MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nndiv Structured version   Visualization version   GIF version

Theorem nndiv 12177
Description: Two ways to express "𝐴 divides 𝐵 " for positive integers. (Contributed by NM, 3-Feb-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nndiv ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑥 ∈ ℕ (𝐴 · 𝑥) = 𝐵 ↔ (𝐵 / 𝐴) ∈ ℕ))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nndiv
StepHypRef Expression
1 risset 3207 . 2 ((𝐵 / 𝐴) ∈ ℕ ↔ ∃𝑥 ∈ ℕ 𝑥 = (𝐵 / 𝐴))
2 eqcom 2738 . . . 4 (𝑥 = (𝐵 / 𝐴) ↔ (𝐵 / 𝐴) = 𝑥)
3 nncn 12139 . . . . . 6 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
43ad2antlr 727 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ ℕ) → 𝐵 ∈ ℂ)
5 nncn 12139 . . . . . 6 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
65ad2antrr 726 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ ℕ) → 𝐴 ∈ ℂ)
7 nncn 12139 . . . . . 6 (𝑥 ∈ ℕ → 𝑥 ∈ ℂ)
87adantl 481 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℂ)
9 nnne0 12165 . . . . . 6 (𝐴 ∈ ℕ → 𝐴 ≠ 0)
109ad2antrr 726 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ ℕ) → 𝐴 ≠ 0)
114, 6, 8, 10divmuld 11925 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ ℕ) → ((𝐵 / 𝐴) = 𝑥 ↔ (𝐴 · 𝑥) = 𝐵))
122, 11bitrid 283 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ ℕ) → (𝑥 = (𝐵 / 𝐴) ↔ (𝐴 · 𝑥) = 𝐵))
1312rexbidva 3154 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑥 ∈ ℕ 𝑥 = (𝐵 / 𝐴) ↔ ∃𝑥 ∈ ℕ (𝐴 · 𝑥) = 𝐵))
141, 13bitr2id 284 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑥 ∈ ℕ (𝐴 · 𝑥) = 𝐵 ↔ (𝐵 / 𝐴) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wrex 3056  (class class class)co 7352  cc 11010  0cc0 11012   · cmul 11017   / cdiv 11780  cn 12131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-div 11781  df-nn 12132
This theorem is referenced by:  nndivides  16179
  Copyright terms: Public domain W3C validator