Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brrange Structured version   Visualization version   GIF version

Theorem brrange 35967
Description: Binary relation form of the range function. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brdomain.1 𝐴 ∈ V
brdomain.2 𝐵 ∈ V
Assertion
Ref Expression
brrange (𝐴Range𝐵𝐵 = ran 𝐴)

Proof of Theorem brrange
StepHypRef Expression
1 brdomain.1 . . 3 𝐴 ∈ V
2 brdomain.2 . . 3 𝐵 ∈ V
31, 2brimage 35959 . 2 (𝐴Image(2nd ↾ (V × V))𝐵𝐵 = ((2nd ↾ (V × V)) “ 𝐴))
4 df-range 35901 . . 3 Range = Image(2nd ↾ (V × V))
54breqi 5097 . 2 (𝐴Range𝐵𝐴Image(2nd ↾ (V × V))𝐵)
6 dfrn5 35806 . . 3 ran 𝐴 = ((2nd ↾ (V × V)) “ 𝐴)
76eqeq2i 2744 . 2 (𝐵 = ran 𝐴𝐵 = ((2nd ↾ (V × V)) “ 𝐴))
83, 5, 73bitr4i 303 1 (𝐴Range𝐵𝐵 = ran 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2111  Vcvv 3436   class class class wbr 5091   × cxp 5614  ran crn 5617  cres 5618  cima 5619  2nd c2nd 7920  Imagecimage 35873  Rangecrange 35877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-symdif 4203  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-eprel 5516  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-1st 7921  df-2nd 7922  df-txp 35887  df-image 35897  df-range 35901
This theorem is referenced by:  brrangeg  35969  brrestrict  35982
  Copyright terms: Public domain W3C validator