MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nndiv Structured version   Visualization version   GIF version

Theorem nndiv 12002
Description: Two ways to express "𝐴 divides 𝐵 " for positive integers. (Contributed by NM, 3-Feb-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nndiv ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑥 ∈ ℕ (𝐴 · 𝑥) = 𝐵 ↔ (𝐵 / 𝐴) ∈ ℕ))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nndiv
StepHypRef Expression
1 risset 3195 . 2 ((𝐵 / 𝐴) ∈ ℕ ↔ ∃𝑥 ∈ ℕ 𝑥 = (𝐵 / 𝐴))
2 eqcom 2746 . . . 4 (𝑥 = (𝐵 / 𝐴) ↔ (𝐵 / 𝐴) = 𝑥)
3 nncn 11964 . . . . . 6 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
43ad2antlr 723 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ ℕ) → 𝐵 ∈ ℂ)
5 nncn 11964 . . . . . 6 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
65ad2antrr 722 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ ℕ) → 𝐴 ∈ ℂ)
7 nncn 11964 . . . . . 6 (𝑥 ∈ ℕ → 𝑥 ∈ ℂ)
87adantl 481 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℂ)
9 nnne0 11990 . . . . . 6 (𝐴 ∈ ℕ → 𝐴 ≠ 0)
109ad2antrr 722 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ ℕ) → 𝐴 ≠ 0)
114, 6, 8, 10divmuld 11756 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ ℕ) → ((𝐵 / 𝐴) = 𝑥 ↔ (𝐴 · 𝑥) = 𝐵))
122, 11syl5bb 282 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ ℕ) → (𝑥 = (𝐵 / 𝐴) ↔ (𝐴 · 𝑥) = 𝐵))
1312rexbidva 3226 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑥 ∈ ℕ 𝑥 = (𝐵 / 𝐴) ↔ ∃𝑥 ∈ ℕ (𝐴 · 𝑥) = 𝐵))
141, 13bitr2id 283 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑥 ∈ ℕ (𝐴 · 𝑥) = 𝐵 ↔ (𝐵 / 𝐴) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  wne 2944  wrex 3066  (class class class)co 7268  cc 10853  0cc0 10855   · cmul 10860   / cdiv 11615  cn 11956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957
This theorem is referenced by:  nndivides  15954
  Copyright terms: Public domain W3C validator