘𝑈) | |
| 12 | ressply.5 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
| 13 | eqid 2731 | . . . . . . . . . . 11 ⊢ (𝑆 ↾s 𝐵) = (𝑆 ↾s 𝐵) | |
| 14 | 1, 9, 10, 11, 12, 13 | ressply1bas 22147 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 = (Base‘(𝑆 ↾s 𝐵))) |
| 15 | 13, 2 | ressbasss 17156 | . . . . . . . . . 10 ⊢ (Base‘(𝑆 ↾s 𝐵)) ⊆ (Base‘𝑆) |
| 16 | 14, 15 | eqsstrdi 3974 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ⊆ (Base‘𝑆)) |
| 17 | 16 | sseld 3928 | . . . . . . . 8 ⊢ (𝜑 → (𝑝 ∈ 𝐵 → 𝑝 ∈ (Base‘𝑆))) |
| 18 | 17 | pm4.71d 561 | . . . . . . 7 ⊢ (𝜑 → (𝑝 ∈ 𝐵 ↔ (𝑝 ∈ 𝐵 ∧ 𝑝 ∈ (Base‘𝑆)))) |
| 19 | 18 | anbi1d 631 | . . . . . 6 ⊢ (𝜑 → ((𝑝 ∈ 𝐵 ∧ (𝑝 ≠ (0g‘𝑆) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅))) ↔ ((𝑝 ∈ 𝐵 ∧ 𝑝 ∈ (Base‘𝑆)) ∧ (𝑝 ≠ (0g‘𝑆) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅))))) |
| 20 | 13an22anass 32450 | . . . . . 6 ⊢ ((𝑝 ∈ 𝐵 ∧ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g‘𝑆) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅))) ↔ ((𝑝 ∈ 𝐵 ∧ 𝑝 ∈ (Base‘𝑆)) ∧ (𝑝 ≠ (0g‘𝑆) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅)))) | |
| 21 | 19, 20 | bitr4di 289 | . . . . 5 ⊢ (𝜑 → ((𝑝 ∈ 𝐵 ∧ (𝑝 ≠ (0g‘𝑆) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅))) ↔ (𝑝 ∈ 𝐵 ∧ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g‘𝑆) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅))))) |
| 22 | 1, 9, 10, 11, 12, 3 | ressply10g 33537 | . . . . . . . . . 10 ⊢ (𝜑 → (0g‘𝑆) = (0g‘𝑈)) |
| 23 | 22 | neeq2d 2988 | . . . . . . . . 9 ⊢ (𝜑 → (𝑝 ≠ (0g‘𝑆) ↔ 𝑝 ≠ (0g‘𝑈))) |
| 24 | 23 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → (𝑝 ≠ (0g‘𝑆) ↔ 𝑝 ≠ (0g‘𝑈))) |
| 25 | simpr 484 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → 𝑝 ∈ 𝐵) | |
| 26 | 12 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → 𝑇 ∈ (SubRing‘𝑅)) |
| 27 | 9, 4, 10, 11, 25, 26 | ressdeg1 33536 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → ((deg1‘𝑅)‘𝑝) = ((deg1‘𝐻)‘𝑝)) |
| 28 | 27 | fveq2d 6832 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = ((coe1‘𝑝)‘((deg1‘𝐻)‘𝑝))) |
| 29 | 9, 6 | subrg1 20503 | . . . . . . . . . . 11 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (1r‘𝑅) = (1r‘𝐻)) |
| 30 | 12, 29 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → (1r‘𝑅) = (1r‘𝐻)) |
| 31 | 30 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → (1r‘𝑅) = (1r‘𝐻)) |
| 32 | 28, 31 | eqeq12d 2747 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → (((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅) ↔ ((coe1‘𝑝)‘((deg1‘𝐻)‘𝑝)) = (1r‘𝐻))) |
| 33 | 24, 32 | anbi12d 632 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → ((𝑝 ≠ (0g‘𝑆) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅)) ↔ (𝑝 ≠ (0g‘𝑈) ∧ ((coe1‘𝑝)‘((deg1‘𝐻)‘𝑝)) = (1r‘𝐻)))) |
| 34 | 33 | pm5.32da 579 | . . . . . 6 ⊢ (𝜑 → ((𝑝 ∈ 𝐵 ∧ (𝑝 ≠ (0g‘𝑆) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅))) ↔ (𝑝 ∈ 𝐵 ∧ (𝑝 ≠ (0g‘𝑈) ∧ ((coe1‘𝑝)‘((deg1‘𝐻)‘𝑝)) = (1r‘𝐻))))) |
| 35 | 3anass 1094 | . . . . . 6 ⊢ ((𝑝 ∈ 𝐵 ∧ 𝑝 ≠ (0g‘𝑈) ∧ ((coe1‘𝑝)‘((deg1‘𝐻)‘𝑝)) = (1r‘𝐻)) ↔ (𝑝 ∈ 𝐵 ∧ (𝑝 ≠ (0g‘𝑈) ∧ ((coe1‘𝑝)‘((deg1‘𝐻)‘𝑝)) = (1r‘𝐻)))) | |
| 36 | 34, 35 | bitr4di 289 | . . . . 5 ⊢ (𝜑 → ((𝑝 ∈ 𝐵 ∧ (𝑝 ≠ (0g‘𝑆) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅))) ↔ (𝑝 ∈ 𝐵 ∧ 𝑝 ≠ (0g‘𝑈) ∧ ((coe1‘𝑝)‘((deg1‘𝐻)‘𝑝)) = (1r‘𝐻)))) |
| 37 | 21, 36 | bitr3d 281 | . . . 4 ⊢ (𝜑 → ((𝑝 ∈ 𝐵 ∧ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g‘𝑆) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅))) ↔ (𝑝 ∈ 𝐵 ∧ 𝑝 ≠ (0g‘𝑈) ∧ ((coe1‘𝑝)‘((deg1‘𝐻)‘𝑝)) = (1r‘𝐻)))) |
| 38 | 8, 37 | bitr2id 284 | . . 3 ⊢ (𝜑 → ((𝑝 ∈ 𝐵 ∧ 𝑝 ≠ (0g‘𝑈) ∧ ((coe1‘𝑝)‘((deg1‘𝐻)‘𝑝)) = (1r‘𝐻)) ↔ (𝑝 ∈ 𝐵 ∧ 𝑝 ∈ 𝑀))) |
| 39 | eqid 2731 | . . . 4 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
| 40 | eqid 2731 | . . . 4 ⊢ (deg1‘𝐻) = (deg1‘𝐻) | |
| 41 | ressply1mon1p.n | . . . 4 ⊢ 𝑁 = (Monic1p‘𝐻) | |
| 42 | eqid 2731 | . . . 4 ⊢ (1r‘𝐻) = (1r‘𝐻) | |
| 43 | 10, 11, 39, 40, 41, 42 | ismon1p 26081 | . . 3 ⊢ (𝑝 ∈ 𝑁 ↔ (𝑝 ∈ 𝐵 ∧ 𝑝 ≠ (0g‘𝑈) ∧ ((coe1‘𝑝)‘((deg1‘𝐻)‘𝑝)) = (1r‘𝐻))) |
| 44 | elin 3913 | . . 3 ⊢ (𝑝 ∈ (𝐵 ∩ 𝑀) ↔ (𝑝 ∈ 𝐵 ∧ 𝑝 ∈ 𝑀)) | |
| 45 | 38, 43, 44 | 3bitr4g 314 | . 2 ⊢ (𝜑 → (𝑝 ∈ 𝑁 ↔ 𝑝 ∈ (𝐵 ∩ 𝑀))) |
| 46 | 45 | eqrdv 2729 | 1 ⊢ (𝜑 → 𝑁 = (𝐵 ∩ 𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∩ cin 3896 ‘cfv 6487 (class class class)co 7352 Basecbs 17126 ↾s cress 17147 0gc0g 17349 1rcur 20105 SubRingcsubrg 20490 Poly1cpl1 22095 coe1cco1 22096 deg1cdg1 25992 Monic1pcmn1 26064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 ax-addf 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-isom 6496 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-ofr 7617 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9252 df-sup 9332 df-oi 9402 df-card 9838 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-3 12195 df-4 12196 df-5 12197 df-6 12198 df-7 12199 df-8 12200 df-9 12201 df-n0 12388 df-z 12475 df-dec 12595 df-uz 12739 df-fz 13414 df-fzo 13561 df-seq 13915 df-hash 14244 df-struct 17064 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17127 df-ress 17148 df-plusg 17180 df-mulr 17181 df-starv 17182 df-sca 17183 df-vsca 17184 df-ip 17185 df-tset 17186 df-ple 17187 df-ds 17189 df-unif 17190 df-hom 17191 df-cco 17192 df-0g 17351 df-gsum 17352 df-prds 17357 df-pws 17359 df-mre 17494 df-mrc 17495 df-acs 17497 df-mgm 18554 df-sgrp 18633 df-mnd 18649 df-mhm 18697 df-submnd 18698 df-grp 18855 df-minusg 18856 df-sbg 18857 df-mulg 18987 df-subg 19042 df-ghm 19131 df-cntz 19235 df-cmn 19700 df-abl 19701 df-mgp 20065 df-rng 20077 df-ur 20106 df-ring 20159 df-cring 20160 df-subrng 20467 df-subrg 20491 df-lmod 20801 df-lss 20871 df-cnfld 21298 df-ascl 21798 df-psr 21852 df-mpl 21854 df-opsr 21856 df-psr1 22098 df-ply1 22100 df-coe1 22101 df-mdeg 25993 df-deg1 25994 df-mon1 26069 |
| This theorem is referenced by: irngss 33707 |
| Copyright terms: Public domain | W3C validator |