Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brdomain Structured version   Visualization version   GIF version

Theorem brdomain 35562
Description: Binary relation form of the domain function. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brdomain.1 𝐴 ∈ V
brdomain.2 𝐵 ∈ V
Assertion
Ref Expression
brdomain (𝐴Domain𝐵𝐵 = dom 𝐴)

Proof of Theorem brdomain
StepHypRef Expression
1 brdomain.1 . . 3 𝐴 ∈ V
2 brdomain.2 . . 3 𝐵 ∈ V
31, 2brimage 35555 . 2 (𝐴Image(1st ↾ (V × V))𝐵𝐵 = ((1st ↾ (V × V)) “ 𝐴))
4 df-domain 35496 . . 3 Domain = Image(1st ↾ (V × V))
54breqi 5158 . 2 (𝐴Domain𝐵𝐴Image(1st ↾ (V × V))𝐵)
6 dfdm5 35401 . . 3 dom 𝐴 = ((1st ↾ (V × V)) “ 𝐴)
76eqeq2i 2741 . 2 (𝐵 = dom 𝐴𝐵 = ((1st ↾ (V × V)) “ 𝐴))
83, 5, 73bitr4i 302 1 (𝐴Domain𝐵𝐵 = dom 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1533  wcel 2098  Vcvv 3473   class class class wbr 5152   × cxp 5680  dom cdm 5682  cres 5684  cima 5685  1st c1st 7997  Imagecimage 35469  Domaincdomain 35472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-symdif 4245  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-eprel 5586  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-fo 6559  df-fv 6561  df-1st 7999  df-2nd 8000  df-txp 35483  df-image 35493  df-domain 35496
This theorem is referenced by:  brdomaing  35564  dfrecs2  35579  dfrdg4  35580
  Copyright terms: Public domain W3C validator