| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brrange | Structured version Visualization version GIF version | ||
| Description: Binary relation form of the range function. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| brdomain.1 | ⊢ 𝐴 ∈ V |
| brdomain.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brrange | ⊢ (𝐴Range𝐵 ↔ 𝐵 = ran 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomain.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | brdomain.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | brimage 35944 | . 2 ⊢ (𝐴Image(2nd ↾ (V × V))𝐵 ↔ 𝐵 = ((2nd ↾ (V × V)) “ 𝐴)) |
| 4 | df-range 35886 | . . 3 ⊢ Range = Image(2nd ↾ (V × V)) | |
| 5 | 4 | breqi 5125 | . 2 ⊢ (𝐴Range𝐵 ↔ 𝐴Image(2nd ↾ (V × V))𝐵) |
| 6 | dfrn5 35791 | . . 3 ⊢ ran 𝐴 = ((2nd ↾ (V × V)) “ 𝐴) | |
| 7 | 6 | eqeq2i 2748 | . 2 ⊢ (𝐵 = ran 𝐴 ↔ 𝐵 = ((2nd ↾ (V × V)) “ 𝐴)) |
| 8 | 3, 5, 7 | 3bitr4i 303 | 1 ⊢ (𝐴Range𝐵 ↔ 𝐵 = ran 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2108 Vcvv 3459 class class class wbr 5119 × cxp 5652 ran crn 5655 ↾ cres 5656 “ cima 5657 2nd c2nd 7987 Imagecimage 35858 Rangecrange 35862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-symdif 4228 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-eprel 5553 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fo 6537 df-fv 6539 df-1st 7988 df-2nd 7989 df-txp 35872 df-image 35882 df-range 35886 |
| This theorem is referenced by: brrangeg 35954 brrestrict 35967 |
| Copyright terms: Public domain | W3C validator |