Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressply1mon1p Structured version   Visualization version   GIF version

Theorem ressply1mon1p 33124
Description: The monic polynomials of a restricted polynomial algebra. (Contributed by Thierry Arnoux, 21-Jan-2025.)
Hypotheses
Ref Expression
ressply.1 𝑆 = (Poly1𝑅)
ressply.2 𝐻 = (𝑅s 𝑇)
ressply.3 𝑈 = (Poly1𝐻)
ressply.4 𝐵 = (Base‘𝑈)
ressply.5 (𝜑𝑇 ∈ (SubRing‘𝑅))
ressply1mon1p.m 𝑀 = (Monic1p𝑅)
ressply1mon1p.n 𝑁 = (Monic1p𝐻)
Assertion
Ref Expression
ressply1mon1p (𝜑𝑁 = (𝐵𝑀))

Proof of Theorem ressply1mon1p
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 ressply.1 . . . . . 6 𝑆 = (Poly1𝑅)
2 eqid 2724 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2724 . . . . . 6 (0g𝑆) = (0g𝑆)
4 eqid 2724 . . . . . 6 ( deg1𝑅) = ( deg1𝑅)
5 ressply1mon1p.m . . . . . 6 𝑀 = (Monic1p𝑅)
6 eqid 2724 . . . . . 6 (1r𝑅) = (1r𝑅)
71, 2, 3, 4, 5, 6ismon1p 26000 . . . . 5 (𝑝𝑀 ↔ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘(( deg1𝑅)‘𝑝)) = (1r𝑅)))
87anbi2i 622 . . . 4 ((𝑝𝐵𝑝𝑀) ↔ (𝑝𝐵 ∧ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘(( deg1𝑅)‘𝑝)) = (1r𝑅))))
9 ressply.2 . . . . . . . . . . 11 𝐻 = (𝑅s 𝑇)
10 ressply.3 . . . . . . . . . . 11 𝑈 = (Poly1𝐻)
11 ressply.4 . . . . . . . . . . 11 𝐵 = (Base‘𝑈)
12 ressply.5 . . . . . . . . . . 11 (𝜑𝑇 ∈ (SubRing‘𝑅))
13 eqid 2724 . . . . . . . . . . 11 (𝑆s 𝐵) = (𝑆s 𝐵)
141, 9, 10, 11, 12, 13ressply1bas 22070 . . . . . . . . . 10 (𝜑𝐵 = (Base‘(𝑆s 𝐵)))
1513, 2ressbasss 17182 . . . . . . . . . 10 (Base‘(𝑆s 𝐵)) ⊆ (Base‘𝑆)
1614, 15eqsstrdi 4028 . . . . . . . . 9 (𝜑𝐵 ⊆ (Base‘𝑆))
1716sseld 3973 . . . . . . . 8 (𝜑 → (𝑝𝐵𝑝 ∈ (Base‘𝑆)))
1817pm4.71d 561 . . . . . . 7 (𝜑 → (𝑝𝐵 ↔ (𝑝𝐵𝑝 ∈ (Base‘𝑆))))
1918anbi1d 629 . . . . . 6 (𝜑 → ((𝑝𝐵 ∧ (𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘(( deg1𝑅)‘𝑝)) = (1r𝑅))) ↔ ((𝑝𝐵𝑝 ∈ (Base‘𝑆)) ∧ (𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘(( deg1𝑅)‘𝑝)) = (1r𝑅)))))
20 13an22anass 32175 . . . . . 6 ((𝑝𝐵 ∧ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘(( deg1𝑅)‘𝑝)) = (1r𝑅))) ↔ ((𝑝𝐵𝑝 ∈ (Base‘𝑆)) ∧ (𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘(( deg1𝑅)‘𝑝)) = (1r𝑅))))
2119, 20bitr4di 289 . . . . 5 (𝜑 → ((𝑝𝐵 ∧ (𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘(( deg1𝑅)‘𝑝)) = (1r𝑅))) ↔ (𝑝𝐵 ∧ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘(( deg1𝑅)‘𝑝)) = (1r𝑅)))))
221, 9, 10, 11, 12, 3ressply10g 33123 . . . . . . . . . 10 (𝜑 → (0g𝑆) = (0g𝑈))
2322neeq2d 2993 . . . . . . . . 9 (𝜑 → (𝑝 ≠ (0g𝑆) ↔ 𝑝 ≠ (0g𝑈)))
2423adantr 480 . . . . . . . 8 ((𝜑𝑝𝐵) → (𝑝 ≠ (0g𝑆) ↔ 𝑝 ≠ (0g𝑈)))
25 simpr 484 . . . . . . . . . . 11 ((𝜑𝑝𝐵) → 𝑝𝐵)
2612adantr 480 . . . . . . . . . . 11 ((𝜑𝑝𝐵) → 𝑇 ∈ (SubRing‘𝑅))
279, 4, 10, 11, 25, 26ressdeg1 33118 . . . . . . . . . 10 ((𝜑𝑝𝐵) → (( deg1𝑅)‘𝑝) = (( deg1𝐻)‘𝑝))
2827fveq2d 6885 . . . . . . . . 9 ((𝜑𝑝𝐵) → ((coe1𝑝)‘(( deg1𝑅)‘𝑝)) = ((coe1𝑝)‘(( deg1𝐻)‘𝑝)))
299, 6subrg1 20474 . . . . . . . . . . 11 (𝑇 ∈ (SubRing‘𝑅) → (1r𝑅) = (1r𝐻))
3012, 29syl 17 . . . . . . . . . 10 (𝜑 → (1r𝑅) = (1r𝐻))
3130adantr 480 . . . . . . . . 9 ((𝜑𝑝𝐵) → (1r𝑅) = (1r𝐻))
3228, 31eqeq12d 2740 . . . . . . . 8 ((𝜑𝑝𝐵) → (((coe1𝑝)‘(( deg1𝑅)‘𝑝)) = (1r𝑅) ↔ ((coe1𝑝)‘(( deg1𝐻)‘𝑝)) = (1r𝐻)))
3324, 32anbi12d 630 . . . . . . 7 ((𝜑𝑝𝐵) → ((𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘(( deg1𝑅)‘𝑝)) = (1r𝑅)) ↔ (𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘(( deg1𝐻)‘𝑝)) = (1r𝐻))))
3433pm5.32da 578 . . . . . 6 (𝜑 → ((𝑝𝐵 ∧ (𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘(( deg1𝑅)‘𝑝)) = (1r𝑅))) ↔ (𝑝𝐵 ∧ (𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘(( deg1𝐻)‘𝑝)) = (1r𝐻)))))
35 3anass 1092 . . . . . 6 ((𝑝𝐵𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘(( deg1𝐻)‘𝑝)) = (1r𝐻)) ↔ (𝑝𝐵 ∧ (𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘(( deg1𝐻)‘𝑝)) = (1r𝐻))))
3634, 35bitr4di 289 . . . . 5 (𝜑 → ((𝑝𝐵 ∧ (𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘(( deg1𝑅)‘𝑝)) = (1r𝑅))) ↔ (𝑝𝐵𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘(( deg1𝐻)‘𝑝)) = (1r𝐻))))
3721, 36bitr3d 281 . . . 4 (𝜑 → ((𝑝𝐵 ∧ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘(( deg1𝑅)‘𝑝)) = (1r𝑅))) ↔ (𝑝𝐵𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘(( deg1𝐻)‘𝑝)) = (1r𝐻))))
388, 37bitr2id 284 . . 3 (𝜑 → ((𝑝𝐵𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘(( deg1𝐻)‘𝑝)) = (1r𝐻)) ↔ (𝑝𝐵𝑝𝑀)))
39 eqid 2724 . . . 4 (0g𝑈) = (0g𝑈)
40 eqid 2724 . . . 4 ( deg1𝐻) = ( deg1𝐻)
41 ressply1mon1p.n . . . 4 𝑁 = (Monic1p𝐻)
42 eqid 2724 . . . 4 (1r𝐻) = (1r𝐻)
4310, 11, 39, 40, 41, 42ismon1p 26000 . . 3 (𝑝𝑁 ↔ (𝑝𝐵𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘(( deg1𝐻)‘𝑝)) = (1r𝐻)))
44 elin 3956 . . 3 (𝑝 ∈ (𝐵𝑀) ↔ (𝑝𝐵𝑝𝑀))
4538, 43, 443bitr4g 314 . 2 (𝜑 → (𝑝𝑁𝑝 ∈ (𝐵𝑀)))
4645eqrdv 2722 1 (𝜑𝑁 = (𝐵𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wne 2932  cin 3939  cfv 6533  (class class class)co 7401  Basecbs 17143  s cress 17172  0gc0g 17384  1rcur 20076  SubRingcsubrg 20459  Poly1cpl1 22019  coe1cco1 22020   deg1 cdg1 25909  Monic1pcmn1 25983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-ofr 7664  df-om 7849  df-1st 7968  df-2nd 7969  df-supp 8141  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-z 12556  df-dec 12675  df-uz 12820  df-fz 13482  df-fzo 13625  df-seq 13964  df-hash 14288  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17386  df-gsum 17387  df-prds 17392  df-pws 17394  df-mre 17529  df-mrc 17530  df-acs 17532  df-mgm 18563  df-sgrp 18642  df-mnd 18658  df-mhm 18703  df-submnd 18704  df-grp 18856  df-minusg 18857  df-sbg 18858  df-mulg 18986  df-subg 19040  df-ghm 19129  df-cntz 19223  df-cmn 19692  df-abl 19693  df-mgp 20030  df-rng 20048  df-ur 20077  df-ring 20130  df-cring 20131  df-subrng 20436  df-subrg 20461  df-lmod 20698  df-lss 20769  df-cnfld 21229  df-ascl 21718  df-psr 21771  df-mpl 21773  df-opsr 21775  df-psr1 22022  df-ply1 22024  df-coe1 22025  df-mdeg 25910  df-deg1 25911  df-mon1 25988
This theorem is referenced by:  irngss  33231
  Copyright terms: Public domain W3C validator