Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2ap1caineq Structured version   Visualization version   GIF version

Theorem 2ap1caineq 40101
Description: Inequality for Theorem 6.6 for AKS. (Contributed by metakunt, 8-Jun-2024.)
Hypotheses
Ref Expression
2ap1caineq.1 (𝜑𝑁 ∈ ℤ)
2ap1caineq.2 (𝜑 → 2 ≤ 𝑁)
Assertion
Ref Expression
2ap1caineq (𝜑 → (2↑(𝑁 + 1)) < (((2 · 𝑁) + 1)C𝑁))

Proof of Theorem 2ap1caineq
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7282 . . . 4 (𝑗 = 2 → (𝑗 + 1) = (2 + 1))
21oveq2d 7291 . . 3 (𝑗 = 2 → (2↑(𝑗 + 1)) = (2↑(2 + 1)))
3 oveq2 7283 . . . . 5 (𝑗 = 2 → (2 · 𝑗) = (2 · 2))
43oveq1d 7290 . . . 4 (𝑗 = 2 → ((2 · 𝑗) + 1) = ((2 · 2) + 1))
5 id 22 . . . 4 (𝑗 = 2 → 𝑗 = 2)
64, 5oveq12d 7293 . . 3 (𝑗 = 2 → (((2 · 𝑗) + 1)C𝑗) = (((2 · 2) + 1)C2))
72, 6breq12d 5087 . 2 (𝑗 = 2 → ((2↑(𝑗 + 1)) < (((2 · 𝑗) + 1)C𝑗) ↔ (2↑(2 + 1)) < (((2 · 2) + 1)C2)))
8 oveq1 7282 . . . 4 (𝑗 = 𝑘 → (𝑗 + 1) = (𝑘 + 1))
98oveq2d 7291 . . 3 (𝑗 = 𝑘 → (2↑(𝑗 + 1)) = (2↑(𝑘 + 1)))
10 oveq2 7283 . . . . 5 (𝑗 = 𝑘 → (2 · 𝑗) = (2 · 𝑘))
1110oveq1d 7290 . . . 4 (𝑗 = 𝑘 → ((2 · 𝑗) + 1) = ((2 · 𝑘) + 1))
12 id 22 . . . 4 (𝑗 = 𝑘𝑗 = 𝑘)
1311, 12oveq12d 7293 . . 3 (𝑗 = 𝑘 → (((2 · 𝑗) + 1)C𝑗) = (((2 · 𝑘) + 1)C𝑘))
149, 13breq12d 5087 . 2 (𝑗 = 𝑘 → ((2↑(𝑗 + 1)) < (((2 · 𝑗) + 1)C𝑗) ↔ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘)))
15 oveq1 7282 . . . 4 (𝑗 = (𝑘 + 1) → (𝑗 + 1) = ((𝑘 + 1) + 1))
1615oveq2d 7291 . . 3 (𝑗 = (𝑘 + 1) → (2↑(𝑗 + 1)) = (2↑((𝑘 + 1) + 1)))
17 oveq2 7283 . . . . 5 (𝑗 = (𝑘 + 1) → (2 · 𝑗) = (2 · (𝑘 + 1)))
1817oveq1d 7290 . . . 4 (𝑗 = (𝑘 + 1) → ((2 · 𝑗) + 1) = ((2 · (𝑘 + 1)) + 1))
19 id 22 . . . 4 (𝑗 = (𝑘 + 1) → 𝑗 = (𝑘 + 1))
2018, 19oveq12d 7293 . . 3 (𝑗 = (𝑘 + 1) → (((2 · 𝑗) + 1)C𝑗) = (((2 · (𝑘 + 1)) + 1)C(𝑘 + 1)))
2116, 20breq12d 5087 . 2 (𝑗 = (𝑘 + 1) → ((2↑(𝑗 + 1)) < (((2 · 𝑗) + 1)C𝑗) ↔ (2↑((𝑘 + 1) + 1)) < (((2 · (𝑘 + 1)) + 1)C(𝑘 + 1))))
22 oveq1 7282 . . . 4 (𝑗 = 𝑁 → (𝑗 + 1) = (𝑁 + 1))
2322oveq2d 7291 . . 3 (𝑗 = 𝑁 → (2↑(𝑗 + 1)) = (2↑(𝑁 + 1)))
24 oveq2 7283 . . . . 5 (𝑗 = 𝑁 → (2 · 𝑗) = (2 · 𝑁))
2524oveq1d 7290 . . . 4 (𝑗 = 𝑁 → ((2 · 𝑗) + 1) = ((2 · 𝑁) + 1))
26 id 22 . . . 4 (𝑗 = 𝑁𝑗 = 𝑁)
2725, 26oveq12d 7293 . . 3 (𝑗 = 𝑁 → (((2 · 𝑗) + 1)C𝑗) = (((2 · 𝑁) + 1)C𝑁))
2823, 27breq12d 5087 . 2 (𝑗 = 𝑁 → ((2↑(𝑗 + 1)) < (((2 · 𝑗) + 1)C𝑗) ↔ (2↑(𝑁 + 1)) < (((2 · 𝑁) + 1)C𝑁)))
29 8lt10 12569 . . . . 5 8 < 10
30 eqid 2738 . . . . . . 7 8 = 8
31 cu2 13917 . . . . . . 7 (2↑3) = 8
3230, 31eqtr4i 2769 . . . . . 6 8 = (2↑3)
33 5bc2eq10 40098 . . . . . . 7 (5C2) = 10
3433eqcomi 2747 . . . . . 6 10 = (5C2)
3532, 34breq12i 5083 . . . . 5 (8 < 10 ↔ (2↑3) < (5C2))
3629, 35mpbi 229 . . . 4 (2↑3) < (5C2)
37 df-3 12037 . . . . . 6 3 = (2 + 1)
3837oveq2i 7286 . . . . 5 (2↑3) = (2↑(2 + 1))
39 eqid 2738 . . . . . . 7 5 = 5
40 2t2e4 12137 . . . . . . . . 9 (2 · 2) = 4
4140oveq1i 7285 . . . . . . . 8 ((2 · 2) + 1) = (4 + 1)
42 4p1e5 12119 . . . . . . . 8 (4 + 1) = 5
4341, 42eqtri 2766 . . . . . . 7 ((2 · 2) + 1) = 5
4439, 43eqtr4i 2769 . . . . . 6 5 = ((2 · 2) + 1)
4544oveq1i 7285 . . . . 5 (5C2) = (((2 · 2) + 1)C2)
4638, 45breq12i 5083 . . . 4 ((2↑3) < (5C2) ↔ (2↑(2 + 1)) < (((2 · 2) + 1)C2))
4736, 46mpbi 229 . . 3 (2↑(2 + 1)) < (((2 · 2) + 1)C2)
4847a1i 11 . 2 (𝜑 → (2↑(2 + 1)) < (((2 · 2) + 1)C2))
49 2re 12047 . . . . 5 2 ∈ ℝ
5049a1i 11 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → 2 ∈ ℝ)
51 simpl 483 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 𝑘 ∈ ℤ)
52 0red 10978 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 0 ∈ ℝ)
5349a1i 11 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 2 ∈ ℝ)
5451zred 12426 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 𝑘 ∈ ℝ)
55 2pos 12076 . . . . . . . . . . . . . . . . . . 19 0 < 2
5655a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 0 < 2)
57 simpr 485 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 2 ≤ 𝑘)
5852, 53, 54, 56, 57ltletrd 11135 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 0 < 𝑘)
5951, 58jca 512 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (𝑘 ∈ ℤ ∧ 0 < 𝑘))
60 elnnz 12329 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℤ ∧ 0 < 𝑘))
6159, 60sylibr 233 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 𝑘 ∈ ℕ)
62 nnnn0 12240 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
6361, 62syl 17 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 𝑘 ∈ ℕ0)
6463nn0red 12294 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 𝑘 ∈ ℝ)
6552, 53, 64, 56, 57ltletrd 11135 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 0 < 𝑘)
6651, 65jca 512 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (𝑘 ∈ ℤ ∧ 0 < 𝑘))
6766, 60sylibr 233 . . . . . . . . . 10 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 𝑘 ∈ ℕ)
6867nnred 11988 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 𝑘 ∈ ℝ)
69683ad2ant3 1134 . . . . . . . 8 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → 𝑘 ∈ ℝ)
7050, 69remulcld 11005 . . . . . . 7 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (2 · 𝑘) ∈ ℝ)
71 3re 12053 . . . . . . . 8 3 ∈ ℝ
7271a1i 11 . . . . . . 7 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → 3 ∈ ℝ)
7370, 72readdcld 11004 . . . . . 6 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → ((2 · 𝑘) + 3) ∈ ℝ)
7469, 50readdcld 11004 . . . . . 6 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (𝑘 + 2) ∈ ℝ)
7568, 53readdcld 11004 . . . . . . . . . 10 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (𝑘 + 2) ∈ ℝ)
7667nngt0d 12022 . . . . . . . . . 10 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 0 < 𝑘)
77 2rp 12735 . . . . . . . . . . . 12 2 ∈ ℝ+
7877a1i 11 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 2 ∈ ℝ+)
7968, 78ltaddrpd 12805 . . . . . . . . . 10 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 𝑘 < (𝑘 + 2))
8052, 68, 75, 76, 79lttrd 11136 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 0 < (𝑘 + 2))
8152, 80ltned 11111 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 0 ≠ (𝑘 + 2))
8281necomd 2999 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (𝑘 + 2) ≠ 0)
83823ad2ant3 1134 . . . . . 6 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (𝑘 + 2) ≠ 0)
8473, 74, 83redivcld 11803 . . . . 5 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (((2 · 𝑘) + 3) / (𝑘 + 2)) ∈ ℝ)
8550, 84remulcld 11005 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (2 · (((2 · 𝑘) + 3) / (𝑘 + 2))) ∈ ℝ)
86 1nn0 12249 . . . . . . . 8 1 ∈ ℕ0
8786a1i 11 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 1 ∈ ℕ0)
8863, 87nn0addcld 12297 . . . . . 6 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (𝑘 + 1) ∈ ℕ0)
8953, 88reexpcld 13881 . . . . 5 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2↑(𝑘 + 1)) ∈ ℝ)
90893ad2ant3 1134 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (2↑(𝑘 + 1)) ∈ ℝ)
91 2nn0 12250 . . . . . . . . . 10 2 ∈ ℕ0
9291a1i 11 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 2 ∈ ℕ0)
9392, 63nn0mulcld 12298 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2 · 𝑘) ∈ ℕ0)
9493, 87nn0addcld 12297 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → ((2 · 𝑘) + 1) ∈ ℕ0)
95 bccl 14036 . . . . . . 7 ((((2 · 𝑘) + 1) ∈ ℕ0𝑘 ∈ ℤ) → (((2 · 𝑘) + 1)C𝑘) ∈ ℕ0)
9694, 51, 95syl2anc 584 . . . . . 6 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (((2 · 𝑘) + 1)C𝑘) ∈ ℕ0)
9796nn0red 12294 . . . . 5 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (((2 · 𝑘) + 1)C𝑘) ∈ ℝ)
98973ad2ant3 1134 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (((2 · 𝑘) + 1)C𝑘) ∈ ℝ)
99 0le2 12075 . . . . 5 0 ≤ 2
10099a1i 11 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → 0 ≤ 2)
101 eqid 2738 . . . . . . . 8 2 = 2
102 2t1e2 12136 . . . . . . . 8 (2 · 1) = 2
103101, 102eqtr4i 2769 . . . . . . 7 2 = (2 · 1)
104103a1i 11 . . . . . 6 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 2 = (2 · 1))
105 1red 10976 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 1 ∈ ℝ)
10653, 68remulcld 11005 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2 · 𝑘) ∈ ℝ)
10771a1i 11 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 3 ∈ ℝ)
108106, 107readdcld 11004 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → ((2 · 𝑘) + 3) ∈ ℝ)
109108, 75, 82redivcld 11803 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (((2 · 𝑘) + 3) / (𝑘 + 2)) ∈ ℝ)
110 nnrp 12741 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
11177a1i 11 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 2 ∈ ℝ+)
112110, 111rpaddcld 12787 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝑘 + 2) ∈ ℝ+)
113112rpcnd 12774 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝑘 + 2) ∈ ℂ)
114113mulid1d 10992 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((𝑘 + 2) · 1) = (𝑘 + 2))
115 nnre 11980 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
11649a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 2 ∈ ℝ)
117116, 115remulcld 11005 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℝ)
11871a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 3 ∈ ℝ)
119110rpge0d 12776 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 0 ≤ 𝑘)
120 1le2 12182 . . . . . . . . . . . . 13 1 ≤ 2
121120a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 1 ≤ 2)
122115, 116, 119, 121lemulge12d 11913 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ≤ (2 · 𝑘))
123 2lt3 12145 . . . . . . . . . . . 12 2 < 3
124123a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 2 < 3)
125115, 116, 117, 118, 122, 124leltaddd 11597 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝑘 + 2) < ((2 · 𝑘) + 3))
126114, 125eqbrtrd 5096 . . . . . . . . 9 (𝑘 ∈ ℕ → ((𝑘 + 2) · 1) < ((2 · 𝑘) + 3))
127 1red 10976 . . . . . . . . . 10 (𝑘 ∈ ℕ → 1 ∈ ℝ)
128117, 118readdcld 11004 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((2 · 𝑘) + 3) ∈ ℝ)
129127, 128, 112ltmuldiv2d 12820 . . . . . . . . 9 (𝑘 ∈ ℕ → (((𝑘 + 2) · 1) < ((2 · 𝑘) + 3) ↔ 1 < (((2 · 𝑘) + 3) / (𝑘 + 2))))
130126, 129mpbid 231 . . . . . . . 8 (𝑘 ∈ ℕ → 1 < (((2 · 𝑘) + 3) / (𝑘 + 2)))
13167, 130syl 17 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 1 < (((2 · 𝑘) + 3) / (𝑘 + 2)))
132105, 109, 78, 131ltmul2dd 12828 . . . . . 6 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2 · 1) < (2 · (((2 · 𝑘) + 3) / (𝑘 + 2))))
133104, 132eqbrtrd 5096 . . . . 5 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 2 < (2 · (((2 · 𝑘) + 3) / (𝑘 + 2))))
1341333ad2ant3 1134 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → 2 < (2 · (((2 · 𝑘) + 3) / (𝑘 + 2))))
13599a1i 11 . . . . . 6 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 0 ≤ 2)
13653, 88, 135expge0d 13882 . . . . 5 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 0 ≤ (2↑(𝑘 + 1)))
1371363ad2ant3 1134 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → 0 ≤ (2↑(𝑘 + 1)))
138 simp2 1136 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘))
13950, 85, 90, 98, 100, 134, 137, 138ltmul12ad 11916 . . 3 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (2 · (2↑(𝑘 + 1))) < ((2 · (((2 · 𝑘) + 3) / (𝑘 + 2))) · (((2 · 𝑘) + 1)C𝑘)))
140 2cnd 12051 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 2 ∈ ℂ)
141140, 87, 88expaddd 13866 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2↑((𝑘 + 1) + 1)) = ((2↑(𝑘 + 1)) · (2↑1)))
142140, 88expcld 13864 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2↑(𝑘 + 1)) ∈ ℂ)
143140, 87expcld 13864 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2↑1) ∈ ℂ)
144142, 143mulcomd 10996 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → ((2↑(𝑘 + 1)) · (2↑1)) = ((2↑1) · (2↑(𝑘 + 1))))
145140exp1d 13859 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2↑1) = 2)
146145oveq1d 7290 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → ((2↑1) · (2↑(𝑘 + 1))) = (2 · (2↑(𝑘 + 1))))
147 eqidd 2739 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2 · (2↑(𝑘 + 1))) = (2 · (2↑(𝑘 + 1))))
148144, 146, 1473eqtrd 2782 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → ((2↑(𝑘 + 1)) · (2↑1)) = (2 · (2↑(𝑘 + 1))))
149141, 148eqtrd 2778 . . . . . 6 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2↑((𝑘 + 1) + 1)) = (2 · (2↑(𝑘 + 1))))
150149eqcomd 2744 . . . . 5 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2 · (2↑(𝑘 + 1))) = (2↑((𝑘 + 1) + 1)))
1511503ad2ant3 1134 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (2 · (2↑(𝑘 + 1))) = (2↑((𝑘 + 1) + 1)))
152632np3bcnp1 40100 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (((2 · (𝑘 + 1)) + 1)C(𝑘 + 1)) = ((((2 · 𝑘) + 1)C𝑘) · (2 · (((2 · 𝑘) + 3) / (𝑘 + 2)))))
15396nn0cnd 12295 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (((2 · 𝑘) + 1)C𝑘) ∈ ℂ)
15467nncnd 11989 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 𝑘 ∈ ℂ)
155140, 154mulcld 10995 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2 · 𝑘) ∈ ℂ)
156 3cn 12054 . . . . . . . . . . . 12 3 ∈ ℂ
157156a1i 11 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 3 ∈ ℂ)
158155, 157addcld 10994 . . . . . . . . . 10 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → ((2 · 𝑘) + 3) ∈ ℂ)
159154, 140addcld 10994 . . . . . . . . . 10 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (𝑘 + 2) ∈ ℂ)
160158, 159, 82divcld 11751 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (((2 · 𝑘) + 3) / (𝑘 + 2)) ∈ ℂ)
161140, 160mulcld 10995 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2 · (((2 · 𝑘) + 3) / (𝑘 + 2))) ∈ ℂ)
162153, 161mulcomd 10996 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → ((((2 · 𝑘) + 1)C𝑘) · (2 · (((2 · 𝑘) + 3) / (𝑘 + 2)))) = ((2 · (((2 · 𝑘) + 3) / (𝑘 + 2))) · (((2 · 𝑘) + 1)C𝑘)))
163152, 162eqtrd 2778 . . . . . 6 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (((2 · (𝑘 + 1)) + 1)C(𝑘 + 1)) = ((2 · (((2 · 𝑘) + 3) / (𝑘 + 2))) · (((2 · 𝑘) + 1)C𝑘)))
164163eqcomd 2744 . . . . 5 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → ((2 · (((2 · 𝑘) + 3) / (𝑘 + 2))) · (((2 · 𝑘) + 1)C𝑘)) = (((2 · (𝑘 + 1)) + 1)C(𝑘 + 1)))
1651643ad2ant3 1134 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → ((2 · (((2 · 𝑘) + 3) / (𝑘 + 2))) · (((2 · 𝑘) + 1)C𝑘)) = (((2 · (𝑘 + 1)) + 1)C(𝑘 + 1)))
166151, 165breq12d 5087 . . 3 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → ((2 · (2↑(𝑘 + 1))) < ((2 · (((2 · 𝑘) + 3) / (𝑘 + 2))) · (((2 · 𝑘) + 1)C𝑘)) ↔ (2↑((𝑘 + 1) + 1)) < (((2 · (𝑘 + 1)) + 1)C(𝑘 + 1))))
167139, 166mpbid 231 . 2 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (2↑((𝑘 + 1) + 1)) < (((2 · (𝑘 + 1)) + 1)C(𝑘 + 1)))
168 2z 12352 . . 3 2 ∈ ℤ
169168a1i 11 . 2 (𝜑 → 2 ∈ ℤ)
170 2ap1caineq.1 . 2 (𝜑𝑁 ∈ ℤ)
171 2ap1caineq.2 . 2 (𝜑 → 2 ≤ 𝑁)
1727, 14, 21, 28, 48, 167, 169, 170, 171uzindd 39985 1 (𝜑 → (2↑(𝑁 + 1)) < (((2 · 𝑁) + 1)C𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010   / cdiv 11632  cn 11973  2c2 12028  3c3 12029  4c4 12030  5c5 12031  8c8 12034  0cn0 12233  cz 12319  cdc 12437  +crp 12730  cexp 13782  Ccbc 14016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-rp 12731  df-fz 13240  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator