| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ressply1mon1p | Structured version Visualization version GIF version | ||
| Description: The monic polynomials of a restricted polynomial algebra. (Contributed by Thierry Arnoux, 21-Jan-2025.) |
| Ref | Expression |
|---|---|
| ressply.1 | ⊢ 𝑆 = (Poly1‘𝑅) |
| ressply.2 | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
| ressply.3 | ⊢ 𝑈 = (Poly1‘𝐻) |
| ressply.4 | ⊢ 𝐵 = (Base‘𝑈) |
| ressply.5 | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
| ressply1mon1p.m | ⊢ 𝑀 = (Monic1p‘𝑅) |
| ressply1mon1p.n | ⊢ 𝑁 = (Monic1p‘𝐻) |
| Ref | Expression |
|---|---|
| ressply1mon1p | ⊢ (𝜑 → 𝑁 = (𝐵 ∩ 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressply.1 | . . . . . 6 ⊢ 𝑆 = (Poly1‘𝑅) | |
| 2 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 3 | eqid 2730 | . . . . . 6 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 4 | eqid 2730 | . . . . . 6 ⊢ (deg1‘𝑅) = (deg1‘𝑅) | |
| 5 | ressply1mon1p.m | . . . . . 6 ⊢ 𝑀 = (Monic1p‘𝑅) | |
| 6 | eqid 2730 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 7 | 1, 2, 3, 4, 5, 6 | ismon1p 26068 | . . . . 5 ⊢ (𝑝 ∈ 𝑀 ↔ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g‘𝑆) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅))) |
| 8 | 7 | anbi2i 623 | . . . 4 ⊢ ((𝑝 ∈ 𝐵 ∧ 𝑝 ∈ 𝑀) ↔ (𝑝 ∈ 𝐵 ∧ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g‘𝑆) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅)))) |
| 9 | ressply.2 | . . . . . . . . . . 11 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
| 10 | ressply.3 | . . . . . . . . . . 11 ⊢ 𝑈 = (Poly1‘𝐻) | |
| 11 | ressply.4 | . . . . . . . . . . 11 ⊢ 𝐵 = (Base‘𝑈) | |
| 12 | ressply.5 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
| 13 | eqid 2730 | . . . . . . . . . . 11 ⊢ (𝑆 ↾s 𝐵) = (𝑆 ↾s 𝐵) | |
| 14 | 1, 9, 10, 11, 12, 13 | ressply1bas 22134 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 = (Base‘(𝑆 ↾s 𝐵))) |
| 15 | 13, 2 | ressbasss 17142 | . . . . . . . . . 10 ⊢ (Base‘(𝑆 ↾s 𝐵)) ⊆ (Base‘𝑆) |
| 16 | 14, 15 | eqsstrdi 3977 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ⊆ (Base‘𝑆)) |
| 17 | 16 | sseld 3931 | . . . . . . . 8 ⊢ (𝜑 → (𝑝 ∈ 𝐵 → 𝑝 ∈ (Base‘𝑆))) |
| 18 | 17 | pm4.71d 561 | . . . . . . 7 ⊢ (𝜑 → (𝑝 ∈ 𝐵 ↔ (𝑝 ∈ 𝐵 ∧ 𝑝 ∈ (Base‘𝑆)))) |
| 19 | 18 | anbi1d 631 | . . . . . 6 ⊢ (𝜑 → ((𝑝 ∈ 𝐵 ∧ (𝑝 ≠ (0g‘𝑆) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅))) ↔ ((𝑝 ∈ 𝐵 ∧ 𝑝 ∈ (Base‘𝑆)) ∧ (𝑝 ≠ (0g‘𝑆) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅))))) |
| 20 | 13an22anass 32433 | . . . . . 6 ⊢ ((𝑝 ∈ 𝐵 ∧ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g‘𝑆) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅))) ↔ ((𝑝 ∈ 𝐵 ∧ 𝑝 ∈ (Base‘𝑆)) ∧ (𝑝 ≠ (0g‘𝑆) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅)))) | |
| 21 | 19, 20 | bitr4di 289 | . . . . 5 ⊢ (𝜑 → ((𝑝 ∈ 𝐵 ∧ (𝑝 ≠ (0g‘𝑆) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅))) ↔ (𝑝 ∈ 𝐵 ∧ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g‘𝑆) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅))))) |
| 22 | 1, 9, 10, 11, 12, 3 | ressply10g 33520 | . . . . . . . . . 10 ⊢ (𝜑 → (0g‘𝑆) = (0g‘𝑈)) |
| 23 | 22 | neeq2d 2986 | . . . . . . . . 9 ⊢ (𝜑 → (𝑝 ≠ (0g‘𝑆) ↔ 𝑝 ≠ (0g‘𝑈))) |
| 24 | 23 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → (𝑝 ≠ (0g‘𝑆) ↔ 𝑝 ≠ (0g‘𝑈))) |
| 25 | simpr 484 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → 𝑝 ∈ 𝐵) | |
| 26 | 12 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → 𝑇 ∈ (SubRing‘𝑅)) |
| 27 | 9, 4, 10, 11, 25, 26 | ressdeg1 33519 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → ((deg1‘𝑅)‘𝑝) = ((deg1‘𝐻)‘𝑝)) |
| 28 | 27 | fveq2d 6821 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = ((coe1‘𝑝)‘((deg1‘𝐻)‘𝑝))) |
| 29 | 9, 6 | subrg1 20490 | . . . . . . . . . . 11 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (1r‘𝑅) = (1r‘𝐻)) |
| 30 | 12, 29 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → (1r‘𝑅) = (1r‘𝐻)) |
| 31 | 30 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → (1r‘𝑅) = (1r‘𝐻)) |
| 32 | 28, 31 | eqeq12d 2746 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → (((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅) ↔ ((coe1‘𝑝)‘((deg1‘𝐻)‘𝑝)) = (1r‘𝐻))) |
| 33 | 24, 32 | anbi12d 632 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → ((𝑝 ≠ (0g‘𝑆) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅)) ↔ (𝑝 ≠ (0g‘𝑈) ∧ ((coe1‘𝑝)‘((deg1‘𝐻)‘𝑝)) = (1r‘𝐻)))) |
| 34 | 33 | pm5.32da 579 | . . . . . 6 ⊢ (𝜑 → ((𝑝 ∈ 𝐵 ∧ (𝑝 ≠ (0g‘𝑆) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅))) ↔ (𝑝 ∈ 𝐵 ∧ (𝑝 ≠ (0g‘𝑈) ∧ ((coe1‘𝑝)‘((deg1‘𝐻)‘𝑝)) = (1r‘𝐻))))) |
| 35 | 3anass 1094 | . . . . . 6 ⊢ ((𝑝 ∈ 𝐵 ∧ 𝑝 ≠ (0g‘𝑈) ∧ ((coe1‘𝑝)‘((deg1‘𝐻)‘𝑝)) = (1r‘𝐻)) ↔ (𝑝 ∈ 𝐵 ∧ (𝑝 ≠ (0g‘𝑈) ∧ ((coe1‘𝑝)‘((deg1‘𝐻)‘𝑝)) = (1r‘𝐻)))) | |
| 36 | 34, 35 | bitr4di 289 | . . . . 5 ⊢ (𝜑 → ((𝑝 ∈ 𝐵 ∧ (𝑝 ≠ (0g‘𝑆) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅))) ↔ (𝑝 ∈ 𝐵 ∧ 𝑝 ≠ (0g‘𝑈) ∧ ((coe1‘𝑝)‘((deg1‘𝐻)‘𝑝)) = (1r‘𝐻)))) |
| 37 | 21, 36 | bitr3d 281 | . . . 4 ⊢ (𝜑 → ((𝑝 ∈ 𝐵 ∧ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g‘𝑆) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅))) ↔ (𝑝 ∈ 𝐵 ∧ 𝑝 ≠ (0g‘𝑈) ∧ ((coe1‘𝑝)‘((deg1‘𝐻)‘𝑝)) = (1r‘𝐻)))) |
| 38 | 8, 37 | bitr2id 284 | . . 3 ⊢ (𝜑 → ((𝑝 ∈ 𝐵 ∧ 𝑝 ≠ (0g‘𝑈) ∧ ((coe1‘𝑝)‘((deg1‘𝐻)‘𝑝)) = (1r‘𝐻)) ↔ (𝑝 ∈ 𝐵 ∧ 𝑝 ∈ 𝑀))) |
| 39 | eqid 2730 | . . . 4 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
| 40 | eqid 2730 | . . . 4 ⊢ (deg1‘𝐻) = (deg1‘𝐻) | |
| 41 | ressply1mon1p.n | . . . 4 ⊢ 𝑁 = (Monic1p‘𝐻) | |
| 42 | eqid 2730 | . . . 4 ⊢ (1r‘𝐻) = (1r‘𝐻) | |
| 43 | 10, 11, 39, 40, 41, 42 | ismon1p 26068 | . . 3 ⊢ (𝑝 ∈ 𝑁 ↔ (𝑝 ∈ 𝐵 ∧ 𝑝 ≠ (0g‘𝑈) ∧ ((coe1‘𝑝)‘((deg1‘𝐻)‘𝑝)) = (1r‘𝐻))) |
| 44 | elin 3916 | . . 3 ⊢ (𝑝 ∈ (𝐵 ∩ 𝑀) ↔ (𝑝 ∈ 𝐵 ∧ 𝑝 ∈ 𝑀)) | |
| 45 | 38, 43, 44 | 3bitr4g 314 | . 2 ⊢ (𝜑 → (𝑝 ∈ 𝑁 ↔ 𝑝 ∈ (𝐵 ∩ 𝑀))) |
| 46 | 45 | eqrdv 2728 | 1 ⊢ (𝜑 → 𝑁 = (𝐵 ∩ 𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 ∩ cin 3899 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 ↾s cress 17133 0gc0g 17335 1rcur 20092 SubRingcsubrg 20477 Poly1cpl1 22082 coe1cco1 22083 deg1cdg1 25979 Monic1pcmn1 26051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-addf 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-ofr 7606 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-sup 9321 df-oi 9391 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-z 12461 df-dec 12581 df-uz 12725 df-fz 13400 df-fzo 13547 df-seq 13901 df-hash 14230 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-starv 17168 df-sca 17169 df-vsca 17170 df-ip 17171 df-tset 17172 df-ple 17173 df-ds 17175 df-unif 17176 df-hom 17177 df-cco 17178 df-0g 17337 df-gsum 17338 df-prds 17343 df-pws 17345 df-mre 17480 df-mrc 17481 df-acs 17483 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-mhm 18683 df-submnd 18684 df-grp 18841 df-minusg 18842 df-sbg 18843 df-mulg 18973 df-subg 19028 df-ghm 19118 df-cntz 19222 df-cmn 19687 df-abl 19688 df-mgp 20052 df-rng 20064 df-ur 20093 df-ring 20146 df-cring 20147 df-subrng 20454 df-subrg 20478 df-lmod 20788 df-lss 20858 df-cnfld 21285 df-ascl 21785 df-psr 21839 df-mpl 21841 df-opsr 21843 df-psr1 22085 df-ply1 22087 df-coe1 22088 df-mdeg 25980 df-deg1 25981 df-mon1 26056 |
| This theorem is referenced by: irngss 33690 |
| Copyright terms: Public domain | W3C validator |