Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressply1mon1p Structured version   Visualization version   GIF version

Theorem ressply1mon1p 33538
Description: The monic polynomials of a restricted polynomial algebra. (Contributed by Thierry Arnoux, 21-Jan-2025.)
Hypotheses
Ref Expression
ressply.1 𝑆 = (Poly1𝑅)
ressply.2 𝐻 = (𝑅s 𝑇)
ressply.3 𝑈 = (Poly1𝐻)
ressply.4 𝐵 = (Base‘𝑈)
ressply.5 (𝜑𝑇 ∈ (SubRing‘𝑅))
ressply1mon1p.m 𝑀 = (Monic1p𝑅)
ressply1mon1p.n 𝑁 = (Monic1p𝐻)
Assertion
Ref Expression
ressply1mon1p (𝜑𝑁 = (𝐵𝑀))

Proof of Theorem ressply1mon1p
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 ressply.1 . . . . . 6 𝑆 = (Poly1𝑅)
2 eqid 2731 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2731 . . . . . 6 (0g𝑆) = (0g𝑆)
4 eqid 2731 . . . . . 6 (deg1𝑅) = (deg1𝑅)
5 ressply1mon1p.m . . . . . 6 𝑀 = (Monic1p𝑅)
6 eqid 2731 . . . . . 6 (1r𝑅) = (1r𝑅)
71, 2, 3, 4, 5, 6ismon1p 26081 . . . . 5 (𝑝𝑀 ↔ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅)))
87anbi2i 623 . . . 4 ((𝑝𝐵𝑝𝑀) ↔ (𝑝𝐵 ∧ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅))))
9 ressply.2 . . . . . . . . . . 11 𝐻 = (𝑅s 𝑇)
10 ressply.3 . . . . . . . . . . 11 𝑈 = (Poly1𝐻)
11 ressply.4 . . . . . . . . . . 11 𝐵 = (Base‘𝑈)
12 ressply.5 . . . . . . . . . . 11 (𝜑𝑇 ∈ (SubRing‘𝑅))
13 eqid 2731 . . . . . . . . . . 11 (𝑆s 𝐵) = (𝑆s 𝐵)
141, 9, 10, 11, 12, 13ressply1bas 22147 . . . . . . . . . 10 (𝜑𝐵 = (Base‘(𝑆s 𝐵)))
1513, 2ressbasss 17156 . . . . . . . . . 10 (Base‘(𝑆s 𝐵)) ⊆ (Base‘𝑆)
1614, 15eqsstrdi 3974 . . . . . . . . 9 (𝜑𝐵 ⊆ (Base‘𝑆))
1716sseld 3928 . . . . . . . 8 (𝜑 → (𝑝𝐵𝑝 ∈ (Base‘𝑆)))
1817pm4.71d 561 . . . . . . 7 (𝜑 → (𝑝𝐵 ↔ (𝑝𝐵𝑝 ∈ (Base‘𝑆))))
1918anbi1d 631 . . . . . 6 (𝜑 → ((𝑝𝐵 ∧ (𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅))) ↔ ((𝑝𝐵𝑝 ∈ (Base‘𝑆)) ∧ (𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅)))))
20 13an22anass 32450 . . . . . 6 ((𝑝𝐵 ∧ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅))) ↔ ((𝑝𝐵𝑝 ∈ (Base‘𝑆)) ∧ (𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅))))
2119, 20bitr4di 289 . . . . 5 (𝜑 → ((𝑝𝐵 ∧ (𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅))) ↔ (𝑝𝐵 ∧ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅)))))
221, 9, 10, 11, 12, 3ressply10g 33537 . . . . . . . . . 10 (𝜑 → (0g𝑆) = (0g𝑈))
2322neeq2d 2988 . . . . . . . . 9 (𝜑 → (𝑝 ≠ (0g𝑆) ↔ 𝑝 ≠ (0g𝑈)))
2423adantr 480 . . . . . . . 8 ((𝜑𝑝𝐵) → (𝑝 ≠ (0g𝑆) ↔ 𝑝 ≠ (0g𝑈)))
25 simpr 484 . . . . . . . . . . 11 ((𝜑𝑝𝐵) → 𝑝𝐵)
2612adantr 480 . . . . . . . . . . 11 ((𝜑𝑝𝐵) → 𝑇 ∈ (SubRing‘𝑅))
279, 4, 10, 11, 25, 26ressdeg1 33536 . . . . . . . . . 10 ((𝜑𝑝𝐵) → ((deg1𝑅)‘𝑝) = ((deg1𝐻)‘𝑝))
2827fveq2d 6832 . . . . . . . . 9 ((𝜑𝑝𝐵) → ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = ((coe1𝑝)‘((deg1𝐻)‘𝑝)))
299, 6subrg1 20503 . . . . . . . . . . 11 (𝑇 ∈ (SubRing‘𝑅) → (1r𝑅) = (1r𝐻))
3012, 29syl 17 . . . . . . . . . 10 (𝜑 → (1r𝑅) = (1r𝐻))
3130adantr 480 . . . . . . . . 9 ((𝜑𝑝𝐵) → (1r𝑅) = (1r𝐻))
3228, 31eqeq12d 2747 . . . . . . . 8 ((𝜑𝑝𝐵) → (((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅) ↔ ((coe1𝑝)‘((deg1𝐻)‘𝑝)) = (1r𝐻)))
3324, 32anbi12d 632 . . . . . . 7 ((𝜑𝑝𝐵) → ((𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅)) ↔ (𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘((deg1𝐻)‘𝑝)) = (1r𝐻))))
3433pm5.32da 579 . . . . . 6 (𝜑 → ((𝑝𝐵 ∧ (𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅))) ↔ (𝑝𝐵 ∧ (𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘((deg1𝐻)‘𝑝)) = (1r𝐻)))))
35 3anass 1094 . . . . . 6 ((𝑝𝐵𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘((deg1𝐻)‘𝑝)) = (1r𝐻)) ↔ (𝑝𝐵 ∧ (𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘((deg1𝐻)‘𝑝)) = (1r𝐻))))
3634, 35bitr4di 289 . . . . 5 (𝜑 → ((𝑝𝐵 ∧ (𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅))) ↔ (𝑝𝐵𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘((deg1𝐻)‘𝑝)) = (1r𝐻))))
3721, 36bitr3d 281 . . . 4 (𝜑 → ((𝑝𝐵 ∧ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅))) ↔ (𝑝𝐵𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘((deg1𝐻)‘𝑝)) = (1r𝐻))))
388, 37bitr2id 284 . . 3 (𝜑 → ((𝑝𝐵𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘((deg1𝐻)‘𝑝)) = (1r𝐻)) ↔ (𝑝𝐵𝑝𝑀)))
39 eqid 2731 . . . 4 (0g𝑈) = (0g𝑈)
40 eqid 2731 . . . 4 (deg1𝐻) = (deg1𝐻)
41 ressply1mon1p.n . . . 4 𝑁 = (Monic1p𝐻)
42 eqid 2731 . . . 4 (1r𝐻) = (1r𝐻)
4310, 11, 39, 40, 41, 42ismon1p 26081 . . 3 (𝑝𝑁 ↔ (𝑝𝐵𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘((deg1𝐻)‘𝑝)) = (1r𝐻)))
44 elin 3913 . . 3 (𝑝 ∈ (𝐵𝑀) ↔ (𝑝𝐵𝑝𝑀))
4538, 43, 443bitr4g 314 . 2 (𝜑 → (𝑝𝑁𝑝 ∈ (𝐵𝑀)))
4645eqrdv 2729 1 (𝜑𝑁 = (𝐵𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  cin 3896  cfv 6487  (class class class)co 7352  Basecbs 17126  s cress 17147  0gc0g 17349  1rcur 20105  SubRingcsubrg 20490  Poly1cpl1 22095  coe1cco1 22096  deg1cdg1 25992  Monic1pcmn1 26064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089  ax-addf 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-isom 6496  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-ofr 7617  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9252  df-sup 9332  df-oi 9402  df-card 9838  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-nn 12132  df-2 12194  df-3 12195  df-4 12196  df-5 12197  df-6 12198  df-7 12199  df-8 12200  df-9 12201  df-n0 12388  df-z 12475  df-dec 12595  df-uz 12739  df-fz 13414  df-fzo 13561  df-seq 13915  df-hash 14244  df-struct 17064  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17127  df-ress 17148  df-plusg 17180  df-mulr 17181  df-starv 17182  df-sca 17183  df-vsca 17184  df-ip 17185  df-tset 17186  df-ple 17187  df-ds 17189  df-unif 17190  df-hom 17191  df-cco 17192  df-0g 17351  df-gsum 17352  df-prds 17357  df-pws 17359  df-mre 17494  df-mrc 17495  df-acs 17497  df-mgm 18554  df-sgrp 18633  df-mnd 18649  df-mhm 18697  df-submnd 18698  df-grp 18855  df-minusg 18856  df-sbg 18857  df-mulg 18987  df-subg 19042  df-ghm 19131  df-cntz 19235  df-cmn 19700  df-abl 19701  df-mgp 20065  df-rng 20077  df-ur 20106  df-ring 20159  df-cring 20160  df-subrng 20467  df-subrg 20491  df-lmod 20801  df-lss 20871  df-cnfld 21298  df-ascl 21798  df-psr 21852  df-mpl 21854  df-opsr 21856  df-psr1 22098  df-ply1 22100  df-coe1 22101  df-mdeg 25993  df-deg1 25994  df-mon1 26069
This theorem is referenced by:  irngss  33707
  Copyright terms: Public domain W3C validator