Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brdomain | Structured version Visualization version GIF version |
Description: Binary relation form of the domain function. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
brdomain.1 | ⊢ 𝐴 ∈ V |
brdomain.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brdomain | ⊢ (𝐴Domain𝐵 ↔ 𝐵 = dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brdomain.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | brdomain.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | brimage 34155 | . 2 ⊢ (𝐴Image(1st ↾ (V × V))𝐵 ↔ 𝐵 = ((1st ↾ (V × V)) “ 𝐴)) |
4 | df-domain 34096 | . . 3 ⊢ Domain = Image(1st ↾ (V × V)) | |
5 | 4 | breqi 5076 | . 2 ⊢ (𝐴Domain𝐵 ↔ 𝐴Image(1st ↾ (V × V))𝐵) |
6 | dfdm5 33653 | . . 3 ⊢ dom 𝐴 = ((1st ↾ (V × V)) “ 𝐴) | |
7 | 6 | eqeq2i 2751 | . 2 ⊢ (𝐵 = dom 𝐴 ↔ 𝐵 = ((1st ↾ (V × V)) “ 𝐴)) |
8 | 3, 5, 7 | 3bitr4i 302 | 1 ⊢ (𝐴Domain𝐵 ↔ 𝐵 = dom 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 × cxp 5578 dom cdm 5580 ↾ cres 5582 “ cima 5583 1st c1st 7802 Imagecimage 34069 Domaincdomain 34072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-symdif 4173 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-eprel 5486 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fo 6424 df-fv 6426 df-1st 7804 df-2nd 7805 df-txp 34083 df-image 34093 df-domain 34096 |
This theorem is referenced by: brdomaing 34164 dfrecs2 34179 dfrdg4 34180 |
Copyright terms: Public domain | W3C validator |