Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brrange Structured version   Visualization version   GIF version

Theorem brrange 35929
Description: Binary relation form of the range function. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brdomain.1 𝐴 ∈ V
brdomain.2 𝐵 ∈ V
Assertion
Ref Expression
brrange (𝐴Range𝐵𝐵 = ran 𝐴)

Proof of Theorem brrange
StepHypRef Expression
1 brdomain.1 . . 3 𝐴 ∈ V
2 brdomain.2 . . 3 𝐵 ∈ V
31, 2brimage 35921 . 2 (𝐴Image(2nd ↾ (V × V))𝐵𝐵 = ((2nd ↾ (V × V)) “ 𝐴))
4 df-range 35863 . . 3 Range = Image(2nd ↾ (V × V))
54breqi 5116 . 2 (𝐴Range𝐵𝐴Image(2nd ↾ (V × V))𝐵)
6 dfrn5 35768 . . 3 ran 𝐴 = ((2nd ↾ (V × V)) “ 𝐴)
76eqeq2i 2743 . 2 (𝐵 = ran 𝐴𝐵 = ((2nd ↾ (V × V)) “ 𝐴))
83, 5, 73bitr4i 303 1 (𝐴Range𝐵𝐵 = ran 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  Vcvv 3450   class class class wbr 5110   × cxp 5639  ran crn 5642  cres 5643  cima 5644  2nd c2nd 7970  Imagecimage 35835  Rangecrange 35839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-symdif 4219  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-eprel 5541  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fo 6520  df-fv 6522  df-1st 7971  df-2nd 7972  df-txp 35849  df-image 35859  df-range 35863
This theorem is referenced by:  brrangeg  35931  brrestrict  35944
  Copyright terms: Public domain W3C validator