Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressply1mon1p Structured version   Visualization version   GIF version

Theorem ressply1mon1p 33532
Description: The monic polynomials of a restricted polynomial algebra. (Contributed by Thierry Arnoux, 21-Jan-2025.)
Hypotheses
Ref Expression
ressply.1 𝑆 = (Poly1𝑅)
ressply.2 𝐻 = (𝑅s 𝑇)
ressply.3 𝑈 = (Poly1𝐻)
ressply.4 𝐵 = (Base‘𝑈)
ressply.5 (𝜑𝑇 ∈ (SubRing‘𝑅))
ressply1mon1p.m 𝑀 = (Monic1p𝑅)
ressply1mon1p.n 𝑁 = (Monic1p𝐻)
Assertion
Ref Expression
ressply1mon1p (𝜑𝑁 = (𝐵𝑀))

Proof of Theorem ressply1mon1p
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 ressply.1 . . . . . 6 𝑆 = (Poly1𝑅)
2 eqid 2729 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2729 . . . . . 6 (0g𝑆) = (0g𝑆)
4 eqid 2729 . . . . . 6 (deg1𝑅) = (deg1𝑅)
5 ressply1mon1p.m . . . . . 6 𝑀 = (Monic1p𝑅)
6 eqid 2729 . . . . . 6 (1r𝑅) = (1r𝑅)
71, 2, 3, 4, 5, 6ismon1p 26083 . . . . 5 (𝑝𝑀 ↔ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅)))
87anbi2i 623 . . . 4 ((𝑝𝐵𝑝𝑀) ↔ (𝑝𝐵 ∧ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅))))
9 ressply.2 . . . . . . . . . . 11 𝐻 = (𝑅s 𝑇)
10 ressply.3 . . . . . . . . . . 11 𝑈 = (Poly1𝐻)
11 ressply.4 . . . . . . . . . . 11 𝐵 = (Base‘𝑈)
12 ressply.5 . . . . . . . . . . 11 (𝜑𝑇 ∈ (SubRing‘𝑅))
13 eqid 2729 . . . . . . . . . . 11 (𝑆s 𝐵) = (𝑆s 𝐵)
141, 9, 10, 11, 12, 13ressply1bas 22148 . . . . . . . . . 10 (𝜑𝐵 = (Base‘(𝑆s 𝐵)))
1513, 2ressbasss 17187 . . . . . . . . . 10 (Base‘(𝑆s 𝐵)) ⊆ (Base‘𝑆)
1614, 15eqsstrdi 3988 . . . . . . . . 9 (𝜑𝐵 ⊆ (Base‘𝑆))
1716sseld 3942 . . . . . . . 8 (𝜑 → (𝑝𝐵𝑝 ∈ (Base‘𝑆)))
1817pm4.71d 561 . . . . . . 7 (𝜑 → (𝑝𝐵 ↔ (𝑝𝐵𝑝 ∈ (Base‘𝑆))))
1918anbi1d 631 . . . . . 6 (𝜑 → ((𝑝𝐵 ∧ (𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅))) ↔ ((𝑝𝐵𝑝 ∈ (Base‘𝑆)) ∧ (𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅)))))
20 13an22anass 32445 . . . . . 6 ((𝑝𝐵 ∧ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅))) ↔ ((𝑝𝐵𝑝 ∈ (Base‘𝑆)) ∧ (𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅))))
2119, 20bitr4di 289 . . . . 5 (𝜑 → ((𝑝𝐵 ∧ (𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅))) ↔ (𝑝𝐵 ∧ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅)))))
221, 9, 10, 11, 12, 3ressply10g 33531 . . . . . . . . . 10 (𝜑 → (0g𝑆) = (0g𝑈))
2322neeq2d 2985 . . . . . . . . 9 (𝜑 → (𝑝 ≠ (0g𝑆) ↔ 𝑝 ≠ (0g𝑈)))
2423adantr 480 . . . . . . . 8 ((𝜑𝑝𝐵) → (𝑝 ≠ (0g𝑆) ↔ 𝑝 ≠ (0g𝑈)))
25 simpr 484 . . . . . . . . . . 11 ((𝜑𝑝𝐵) → 𝑝𝐵)
2612adantr 480 . . . . . . . . . . 11 ((𝜑𝑝𝐵) → 𝑇 ∈ (SubRing‘𝑅))
279, 4, 10, 11, 25, 26ressdeg1 33530 . . . . . . . . . 10 ((𝜑𝑝𝐵) → ((deg1𝑅)‘𝑝) = ((deg1𝐻)‘𝑝))
2827fveq2d 6845 . . . . . . . . 9 ((𝜑𝑝𝐵) → ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = ((coe1𝑝)‘((deg1𝐻)‘𝑝)))
299, 6subrg1 20504 . . . . . . . . . . 11 (𝑇 ∈ (SubRing‘𝑅) → (1r𝑅) = (1r𝐻))
3012, 29syl 17 . . . . . . . . . 10 (𝜑 → (1r𝑅) = (1r𝐻))
3130adantr 480 . . . . . . . . 9 ((𝜑𝑝𝐵) → (1r𝑅) = (1r𝐻))
3228, 31eqeq12d 2745 . . . . . . . 8 ((𝜑𝑝𝐵) → (((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅) ↔ ((coe1𝑝)‘((deg1𝐻)‘𝑝)) = (1r𝐻)))
3324, 32anbi12d 632 . . . . . . 7 ((𝜑𝑝𝐵) → ((𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅)) ↔ (𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘((deg1𝐻)‘𝑝)) = (1r𝐻))))
3433pm5.32da 579 . . . . . 6 (𝜑 → ((𝑝𝐵 ∧ (𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅))) ↔ (𝑝𝐵 ∧ (𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘((deg1𝐻)‘𝑝)) = (1r𝐻)))))
35 3anass 1094 . . . . . 6 ((𝑝𝐵𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘((deg1𝐻)‘𝑝)) = (1r𝐻)) ↔ (𝑝𝐵 ∧ (𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘((deg1𝐻)‘𝑝)) = (1r𝐻))))
3634, 35bitr4di 289 . . . . 5 (𝜑 → ((𝑝𝐵 ∧ (𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅))) ↔ (𝑝𝐵𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘((deg1𝐻)‘𝑝)) = (1r𝐻))))
3721, 36bitr3d 281 . . . 4 (𝜑 → ((𝑝𝐵 ∧ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅))) ↔ (𝑝𝐵𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘((deg1𝐻)‘𝑝)) = (1r𝐻))))
388, 37bitr2id 284 . . 3 (𝜑 → ((𝑝𝐵𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘((deg1𝐻)‘𝑝)) = (1r𝐻)) ↔ (𝑝𝐵𝑝𝑀)))
39 eqid 2729 . . . 4 (0g𝑈) = (0g𝑈)
40 eqid 2729 . . . 4 (deg1𝐻) = (deg1𝐻)
41 ressply1mon1p.n . . . 4 𝑁 = (Monic1p𝐻)
42 eqid 2729 . . . 4 (1r𝐻) = (1r𝐻)
4310, 11, 39, 40, 41, 42ismon1p 26083 . . 3 (𝑝𝑁 ↔ (𝑝𝐵𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘((deg1𝐻)‘𝑝)) = (1r𝐻)))
44 elin 3927 . . 3 (𝑝 ∈ (𝐵𝑀) ↔ (𝑝𝐵𝑝𝑀))
4538, 43, 443bitr4g 314 . 2 (𝜑 → (𝑝𝑁𝑝 ∈ (𝐵𝑀)))
4645eqrdv 2727 1 (𝜑𝑁 = (𝐵𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cin 3910  cfv 6500  (class class class)co 7370  Basecbs 17157  s cress 17178  0gc0g 17380  1rcur 20103  SubRingcsubrg 20491  Poly1cpl1 22096  coe1cco1 22097  deg1cdg1 25994  Monic1pcmn1 26066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7692  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124  ax-addf 11126
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6263  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6453  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-isom 6509  df-riota 7327  df-ov 7373  df-oprab 7374  df-mpo 7375  df-of 7634  df-ofr 7635  df-om 7824  df-1st 7948  df-2nd 7949  df-supp 8118  df-frecs 8238  df-wrecs 8269  df-recs 8318  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8649  df-map 8779  df-pm 8780  df-ixp 8849  df-en 8897  df-dom 8898  df-sdom 8899  df-fin 8900  df-fsupp 9290  df-sup 9370  df-oi 9440  df-card 9871  df-pnf 11189  df-mnf 11190  df-xr 11191  df-ltxr 11192  df-le 11193  df-sub 11386  df-neg 11387  df-nn 12166  df-2 12228  df-3 12229  df-4 12230  df-5 12231  df-6 12232  df-7 12233  df-8 12234  df-9 12235  df-n0 12422  df-z 12509  df-dec 12629  df-uz 12773  df-fz 13448  df-fzo 13595  df-seq 13946  df-hash 14275  df-struct 17095  df-sets 17112  df-slot 17130  df-ndx 17142  df-base 17158  df-ress 17179  df-plusg 17211  df-mulr 17212  df-starv 17213  df-sca 17214  df-vsca 17215  df-ip 17216  df-tset 17217  df-ple 17218  df-ds 17220  df-unif 17221  df-hom 17222  df-cco 17223  df-0g 17382  df-gsum 17383  df-prds 17388  df-pws 17390  df-mre 17525  df-mrc 17526  df-acs 17528  df-mgm 18551  df-sgrp 18630  df-mnd 18646  df-mhm 18694  df-submnd 18695  df-grp 18852  df-minusg 18853  df-sbg 18854  df-mulg 18984  df-subg 19039  df-ghm 19129  df-cntz 19233  df-cmn 19698  df-abl 19699  df-mgp 20063  df-rng 20075  df-ur 20104  df-ring 20157  df-cring 20158  df-subrng 20468  df-subrg 20492  df-lmod 20802  df-lss 20872  df-cnfld 21299  df-ascl 21799  df-psr 21853  df-mpl 21855  df-opsr 21857  df-psr1 22099  df-ply1 22101  df-coe1 22102  df-mdeg 25995  df-deg1 25996  df-mon1 26071
This theorem is referenced by:  irngss  33677
  Copyright terms: Public domain W3C validator