| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ressply1mon1p | Structured version Visualization version GIF version | ||
| Description: The monic polynomials of a restricted polynomial algebra. (Contributed by Thierry Arnoux, 21-Jan-2025.) |
| Ref | Expression |
|---|---|
| ressply.1 | ⊢ 𝑆 = (Poly1‘𝑅) |
| ressply.2 | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
| ressply.3 | ⊢ 𝑈 = (Poly1‘𝐻) |
| ressply.4 | ⊢ 𝐵 = (Base‘𝑈) |
| ressply.5 | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
| ressply1mon1p.m | ⊢ 𝑀 = (Monic1p‘𝑅) |
| ressply1mon1p.n | ⊢ 𝑁 = (Monic1p‘𝐻) |
| Ref | Expression |
|---|---|
| ressply1mon1p | ⊢ (𝜑 → 𝑁 = (𝐵 ∩ 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressply.1 | . . . . . 6 ⊢ 𝑆 = (Poly1‘𝑅) | |
| 2 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 3 | eqid 2729 | . . . . . 6 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 4 | eqid 2729 | . . . . . 6 ⊢ (deg1‘𝑅) = (deg1‘𝑅) | |
| 5 | ressply1mon1p.m | . . . . . 6 ⊢ 𝑀 = (Monic1p‘𝑅) | |
| 6 | eqid 2729 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 7 | 1, 2, 3, 4, 5, 6 | ismon1p 26083 | . . . . 5 ⊢ (𝑝 ∈ 𝑀 ↔ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g‘𝑆) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅))) |
| 8 | 7 | anbi2i 623 | . . . 4 ⊢ ((𝑝 ∈ 𝐵 ∧ 𝑝 ∈ 𝑀) ↔ (𝑝 ∈ 𝐵 ∧ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g‘𝑆) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅)))) |
| 9 | ressply.2 | . . . . . . . . . . 11 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
| 10 | ressply.3 | . . . . . . . . . . 11 ⊢ 𝑈 = (Poly1‘𝐻) | |
| 11 | ressply.4 | . . . . . . . . . . 11 ⊢ 𝐵 = (Base‘𝑈) | |
| 12 | ressply.5 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
| 13 | eqid 2729 | . . . . . . . . . . 11 ⊢ (𝑆 ↾s 𝐵) = (𝑆 ↾s 𝐵) | |
| 14 | 1, 9, 10, 11, 12, 13 | ressply1bas 22148 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 = (Base‘(𝑆 ↾s 𝐵))) |
| 15 | 13, 2 | ressbasss 17187 | . . . . . . . . . 10 ⊢ (Base‘(𝑆 ↾s 𝐵)) ⊆ (Base‘𝑆) |
| 16 | 14, 15 | eqsstrdi 3988 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ⊆ (Base‘𝑆)) |
| 17 | 16 | sseld 3942 | . . . . . . . 8 ⊢ (𝜑 → (𝑝 ∈ 𝐵 → 𝑝 ∈ (Base‘𝑆))) |
| 18 | 17 | pm4.71d 561 | . . . . . . 7 ⊢ (𝜑 → (𝑝 ∈ 𝐵 ↔ (𝑝 ∈ 𝐵 ∧ 𝑝 ∈ (Base‘𝑆)))) |
| 19 | 18 | anbi1d 631 | . . . . . 6 ⊢ (𝜑 → ((𝑝 ∈ 𝐵 ∧ (𝑝 ≠ (0g‘𝑆) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅))) ↔ ((𝑝 ∈ 𝐵 ∧ 𝑝 ∈ (Base‘𝑆)) ∧ (𝑝 ≠ (0g‘𝑆) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅))))) |
| 20 | 13an22anass 32445 | . . . . . 6 ⊢ ((𝑝 ∈ 𝐵 ∧ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g‘𝑆) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅))) ↔ ((𝑝 ∈ 𝐵 ∧ 𝑝 ∈ (Base‘𝑆)) ∧ (𝑝 ≠ (0g‘𝑆) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅)))) | |
| 21 | 19, 20 | bitr4di 289 | . . . . 5 ⊢ (𝜑 → ((𝑝 ∈ 𝐵 ∧ (𝑝 ≠ (0g‘𝑆) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅))) ↔ (𝑝 ∈ 𝐵 ∧ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g‘𝑆) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅))))) |
| 22 | 1, 9, 10, 11, 12, 3 | ressply10g 33531 | . . . . . . . . . 10 ⊢ (𝜑 → (0g‘𝑆) = (0g‘𝑈)) |
| 23 | 22 | neeq2d 2985 | . . . . . . . . 9 ⊢ (𝜑 → (𝑝 ≠ (0g‘𝑆) ↔ 𝑝 ≠ (0g‘𝑈))) |
| 24 | 23 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → (𝑝 ≠ (0g‘𝑆) ↔ 𝑝 ≠ (0g‘𝑈))) |
| 25 | simpr 484 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → 𝑝 ∈ 𝐵) | |
| 26 | 12 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → 𝑇 ∈ (SubRing‘𝑅)) |
| 27 | 9, 4, 10, 11, 25, 26 | ressdeg1 33530 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → ((deg1‘𝑅)‘𝑝) = ((deg1‘𝐻)‘𝑝)) |
| 28 | 27 | fveq2d 6845 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = ((coe1‘𝑝)‘((deg1‘𝐻)‘𝑝))) |
| 29 | 9, 6 | subrg1 20504 | . . . . . . . . . . 11 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (1r‘𝑅) = (1r‘𝐻)) |
| 30 | 12, 29 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → (1r‘𝑅) = (1r‘𝐻)) |
| 31 | 30 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → (1r‘𝑅) = (1r‘𝐻)) |
| 32 | 28, 31 | eqeq12d 2745 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → (((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅) ↔ ((coe1‘𝑝)‘((deg1‘𝐻)‘𝑝)) = (1r‘𝐻))) |
| 33 | 24, 32 | anbi12d 632 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → ((𝑝 ≠ (0g‘𝑆) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅)) ↔ (𝑝 ≠ (0g‘𝑈) ∧ ((coe1‘𝑝)‘((deg1‘𝐻)‘𝑝)) = (1r‘𝐻)))) |
| 34 | 33 | pm5.32da 579 | . . . . . 6 ⊢ (𝜑 → ((𝑝 ∈ 𝐵 ∧ (𝑝 ≠ (0g‘𝑆) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅))) ↔ (𝑝 ∈ 𝐵 ∧ (𝑝 ≠ (0g‘𝑈) ∧ ((coe1‘𝑝)‘((deg1‘𝐻)‘𝑝)) = (1r‘𝐻))))) |
| 35 | 3anass 1094 | . . . . . 6 ⊢ ((𝑝 ∈ 𝐵 ∧ 𝑝 ≠ (0g‘𝑈) ∧ ((coe1‘𝑝)‘((deg1‘𝐻)‘𝑝)) = (1r‘𝐻)) ↔ (𝑝 ∈ 𝐵 ∧ (𝑝 ≠ (0g‘𝑈) ∧ ((coe1‘𝑝)‘((deg1‘𝐻)‘𝑝)) = (1r‘𝐻)))) | |
| 36 | 34, 35 | bitr4di 289 | . . . . 5 ⊢ (𝜑 → ((𝑝 ∈ 𝐵 ∧ (𝑝 ≠ (0g‘𝑆) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅))) ↔ (𝑝 ∈ 𝐵 ∧ 𝑝 ≠ (0g‘𝑈) ∧ ((coe1‘𝑝)‘((deg1‘𝐻)‘𝑝)) = (1r‘𝐻)))) |
| 37 | 21, 36 | bitr3d 281 | . . . 4 ⊢ (𝜑 → ((𝑝 ∈ 𝐵 ∧ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g‘𝑆) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅))) ↔ (𝑝 ∈ 𝐵 ∧ 𝑝 ≠ (0g‘𝑈) ∧ ((coe1‘𝑝)‘((deg1‘𝐻)‘𝑝)) = (1r‘𝐻)))) |
| 38 | 8, 37 | bitr2id 284 | . . 3 ⊢ (𝜑 → ((𝑝 ∈ 𝐵 ∧ 𝑝 ≠ (0g‘𝑈) ∧ ((coe1‘𝑝)‘((deg1‘𝐻)‘𝑝)) = (1r‘𝐻)) ↔ (𝑝 ∈ 𝐵 ∧ 𝑝 ∈ 𝑀))) |
| 39 | eqid 2729 | . . . 4 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
| 40 | eqid 2729 | . . . 4 ⊢ (deg1‘𝐻) = (deg1‘𝐻) | |
| 41 | ressply1mon1p.n | . . . 4 ⊢ 𝑁 = (Monic1p‘𝐻) | |
| 42 | eqid 2729 | . . . 4 ⊢ (1r‘𝐻) = (1r‘𝐻) | |
| 43 | 10, 11, 39, 40, 41, 42 | ismon1p 26083 | . . 3 ⊢ (𝑝 ∈ 𝑁 ↔ (𝑝 ∈ 𝐵 ∧ 𝑝 ≠ (0g‘𝑈) ∧ ((coe1‘𝑝)‘((deg1‘𝐻)‘𝑝)) = (1r‘𝐻))) |
| 44 | elin 3927 | . . 3 ⊢ (𝑝 ∈ (𝐵 ∩ 𝑀) ↔ (𝑝 ∈ 𝐵 ∧ 𝑝 ∈ 𝑀)) | |
| 45 | 38, 43, 44 | 3bitr4g 314 | . 2 ⊢ (𝜑 → (𝑝 ∈ 𝑁 ↔ 𝑝 ∈ (𝐵 ∩ 𝑀))) |
| 46 | 45 | eqrdv 2727 | 1 ⊢ (𝜑 → 𝑁 = (𝐵 ∩ 𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∩ cin 3910 ‘cfv 6500 (class class class)co 7370 Basecbs 17157 ↾s cress 17178 0gc0g 17380 1rcur 20103 SubRingcsubrg 20491 Poly1cpl1 22096 coe1cco1 22097 deg1cdg1 25994 Monic1pcmn1 26066 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 ax-addf 11126 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6263 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-isom 6509 df-riota 7327 df-ov 7373 df-oprab 7374 df-mpo 7375 df-of 7634 df-ofr 7635 df-om 7824 df-1st 7948 df-2nd 7949 df-supp 8118 df-frecs 8238 df-wrecs 8269 df-recs 8318 df-rdg 8356 df-1o 8412 df-2o 8413 df-er 8649 df-map 8779 df-pm 8780 df-ixp 8849 df-en 8897 df-dom 8898 df-sdom 8899 df-fin 8900 df-fsupp 9290 df-sup 9370 df-oi 9440 df-card 9871 df-pnf 11189 df-mnf 11190 df-xr 11191 df-ltxr 11192 df-le 11193 df-sub 11386 df-neg 11387 df-nn 12166 df-2 12228 df-3 12229 df-4 12230 df-5 12231 df-6 12232 df-7 12233 df-8 12234 df-9 12235 df-n0 12422 df-z 12509 df-dec 12629 df-uz 12773 df-fz 13448 df-fzo 13595 df-seq 13946 df-hash 14275 df-struct 17095 df-sets 17112 df-slot 17130 df-ndx 17142 df-base 17158 df-ress 17179 df-plusg 17211 df-mulr 17212 df-starv 17213 df-sca 17214 df-vsca 17215 df-ip 17216 df-tset 17217 df-ple 17218 df-ds 17220 df-unif 17221 df-hom 17222 df-cco 17223 df-0g 17382 df-gsum 17383 df-prds 17388 df-pws 17390 df-mre 17525 df-mrc 17526 df-acs 17528 df-mgm 18551 df-sgrp 18630 df-mnd 18646 df-mhm 18694 df-submnd 18695 df-grp 18852 df-minusg 18853 df-sbg 18854 df-mulg 18984 df-subg 19039 df-ghm 19129 df-cntz 19233 df-cmn 19698 df-abl 19699 df-mgp 20063 df-rng 20075 df-ur 20104 df-ring 20157 df-cring 20158 df-subrng 20468 df-subrg 20492 df-lmod 20802 df-lss 20872 df-cnfld 21299 df-ascl 21799 df-psr 21853 df-mpl 21855 df-opsr 21857 df-psr1 22099 df-ply1 22101 df-coe1 22102 df-mdeg 25995 df-deg1 25996 df-mon1 26071 |
| This theorem is referenced by: irngss 33677 |
| Copyright terms: Public domain | W3C validator |