MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leneg Structured version   Visualization version   GIF version

Theorem leneg 10946
Description: Negative of both sides of 'less than or equal to'. (Contributed by NM, 12-Sep-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
leneg ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ -𝐵 ≤ -𝐴))

Proof of Theorem leneg
StepHypRef Expression
1 0re 10443 . . 3 0 ∈ ℝ
2 lesub2 10938 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴𝐵 ↔ (0 − 𝐵) ≤ (0 − 𝐴)))
31, 2mp3an3 1429 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ (0 − 𝐵) ≤ (0 − 𝐴)))
4 df-neg 10675 . . 3 -𝐵 = (0 − 𝐵)
5 df-neg 10675 . . 3 -𝐴 = (0 − 𝐴)
64, 5breq12i 4939 . 2 (-𝐵 ≤ -𝐴 ↔ (0 − 𝐵) ≤ (0 − 𝐴))
73, 6syl6bbr 281 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ -𝐵 ≤ -𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  wcel 2050   class class class wbr 4930  (class class class)co 6978  cr 10336  0cc0 10337  cle 10477  cmin 10672  -cneg 10673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-op 4449  df-uni 4714  df-br 4931  df-opab 4993  df-mpt 5010  df-id 5313  df-po 5327  df-so 5328  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-er 8091  df-en 8309  df-dom 8310  df-sdom 8311  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675
This theorem is referenced by:  lenegcon1  10947  lenegcon2  10948  le0neg1  10951  le0neg2  10952  leord2  10973  lenegi  10988  lenegd  11022  infm3  11403  uzneg  12080  zmax  12162  rebtwnz  12164  iccneg  12677  aaliou3lem2  24638  logreclem  25044  atanlogsublem  25197  emcllem7  25284  ltflcei  34321  smfinflem  42523
  Copyright terms: Public domain W3C validator