| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brrange | Structured version Visualization version GIF version | ||
| Description: Binary relation form of the range function. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| brdomain.1 | ⊢ 𝐴 ∈ V |
| brdomain.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brrange | ⊢ (𝐴Range𝐵 ↔ 𝐵 = ran 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomain.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | brdomain.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | brimage 35899 | . 2 ⊢ (𝐴Image(2nd ↾ (V × V))𝐵 ↔ 𝐵 = ((2nd ↾ (V × V)) “ 𝐴)) |
| 4 | df-range 35841 | . . 3 ⊢ Range = Image(2nd ↾ (V × V)) | |
| 5 | 4 | breqi 5101 | . 2 ⊢ (𝐴Range𝐵 ↔ 𝐴Image(2nd ↾ (V × V))𝐵) |
| 6 | dfrn5 35746 | . . 3 ⊢ ran 𝐴 = ((2nd ↾ (V × V)) “ 𝐴) | |
| 7 | 6 | eqeq2i 2742 | . 2 ⊢ (𝐵 = ran 𝐴 ↔ 𝐵 = ((2nd ↾ (V × V)) “ 𝐴)) |
| 8 | 3, 5, 7 | 3bitr4i 303 | 1 ⊢ (𝐴Range𝐵 ↔ 𝐵 = ran 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3438 class class class wbr 5095 × cxp 5621 ran crn 5624 ↾ cres 5625 “ cima 5626 2nd c2nd 7930 Imagecimage 35813 Rangecrange 35817 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-symdif 4206 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-eprel 5523 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fo 6492 df-fv 6494 df-1st 7931 df-2nd 7932 df-txp 35827 df-image 35837 df-range 35841 |
| This theorem is referenced by: brrangeg 35909 brrestrict 35922 |
| Copyright terms: Public domain | W3C validator |