| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brdomain | Structured version Visualization version GIF version | ||
| Description: Binary relation form of the domain function. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| brdomain.1 | ⊢ 𝐴 ∈ V |
| brdomain.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brdomain | ⊢ (𝐴Domain𝐵 ↔ 𝐵 = dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomain.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | brdomain.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | brimage 35968 | . 2 ⊢ (𝐴Image(1st ↾ (V × V))𝐵 ↔ 𝐵 = ((1st ↾ (V × V)) “ 𝐴)) |
| 4 | df-domain 35909 | . . 3 ⊢ Domain = Image(1st ↾ (V × V)) | |
| 5 | 4 | breqi 5095 | . 2 ⊢ (𝐴Domain𝐵 ↔ 𝐴Image(1st ↾ (V × V))𝐵) |
| 6 | dfdm5 35817 | . . 3 ⊢ dom 𝐴 = ((1st ↾ (V × V)) “ 𝐴) | |
| 7 | 6 | eqeq2i 2744 | . 2 ⊢ (𝐵 = dom 𝐴 ↔ 𝐵 = ((1st ↾ (V × V)) “ 𝐴)) |
| 8 | 3, 5, 7 | 3bitr4i 303 | 1 ⊢ (𝐴Domain𝐵 ↔ 𝐵 = dom 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 Vcvv 3436 class class class wbr 5089 × cxp 5612 dom cdm 5614 ↾ cres 5616 “ cima 5617 1st c1st 7919 Imagecimage 35882 Domaincdomain 35885 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-symdif 4200 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-eprel 5514 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fo 6487 df-fv 6489 df-1st 7921 df-2nd 7922 df-txp 35896 df-image 35906 df-domain 35909 |
| This theorem is referenced by: brdomaing 35977 dfrecs2 35994 dfrdg4 35995 |
| Copyright terms: Public domain | W3C validator |