![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brrange | Structured version Visualization version GIF version |
Description: Binary relation form of the range function. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
brdomain.1 | ⊢ 𝐴 ∈ V |
brdomain.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brrange | ⊢ (𝐴Range𝐵 ↔ 𝐵 = ran 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brdomain.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | brdomain.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | brimage 32546 | . 2 ⊢ (𝐴Image(2nd ↾ (V × V))𝐵 ↔ 𝐵 = ((2nd ↾ (V × V)) “ 𝐴)) |
4 | df-range 32488 | . . 3 ⊢ Range = Image(2nd ↾ (V × V)) | |
5 | 4 | breqi 4849 | . 2 ⊢ (𝐴Range𝐵 ↔ 𝐴Image(2nd ↾ (V × V))𝐵) |
6 | dfrn5 32189 | . . 3 ⊢ ran 𝐴 = ((2nd ↾ (V × V)) “ 𝐴) | |
7 | 6 | eqeq2i 2811 | . 2 ⊢ (𝐵 = ran 𝐴 ↔ 𝐵 = ((2nd ↾ (V × V)) “ 𝐴)) |
8 | 3, 5, 7 | 3bitr4i 295 | 1 ⊢ (𝐴Range𝐵 ↔ 𝐵 = ran 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1653 ∈ wcel 2157 Vcvv 3385 class class class wbr 4843 × cxp 5310 ran crn 5313 ↾ cres 5314 “ cima 5315 2nd c2nd 7400 Imagecimage 32460 Rangecrange 32464 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-symdif 4041 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-eprel 5225 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-fo 6107 df-fv 6109 df-1st 7401 df-2nd 7402 df-txp 32474 df-image 32484 df-range 32488 |
This theorem is referenced by: brrangeg 32556 brrestrict 32569 |
Copyright terms: Public domain | W3C validator |