Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressply1mon1p Structured version   Visualization version   GIF version

Theorem ressply1mon1p 33586
Description: The monic polynomials of a restricted polynomial algebra. (Contributed by Thierry Arnoux, 21-Jan-2025.)
Hypotheses
Ref Expression
ressply.1 𝑆 = (Poly1𝑅)
ressply.2 𝐻 = (𝑅s 𝑇)
ressply.3 𝑈 = (Poly1𝐻)
ressply.4 𝐵 = (Base‘𝑈)
ressply.5 (𝜑𝑇 ∈ (SubRing‘𝑅))
ressply1mon1p.m 𝑀 = (Monic1p𝑅)
ressply1mon1p.n 𝑁 = (Monic1p𝐻)
Assertion
Ref Expression
ressply1mon1p (𝜑𝑁 = (𝐵𝑀))

Proof of Theorem ressply1mon1p
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 ressply.1 . . . . . 6 𝑆 = (Poly1𝑅)
2 eqid 2736 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2736 . . . . . 6 (0g𝑆) = (0g𝑆)
4 eqid 2736 . . . . . 6 (deg1𝑅) = (deg1𝑅)
5 ressply1mon1p.m . . . . . 6 𝑀 = (Monic1p𝑅)
6 eqid 2736 . . . . . 6 (1r𝑅) = (1r𝑅)
71, 2, 3, 4, 5, 6ismon1p 26105 . . . . 5 (𝑝𝑀 ↔ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅)))
87anbi2i 623 . . . 4 ((𝑝𝐵𝑝𝑀) ↔ (𝑝𝐵 ∧ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅))))
9 ressply.2 . . . . . . . . . . 11 𝐻 = (𝑅s 𝑇)
10 ressply.3 . . . . . . . . . . 11 𝑈 = (Poly1𝐻)
11 ressply.4 . . . . . . . . . . 11 𝐵 = (Base‘𝑈)
12 ressply.5 . . . . . . . . . . 11 (𝜑𝑇 ∈ (SubRing‘𝑅))
13 eqid 2736 . . . . . . . . . . 11 (𝑆s 𝐵) = (𝑆s 𝐵)
141, 9, 10, 11, 12, 13ressply1bas 22169 . . . . . . . . . 10 (𝜑𝐵 = (Base‘(𝑆s 𝐵)))
1513, 2ressbasss 17265 . . . . . . . . . 10 (Base‘(𝑆s 𝐵)) ⊆ (Base‘𝑆)
1614, 15eqsstrdi 4008 . . . . . . . . 9 (𝜑𝐵 ⊆ (Base‘𝑆))
1716sseld 3962 . . . . . . . 8 (𝜑 → (𝑝𝐵𝑝 ∈ (Base‘𝑆)))
1817pm4.71d 561 . . . . . . 7 (𝜑 → (𝑝𝐵 ↔ (𝑝𝐵𝑝 ∈ (Base‘𝑆))))
1918anbi1d 631 . . . . . 6 (𝜑 → ((𝑝𝐵 ∧ (𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅))) ↔ ((𝑝𝐵𝑝 ∈ (Base‘𝑆)) ∧ (𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅)))))
20 13an22anass 32450 . . . . . 6 ((𝑝𝐵 ∧ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅))) ↔ ((𝑝𝐵𝑝 ∈ (Base‘𝑆)) ∧ (𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅))))
2119, 20bitr4di 289 . . . . 5 (𝜑 → ((𝑝𝐵 ∧ (𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅))) ↔ (𝑝𝐵 ∧ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅)))))
221, 9, 10, 11, 12, 3ressply10g 33585 . . . . . . . . . 10 (𝜑 → (0g𝑆) = (0g𝑈))
2322neeq2d 2993 . . . . . . . . 9 (𝜑 → (𝑝 ≠ (0g𝑆) ↔ 𝑝 ≠ (0g𝑈)))
2423adantr 480 . . . . . . . 8 ((𝜑𝑝𝐵) → (𝑝 ≠ (0g𝑆) ↔ 𝑝 ≠ (0g𝑈)))
25 simpr 484 . . . . . . . . . . 11 ((𝜑𝑝𝐵) → 𝑝𝐵)
2612adantr 480 . . . . . . . . . . 11 ((𝜑𝑝𝐵) → 𝑇 ∈ (SubRing‘𝑅))
279, 4, 10, 11, 25, 26ressdeg1 33584 . . . . . . . . . 10 ((𝜑𝑝𝐵) → ((deg1𝑅)‘𝑝) = ((deg1𝐻)‘𝑝))
2827fveq2d 6885 . . . . . . . . 9 ((𝜑𝑝𝐵) → ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = ((coe1𝑝)‘((deg1𝐻)‘𝑝)))
299, 6subrg1 20547 . . . . . . . . . . 11 (𝑇 ∈ (SubRing‘𝑅) → (1r𝑅) = (1r𝐻))
3012, 29syl 17 . . . . . . . . . 10 (𝜑 → (1r𝑅) = (1r𝐻))
3130adantr 480 . . . . . . . . 9 ((𝜑𝑝𝐵) → (1r𝑅) = (1r𝐻))
3228, 31eqeq12d 2752 . . . . . . . 8 ((𝜑𝑝𝐵) → (((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅) ↔ ((coe1𝑝)‘((deg1𝐻)‘𝑝)) = (1r𝐻)))
3324, 32anbi12d 632 . . . . . . 7 ((𝜑𝑝𝐵) → ((𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅)) ↔ (𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘((deg1𝐻)‘𝑝)) = (1r𝐻))))
3433pm5.32da 579 . . . . . 6 (𝜑 → ((𝑝𝐵 ∧ (𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅))) ↔ (𝑝𝐵 ∧ (𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘((deg1𝐻)‘𝑝)) = (1r𝐻)))))
35 3anass 1094 . . . . . 6 ((𝑝𝐵𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘((deg1𝐻)‘𝑝)) = (1r𝐻)) ↔ (𝑝𝐵 ∧ (𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘((deg1𝐻)‘𝑝)) = (1r𝐻))))
3634, 35bitr4di 289 . . . . 5 (𝜑 → ((𝑝𝐵 ∧ (𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅))) ↔ (𝑝𝐵𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘((deg1𝐻)‘𝑝)) = (1r𝐻))))
3721, 36bitr3d 281 . . . 4 (𝜑 → ((𝑝𝐵 ∧ (𝑝 ∈ (Base‘𝑆) ∧ 𝑝 ≠ (0g𝑆) ∧ ((coe1𝑝)‘((deg1𝑅)‘𝑝)) = (1r𝑅))) ↔ (𝑝𝐵𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘((deg1𝐻)‘𝑝)) = (1r𝐻))))
388, 37bitr2id 284 . . 3 (𝜑 → ((𝑝𝐵𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘((deg1𝐻)‘𝑝)) = (1r𝐻)) ↔ (𝑝𝐵𝑝𝑀)))
39 eqid 2736 . . . 4 (0g𝑈) = (0g𝑈)
40 eqid 2736 . . . 4 (deg1𝐻) = (deg1𝐻)
41 ressply1mon1p.n . . . 4 𝑁 = (Monic1p𝐻)
42 eqid 2736 . . . 4 (1r𝐻) = (1r𝐻)
4310, 11, 39, 40, 41, 42ismon1p 26105 . . 3 (𝑝𝑁 ↔ (𝑝𝐵𝑝 ≠ (0g𝑈) ∧ ((coe1𝑝)‘((deg1𝐻)‘𝑝)) = (1r𝐻)))
44 elin 3947 . . 3 (𝑝 ∈ (𝐵𝑀) ↔ (𝑝𝐵𝑝𝑀))
4538, 43, 443bitr4g 314 . 2 (𝜑 → (𝑝𝑁𝑝 ∈ (𝐵𝑀)))
4645eqrdv 2734 1 (𝜑𝑁 = (𝐵𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  cin 3930  cfv 6536  (class class class)co 7410  Basecbs 17233  s cress 17256  0gc0g 17458  1rcur 20146  SubRingcsubrg 20534  Poly1cpl1 22117  coe1cco1 22118  deg1cdg1 26016  Monic1pcmn1 26088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-ofr 7677  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-0g 17460  df-gsum 17461  df-prds 17466  df-pws 17468  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-subrng 20511  df-subrg 20535  df-lmod 20824  df-lss 20894  df-cnfld 21321  df-ascl 21820  df-psr 21874  df-mpl 21876  df-opsr 21878  df-psr1 22120  df-ply1 22122  df-coe1 22123  df-mdeg 26017  df-deg1 26018  df-mon1 26093
This theorem is referenced by:  irngss  33733
  Copyright terms: Public domain W3C validator