![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brdomain | Structured version Visualization version GIF version |
Description: Binary relation form of the domain function. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
brdomain.1 | ⊢ 𝐴 ∈ V |
brdomain.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brdomain | ⊢ (𝐴Domain𝐵 ↔ 𝐵 = dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brdomain.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | brdomain.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | brimage 34893 | . 2 ⊢ (𝐴Image(1st ↾ (V × V))𝐵 ↔ 𝐵 = ((1st ↾ (V × V)) “ 𝐴)) |
4 | df-domain 34834 | . . 3 ⊢ Domain = Image(1st ↾ (V × V)) | |
5 | 4 | breqi 5154 | . 2 ⊢ (𝐴Domain𝐵 ↔ 𝐴Image(1st ↾ (V × V))𝐵) |
6 | dfdm5 34739 | . . 3 ⊢ dom 𝐴 = ((1st ↾ (V × V)) “ 𝐴) | |
7 | 6 | eqeq2i 2745 | . 2 ⊢ (𝐵 = dom 𝐴 ↔ 𝐵 = ((1st ↾ (V × V)) “ 𝐴)) |
8 | 3, 5, 7 | 3bitr4i 302 | 1 ⊢ (𝐴Domain𝐵 ↔ 𝐵 = dom 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∈ wcel 2106 Vcvv 3474 class class class wbr 5148 × cxp 5674 dom cdm 5676 ↾ cres 5678 “ cima 5679 1st c1st 7972 Imagecimage 34807 Domaincdomain 34810 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-symdif 4242 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-eprel 5580 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fo 6549 df-fv 6551 df-1st 7974 df-2nd 7975 df-txp 34821 df-image 34831 df-domain 34834 |
This theorem is referenced by: brdomaing 34902 dfrecs2 34917 dfrdg4 34918 |
Copyright terms: Public domain | W3C validator |