Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressply1mon1p Structured version   Visualization version   GIF version

Theorem ressply1mon1p 33521
Description: The monic polynomials of a restricted polynomial algebra. (Contributed by Thierry Arnoux, 21-Jan-2025.)
Hypotheses
Ref Expression
ressply.1 𝑆 = (Poly1𝑅)
ressply.2 𝐻 = (𝑅s 𝑇)
ressply.3 𝑈 = (Poly1𝐻)
ressply.4 𝐵 = (Base‘𝑈)
ressply.5 (𝜑𝑇 ∈ (SubRing‘𝑅))
ressply1mon1p.m 𝑀 = (Monic1p𝑅)
ressply1mon1p.n 𝑁 = (Monic1p𝐻)
Assertion
Ref Expression
ressply1mon1p (𝜑𝑁 = (𝐵𝑀))

Proof of Theorem ressply1mon1p
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 ressply.1 . . . . . 6 𝑆 = (Poly1𝑅)
2 eqid 2730 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2730 . . . . . 6 (0g𝑆) = (0g𝑆)
4 eqid 2730 . . . . . 6 (deg1𝑅) = (deg1𝑅)
5 ressply1mon1p.m . . . . . 6 𝑀 = (Monic1p𝑅)
6 eqid 2730 . . . . . 6 (1r𝑅) = (1r𝑅)
71, 2, 3, 4, 5, 6ismon1p 26068 . . . . 5 (𝑝𝑀 ↔ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅)))
87anbi2i 623 . . . 4 ((𝑝𝐵𝑝𝑀) ↔ (𝑝𝐵 ∧ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅))))
9 ressply.2 . . . . . . . . . . 11 𝐻 = (𝑅s 𝑇)
10 ressply.3 . . . . . . . . . . 11 𝑈 = (Poly1𝐻)
11 ressply.4 . . . . . . . . . . 11 𝐵 = (Base‘𝑈)
12 ressply.5 . . . . . . . . . . 11 (𝜑𝑇 ∈ (SubRing‘𝑅))
13 eqid 2730 . . . . . . . . . . 11 (𝑆s 𝐵) = (𝑆s 𝐵)
141, 9, 10, 11, 12, 13ressply1bas 22134 . . . . . . . . . 10 (𝜑𝐵 = (Base‘(𝑆s 𝐵)))
1513, 2ressbasss 17142 . . . . . . . . . 10 (Base‘(𝑆s 𝐵)) ⊆ (Base‘𝑆)
1614, 15eqsstrdi 3977 . . . . . . . . 9 (𝜑𝐵 ⊆ (Base‘𝑆))
1716sseld 3931 . . . . . . . 8 (𝜑 → (𝑝𝐵𝑝 ∈ (Base‘𝑆)))
1817pm4.71d 561 . . . . . . 7 (𝜑 → (𝑝𝐵 ↔ (𝑝𝐵𝑝 ∈ (Base‘𝑆))))
1918anbi1d 631 . . . . . 6 (𝜑 → ((𝑝𝐵 ∧ (𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅))) ↔ ((𝑝𝐵𝑝 ∈ (Base‘𝑆)) ∧ (𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅)))))
20 13an22anass 32433 . . . . . 6 ((𝑝𝐵 ∧ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅))) ↔ ((𝑝𝐵𝑝 ∈ (Base‘𝑆)) ∧ (𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅))))
2119, 20bitr4di 289 . . . . 5 (𝜑 → ((𝑝𝐵 ∧ (𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅))) ↔ (𝑝𝐵 ∧ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅)))))
221, 9, 10, 11, 12, 3ressply10g 33520 . . . . . . . . . 10 (𝜑 → (0g𝑆) = (0g𝑈))
2322neeq2d 2986 . . . . . . . . 9 (𝜑 → (𝑝 ≠ (0g𝑆) ↔ 𝑝 ≠ (0g𝑈)))
2423adantr 480 . . . . . . . 8 ((𝜑𝑝𝐵) → (𝑝 ≠ (0g𝑆) ↔ 𝑝 ≠ (0g𝑈)))
25 simpr 484 . . . . . . . . . . 11 ((𝜑𝑝𝐵) → 𝑝𝐵)
2612adantr 480 . . . . . . . . . . 11 ((𝜑𝑝𝐵) → 𝑇 ∈ (SubRing‘𝑅))
279, 4, 10, 11, 25, 26ressdeg1 33519 . . . . . . . . . 10 ((𝜑𝑝𝐵) → ((deg1𝑅)‘𝑝) = ((deg1𝐻)‘𝑝))
2827fveq2d 6821 . . . . . . . . 9 ((𝜑𝑝𝐵) → ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = ((coe1𝑝)‘((deg1𝐻)‘𝑝)))
299, 6subrg1 20490 . . . . . . . . . . 11 (𝑇 ∈ (SubRing‘𝑅) → (1r𝑅) = (1r𝐻))
3012, 29syl 17 . . . . . . . . . 10 (𝜑 → (1r𝑅) = (1r𝐻))
3130adantr 480 . . . . . . . . 9 ((𝜑𝑝𝐵) → (1r𝑅) = (1r𝐻))
3228, 31eqeq12d 2746 . . . . . . . 8 ((𝜑𝑝𝐵) → (((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅) ↔ ((coe1𝑝)‘((deg1𝐻)‘𝑝)) = (1r𝐻)))
3324, 32anbi12d 632 . . . . . . 7 ((𝜑𝑝𝐵) → ((𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅)) ↔ (𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘((deg1𝐻)‘𝑝)) = (1r𝐻))))
3433pm5.32da 579 . . . . . 6 (𝜑 → ((𝑝𝐵 ∧ (𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅))) ↔ (𝑝𝐵 ∧ (𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘((deg1𝐻)‘𝑝)) = (1r𝐻)))))
35 3anass 1094 . . . . . 6 ((𝑝𝐵𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘((deg1𝐻)‘𝑝)) = (1r𝐻)) ↔ (𝑝𝐵 ∧ (𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘((deg1𝐻)‘𝑝)) = (1r𝐻))))
3634, 35bitr4di 289 . . . . 5 (𝜑 → ((𝑝𝐵 ∧ (𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅))) ↔ (𝑝𝐵𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘((deg1𝐻)‘𝑝)) = (1r𝐻))))
3721, 36bitr3d 281 . . . 4 (𝜑 → ((𝑝𝐵 ∧ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅))) ↔ (𝑝𝐵𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘((deg1𝐻)‘𝑝)) = (1r𝐻))))
388, 37bitr2id 284 . . 3 (𝜑 → ((𝑝𝐵𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘((deg1𝐻)‘𝑝)) = (1r𝐻)) ↔ (𝑝𝐵𝑝𝑀)))
39 eqid 2730 . . . 4 (0g𝑈) = (0g𝑈)
40 eqid 2730 . . . 4 (deg1𝐻) = (deg1𝐻)
41 ressply1mon1p.n . . . 4 𝑁 = (Monic1p𝐻)
42 eqid 2730 . . . 4 (1r𝐻) = (1r𝐻)
4310, 11, 39, 40, 41, 42ismon1p 26068 . . 3 (𝑝𝑁 ↔ (𝑝𝐵𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘((deg1𝐻)‘𝑝)) = (1r𝐻)))
44 elin 3916 . . 3 (𝑝 ∈ (𝐵𝑀) ↔ (𝑝𝐵𝑝𝑀))
4538, 43, 443bitr4g 314 . 2 (𝜑 → (𝑝𝑁𝑝 ∈ (𝐵𝑀)))
4645eqrdv 2728 1 (𝜑𝑁 = (𝐵𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  wne 2926  cin 3899  cfv 6477  (class class class)co 7341  Basecbs 17112  s cress 17133  0gc0g 17335  1rcur 20092  SubRingcsubrg 20477  Poly1cpl1 22082  coe1cco1 22083  deg1cdg1 25979  Monic1pcmn1 26051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-addf 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-ofr 7606  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-oi 9391  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-fz 13400  df-fzo 13547  df-seq 13901  df-hash 14230  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-hom 17177  df-cco 17178  df-0g 17337  df-gsum 17338  df-prds 17343  df-pws 17345  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-mhm 18683  df-submnd 18684  df-grp 18841  df-minusg 18842  df-sbg 18843  df-mulg 18973  df-subg 19028  df-ghm 19118  df-cntz 19222  df-cmn 19687  df-abl 19688  df-mgp 20052  df-rng 20064  df-ur 20093  df-ring 20146  df-cring 20147  df-subrng 20454  df-subrg 20478  df-lmod 20788  df-lss 20858  df-cnfld 21285  df-ascl 21785  df-psr 21839  df-mpl 21841  df-opsr 21843  df-psr1 22085  df-ply1 22087  df-coe1 22088  df-mdeg 25980  df-deg1 25981  df-mon1 26056
This theorem is referenced by:  irngss  33690
  Copyright terms: Public domain W3C validator