| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brdomain | Structured version Visualization version GIF version | ||
| Description: Binary relation form of the domain function. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| brdomain.1 | ⊢ 𝐴 ∈ V |
| brdomain.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brdomain | ⊢ (𝐴Domain𝐵 ↔ 𝐵 = dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomain.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | brdomain.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | brimage 35914 | . 2 ⊢ (𝐴Image(1st ↾ (V × V))𝐵 ↔ 𝐵 = ((1st ↾ (V × V)) “ 𝐴)) |
| 4 | df-domain 35855 | . . 3 ⊢ Domain = Image(1st ↾ (V × V)) | |
| 5 | 4 | breqi 5113 | . 2 ⊢ (𝐴Domain𝐵 ↔ 𝐴Image(1st ↾ (V × V))𝐵) |
| 6 | dfdm5 35760 | . . 3 ⊢ dom 𝐴 = ((1st ↾ (V × V)) “ 𝐴) | |
| 7 | 6 | eqeq2i 2742 | . 2 ⊢ (𝐵 = dom 𝐴 ↔ 𝐵 = ((1st ↾ (V × V)) “ 𝐴)) |
| 8 | 3, 5, 7 | 3bitr4i 303 | 1 ⊢ (𝐴Domain𝐵 ↔ 𝐵 = dom 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3447 class class class wbr 5107 × cxp 5636 dom cdm 5638 ↾ cres 5640 “ cima 5641 1st c1st 7966 Imagecimage 35828 Domaincdomain 35831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-symdif 4216 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-eprel 5538 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fo 6517 df-fv 6519 df-1st 7968 df-2nd 7969 df-txp 35842 df-image 35852 df-domain 35855 |
| This theorem is referenced by: brdomaing 35923 dfrecs2 35938 dfrdg4 35939 |
| Copyright terms: Public domain | W3C validator |