![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brrange | Structured version Visualization version GIF version |
Description: Binary relation form of the range function. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
brdomain.1 | ⊢ 𝐴 ∈ V |
brdomain.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brrange | ⊢ (𝐴Range𝐵 ↔ 𝐵 = ran 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brdomain.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | brdomain.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | brimage 35650 | . 2 ⊢ (𝐴Image(2nd ↾ (V × V))𝐵 ↔ 𝐵 = ((2nd ↾ (V × V)) “ 𝐴)) |
4 | df-range 35592 | . . 3 ⊢ Range = Image(2nd ↾ (V × V)) | |
5 | 4 | breqi 5155 | . 2 ⊢ (𝐴Range𝐵 ↔ 𝐴Image(2nd ↾ (V × V))𝐵) |
6 | dfrn5 35497 | . . 3 ⊢ ran 𝐴 = ((2nd ↾ (V × V)) “ 𝐴) | |
7 | 6 | eqeq2i 2738 | . 2 ⊢ (𝐵 = ran 𝐴 ↔ 𝐵 = ((2nd ↾ (V × V)) “ 𝐴)) |
8 | 3, 5, 7 | 3bitr4i 302 | 1 ⊢ (𝐴Range𝐵 ↔ 𝐵 = ran 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1533 ∈ wcel 2098 Vcvv 3461 class class class wbr 5149 × cxp 5676 ran crn 5679 ↾ cres 5680 “ cima 5681 2nd c2nd 7993 Imagecimage 35564 Rangecrange 35568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-symdif 4241 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-eprel 5582 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-fo 6555 df-fv 6557 df-1st 7994 df-2nd 7995 df-txp 35578 df-image 35588 df-range 35592 |
This theorem is referenced by: brrangeg 35660 brrestrict 35673 |
Copyright terms: Public domain | W3C validator |