Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brdomain Structured version   Visualization version   GIF version

Theorem brdomain 35915
Description: Binary relation form of the domain function. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brdomain.1 𝐴 ∈ V
brdomain.2 𝐵 ∈ V
Assertion
Ref Expression
brdomain (𝐴Domain𝐵𝐵 = dom 𝐴)

Proof of Theorem brdomain
StepHypRef Expression
1 brdomain.1 . . 3 𝐴 ∈ V
2 brdomain.2 . . 3 𝐵 ∈ V
31, 2brimage 35908 . 2 (𝐴Image(1st ↾ (V × V))𝐵𝐵 = ((1st ↾ (V × V)) “ 𝐴))
4 df-domain 35849 . . 3 Domain = Image(1st ↾ (V × V))
54breqi 5154 . 2 (𝐴Domain𝐵𝐴Image(1st ↾ (V × V))𝐵)
6 dfdm5 35754 . . 3 dom 𝐴 = ((1st ↾ (V × V)) “ 𝐴)
76eqeq2i 2748 . 2 (𝐵 = dom 𝐴𝐵 = ((1st ↾ (V × V)) “ 𝐴))
83, 5, 73bitr4i 303 1 (𝐴Domain𝐵𝐵 = dom 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wcel 2106  Vcvv 3478   class class class wbr 5148   × cxp 5687  dom cdm 5689  cres 5691  cima 5692  1st c1st 8011  Imagecimage 35822  Domaincdomain 35825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-symdif 4259  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-eprel 5589  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fo 6569  df-fv 6571  df-1st 8013  df-2nd 8014  df-txp 35836  df-image 35846  df-domain 35849
This theorem is referenced by:  brdomaing  35917  dfrecs2  35932  dfrdg4  35933
  Copyright terms: Public domain W3C validator