Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2ap1caineq Structured version   Visualization version   GIF version

Theorem 2ap1caineq 40029
Description: Inequality for Theorem 6.6 for AKS. (Contributed by metakunt, 8-Jun-2024.)
Hypotheses
Ref Expression
2ap1caineq.1 (𝜑𝑁 ∈ ℤ)
2ap1caineq.2 (𝜑 → 2 ≤ 𝑁)
Assertion
Ref Expression
2ap1caineq (𝜑 → (2↑(𝑁 + 1)) < (((2 · 𝑁) + 1)C𝑁))

Proof of Theorem 2ap1caineq
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7262 . . . 4 (𝑗 = 2 → (𝑗 + 1) = (2 + 1))
21oveq2d 7271 . . 3 (𝑗 = 2 → (2↑(𝑗 + 1)) = (2↑(2 + 1)))
3 oveq2 7263 . . . . 5 (𝑗 = 2 → (2 · 𝑗) = (2 · 2))
43oveq1d 7270 . . . 4 (𝑗 = 2 → ((2 · 𝑗) + 1) = ((2 · 2) + 1))
5 id 22 . . . 4 (𝑗 = 2 → 𝑗 = 2)
64, 5oveq12d 7273 . . 3 (𝑗 = 2 → (((2 · 𝑗) + 1)C𝑗) = (((2 · 2) + 1)C2))
72, 6breq12d 5083 . 2 (𝑗 = 2 → ((2↑(𝑗 + 1)) < (((2 · 𝑗) + 1)C𝑗) ↔ (2↑(2 + 1)) < (((2 · 2) + 1)C2)))
8 oveq1 7262 . . . 4 (𝑗 = 𝑘 → (𝑗 + 1) = (𝑘 + 1))
98oveq2d 7271 . . 3 (𝑗 = 𝑘 → (2↑(𝑗 + 1)) = (2↑(𝑘 + 1)))
10 oveq2 7263 . . . . 5 (𝑗 = 𝑘 → (2 · 𝑗) = (2 · 𝑘))
1110oveq1d 7270 . . . 4 (𝑗 = 𝑘 → ((2 · 𝑗) + 1) = ((2 · 𝑘) + 1))
12 id 22 . . . 4 (𝑗 = 𝑘𝑗 = 𝑘)
1311, 12oveq12d 7273 . . 3 (𝑗 = 𝑘 → (((2 · 𝑗) + 1)C𝑗) = (((2 · 𝑘) + 1)C𝑘))
149, 13breq12d 5083 . 2 (𝑗 = 𝑘 → ((2↑(𝑗 + 1)) < (((2 · 𝑗) + 1)C𝑗) ↔ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘)))
15 oveq1 7262 . . . 4 (𝑗 = (𝑘 + 1) → (𝑗 + 1) = ((𝑘 + 1) + 1))
1615oveq2d 7271 . . 3 (𝑗 = (𝑘 + 1) → (2↑(𝑗 + 1)) = (2↑((𝑘 + 1) + 1)))
17 oveq2 7263 . . . . 5 (𝑗 = (𝑘 + 1) → (2 · 𝑗) = (2 · (𝑘 + 1)))
1817oveq1d 7270 . . . 4 (𝑗 = (𝑘 + 1) → ((2 · 𝑗) + 1) = ((2 · (𝑘 + 1)) + 1))
19 id 22 . . . 4 (𝑗 = (𝑘 + 1) → 𝑗 = (𝑘 + 1))
2018, 19oveq12d 7273 . . 3 (𝑗 = (𝑘 + 1) → (((2 · 𝑗) + 1)C𝑗) = (((2 · (𝑘 + 1)) + 1)C(𝑘 + 1)))
2116, 20breq12d 5083 . 2 (𝑗 = (𝑘 + 1) → ((2↑(𝑗 + 1)) < (((2 · 𝑗) + 1)C𝑗) ↔ (2↑((𝑘 + 1) + 1)) < (((2 · (𝑘 + 1)) + 1)C(𝑘 + 1))))
22 oveq1 7262 . . . 4 (𝑗 = 𝑁 → (𝑗 + 1) = (𝑁 + 1))
2322oveq2d 7271 . . 3 (𝑗 = 𝑁 → (2↑(𝑗 + 1)) = (2↑(𝑁 + 1)))
24 oveq2 7263 . . . . 5 (𝑗 = 𝑁 → (2 · 𝑗) = (2 · 𝑁))
2524oveq1d 7270 . . . 4 (𝑗 = 𝑁 → ((2 · 𝑗) + 1) = ((2 · 𝑁) + 1))
26 id 22 . . . 4 (𝑗 = 𝑁𝑗 = 𝑁)
2725, 26oveq12d 7273 . . 3 (𝑗 = 𝑁 → (((2 · 𝑗) + 1)C𝑗) = (((2 · 𝑁) + 1)C𝑁))
2823, 27breq12d 5083 . 2 (𝑗 = 𝑁 → ((2↑(𝑗 + 1)) < (((2 · 𝑗) + 1)C𝑗) ↔ (2↑(𝑁 + 1)) < (((2 · 𝑁) + 1)C𝑁)))
29 8lt10 12498 . . . . 5 8 < 10
30 eqid 2738 . . . . . . 7 8 = 8
31 cu2 13845 . . . . . . 7 (2↑3) = 8
3230, 31eqtr4i 2769 . . . . . 6 8 = (2↑3)
33 5bc2eq10 40026 . . . . . . 7 (5C2) = 10
3433eqcomi 2747 . . . . . 6 10 = (5C2)
3532, 34breq12i 5079 . . . . 5 (8 < 10 ↔ (2↑3) < (5C2))
3629, 35mpbi 229 . . . 4 (2↑3) < (5C2)
37 df-3 11967 . . . . . 6 3 = (2 + 1)
3837oveq2i 7266 . . . . 5 (2↑3) = (2↑(2 + 1))
39 eqid 2738 . . . . . . 7 5 = 5
40 2t2e4 12067 . . . . . . . . 9 (2 · 2) = 4
4140oveq1i 7265 . . . . . . . 8 ((2 · 2) + 1) = (4 + 1)
42 4p1e5 12049 . . . . . . . 8 (4 + 1) = 5
4341, 42eqtri 2766 . . . . . . 7 ((2 · 2) + 1) = 5
4439, 43eqtr4i 2769 . . . . . 6 5 = ((2 · 2) + 1)
4544oveq1i 7265 . . . . 5 (5C2) = (((2 · 2) + 1)C2)
4638, 45breq12i 5079 . . . 4 ((2↑3) < (5C2) ↔ (2↑(2 + 1)) < (((2 · 2) + 1)C2))
4736, 46mpbi 229 . . 3 (2↑(2 + 1)) < (((2 · 2) + 1)C2)
4847a1i 11 . 2 (𝜑 → (2↑(2 + 1)) < (((2 · 2) + 1)C2))
49 2re 11977 . . . . 5 2 ∈ ℝ
5049a1i 11 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → 2 ∈ ℝ)
51 simpl 482 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 𝑘 ∈ ℤ)
52 0red 10909 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 0 ∈ ℝ)
5349a1i 11 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 2 ∈ ℝ)
5451zred 12355 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 𝑘 ∈ ℝ)
55 2pos 12006 . . . . . . . . . . . . . . . . . . 19 0 < 2
5655a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 0 < 2)
57 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 2 ≤ 𝑘)
5852, 53, 54, 56, 57ltletrd 11065 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 0 < 𝑘)
5951, 58jca 511 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (𝑘 ∈ ℤ ∧ 0 < 𝑘))
60 elnnz 12259 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℤ ∧ 0 < 𝑘))
6159, 60sylibr 233 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 𝑘 ∈ ℕ)
62 nnnn0 12170 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
6361, 62syl 17 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 𝑘 ∈ ℕ0)
6463nn0red 12224 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 𝑘 ∈ ℝ)
6552, 53, 64, 56, 57ltletrd 11065 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 0 < 𝑘)
6651, 65jca 511 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (𝑘 ∈ ℤ ∧ 0 < 𝑘))
6766, 60sylibr 233 . . . . . . . . . 10 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 𝑘 ∈ ℕ)
6867nnred 11918 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 𝑘 ∈ ℝ)
69683ad2ant3 1133 . . . . . . . 8 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → 𝑘 ∈ ℝ)
7050, 69remulcld 10936 . . . . . . 7 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (2 · 𝑘) ∈ ℝ)
71 3re 11983 . . . . . . . 8 3 ∈ ℝ
7271a1i 11 . . . . . . 7 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → 3 ∈ ℝ)
7370, 72readdcld 10935 . . . . . 6 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → ((2 · 𝑘) + 3) ∈ ℝ)
7469, 50readdcld 10935 . . . . . 6 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (𝑘 + 2) ∈ ℝ)
7568, 53readdcld 10935 . . . . . . . . . 10 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (𝑘 + 2) ∈ ℝ)
7667nngt0d 11952 . . . . . . . . . 10 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 0 < 𝑘)
77 2rp 12664 . . . . . . . . . . . 12 2 ∈ ℝ+
7877a1i 11 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 2 ∈ ℝ+)
7968, 78ltaddrpd 12734 . . . . . . . . . 10 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 𝑘 < (𝑘 + 2))
8052, 68, 75, 76, 79lttrd 11066 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 0 < (𝑘 + 2))
8152, 80ltned 11041 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 0 ≠ (𝑘 + 2))
8281necomd 2998 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (𝑘 + 2) ≠ 0)
83823ad2ant3 1133 . . . . . 6 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (𝑘 + 2) ≠ 0)
8473, 74, 83redivcld 11733 . . . . 5 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (((2 · 𝑘) + 3) / (𝑘 + 2)) ∈ ℝ)
8550, 84remulcld 10936 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (2 · (((2 · 𝑘) + 3) / (𝑘 + 2))) ∈ ℝ)
86 1nn0 12179 . . . . . . . 8 1 ∈ ℕ0
8786a1i 11 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 1 ∈ ℕ0)
8863, 87nn0addcld 12227 . . . . . 6 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (𝑘 + 1) ∈ ℕ0)
8953, 88reexpcld 13809 . . . . 5 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2↑(𝑘 + 1)) ∈ ℝ)
90893ad2ant3 1133 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (2↑(𝑘 + 1)) ∈ ℝ)
91 2nn0 12180 . . . . . . . . . 10 2 ∈ ℕ0
9291a1i 11 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 2 ∈ ℕ0)
9392, 63nn0mulcld 12228 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2 · 𝑘) ∈ ℕ0)
9493, 87nn0addcld 12227 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → ((2 · 𝑘) + 1) ∈ ℕ0)
95 bccl 13964 . . . . . . 7 ((((2 · 𝑘) + 1) ∈ ℕ0𝑘 ∈ ℤ) → (((2 · 𝑘) + 1)C𝑘) ∈ ℕ0)
9694, 51, 95syl2anc 583 . . . . . 6 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (((2 · 𝑘) + 1)C𝑘) ∈ ℕ0)
9796nn0red 12224 . . . . 5 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (((2 · 𝑘) + 1)C𝑘) ∈ ℝ)
98973ad2ant3 1133 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (((2 · 𝑘) + 1)C𝑘) ∈ ℝ)
99 0le2 12005 . . . . 5 0 ≤ 2
10099a1i 11 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → 0 ≤ 2)
101 eqid 2738 . . . . . . . 8 2 = 2
102 2t1e2 12066 . . . . . . . 8 (2 · 1) = 2
103101, 102eqtr4i 2769 . . . . . . 7 2 = (2 · 1)
104103a1i 11 . . . . . 6 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 2 = (2 · 1))
105 1red 10907 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 1 ∈ ℝ)
10653, 68remulcld 10936 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2 · 𝑘) ∈ ℝ)
10771a1i 11 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 3 ∈ ℝ)
108106, 107readdcld 10935 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → ((2 · 𝑘) + 3) ∈ ℝ)
109108, 75, 82redivcld 11733 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (((2 · 𝑘) + 3) / (𝑘 + 2)) ∈ ℝ)
110 nnrp 12670 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
11177a1i 11 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 2 ∈ ℝ+)
112110, 111rpaddcld 12716 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝑘 + 2) ∈ ℝ+)
113112rpcnd 12703 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝑘 + 2) ∈ ℂ)
114113mulid1d 10923 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((𝑘 + 2) · 1) = (𝑘 + 2))
115 nnre 11910 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
11649a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 2 ∈ ℝ)
117116, 115remulcld 10936 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℝ)
11871a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 3 ∈ ℝ)
119110rpge0d 12705 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 0 ≤ 𝑘)
120 1le2 12112 . . . . . . . . . . . . 13 1 ≤ 2
121120a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 1 ≤ 2)
122115, 116, 119, 121lemulge12d 11843 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ≤ (2 · 𝑘))
123 2lt3 12075 . . . . . . . . . . . 12 2 < 3
124123a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 2 < 3)
125115, 116, 117, 118, 122, 124leltaddd 11527 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝑘 + 2) < ((2 · 𝑘) + 3))
126114, 125eqbrtrd 5092 . . . . . . . . 9 (𝑘 ∈ ℕ → ((𝑘 + 2) · 1) < ((2 · 𝑘) + 3))
127 1red 10907 . . . . . . . . . 10 (𝑘 ∈ ℕ → 1 ∈ ℝ)
128117, 118readdcld 10935 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((2 · 𝑘) + 3) ∈ ℝ)
129127, 128, 112ltmuldiv2d 12749 . . . . . . . . 9 (𝑘 ∈ ℕ → (((𝑘 + 2) · 1) < ((2 · 𝑘) + 3) ↔ 1 < (((2 · 𝑘) + 3) / (𝑘 + 2))))
130126, 129mpbid 231 . . . . . . . 8 (𝑘 ∈ ℕ → 1 < (((2 · 𝑘) + 3) / (𝑘 + 2)))
13167, 130syl 17 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 1 < (((2 · 𝑘) + 3) / (𝑘 + 2)))
132105, 109, 78, 131ltmul2dd 12757 . . . . . 6 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2 · 1) < (2 · (((2 · 𝑘) + 3) / (𝑘 + 2))))
133104, 132eqbrtrd 5092 . . . . 5 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 2 < (2 · (((2 · 𝑘) + 3) / (𝑘 + 2))))
1341333ad2ant3 1133 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → 2 < (2 · (((2 · 𝑘) + 3) / (𝑘 + 2))))
13599a1i 11 . . . . . 6 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 0 ≤ 2)
13653, 88, 135expge0d 13810 . . . . 5 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 0 ≤ (2↑(𝑘 + 1)))
1371363ad2ant3 1133 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → 0 ≤ (2↑(𝑘 + 1)))
138 simp2 1135 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘))
13950, 85, 90, 98, 100, 134, 137, 138ltmul12ad 11846 . . 3 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (2 · (2↑(𝑘 + 1))) < ((2 · (((2 · 𝑘) + 3) / (𝑘 + 2))) · (((2 · 𝑘) + 1)C𝑘)))
140 2cnd 11981 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 2 ∈ ℂ)
141140, 87, 88expaddd 13794 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2↑((𝑘 + 1) + 1)) = ((2↑(𝑘 + 1)) · (2↑1)))
142140, 88expcld 13792 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2↑(𝑘 + 1)) ∈ ℂ)
143140, 87expcld 13792 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2↑1) ∈ ℂ)
144142, 143mulcomd 10927 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → ((2↑(𝑘 + 1)) · (2↑1)) = ((2↑1) · (2↑(𝑘 + 1))))
145140exp1d 13787 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2↑1) = 2)
146145oveq1d 7270 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → ((2↑1) · (2↑(𝑘 + 1))) = (2 · (2↑(𝑘 + 1))))
147 eqidd 2739 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2 · (2↑(𝑘 + 1))) = (2 · (2↑(𝑘 + 1))))
148144, 146, 1473eqtrd 2782 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → ((2↑(𝑘 + 1)) · (2↑1)) = (2 · (2↑(𝑘 + 1))))
149141, 148eqtrd 2778 . . . . . 6 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2↑((𝑘 + 1) + 1)) = (2 · (2↑(𝑘 + 1))))
150149eqcomd 2744 . . . . 5 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2 · (2↑(𝑘 + 1))) = (2↑((𝑘 + 1) + 1)))
1511503ad2ant3 1133 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (2 · (2↑(𝑘 + 1))) = (2↑((𝑘 + 1) + 1)))
152632np3bcnp1 40028 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (((2 · (𝑘 + 1)) + 1)C(𝑘 + 1)) = ((((2 · 𝑘) + 1)C𝑘) · (2 · (((2 · 𝑘) + 3) / (𝑘 + 2)))))
15396nn0cnd 12225 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (((2 · 𝑘) + 1)C𝑘) ∈ ℂ)
15467nncnd 11919 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 𝑘 ∈ ℂ)
155140, 154mulcld 10926 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2 · 𝑘) ∈ ℂ)
156 3cn 11984 . . . . . . . . . . . 12 3 ∈ ℂ
157156a1i 11 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 3 ∈ ℂ)
158155, 157addcld 10925 . . . . . . . . . 10 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → ((2 · 𝑘) + 3) ∈ ℂ)
159154, 140addcld 10925 . . . . . . . . . 10 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (𝑘 + 2) ∈ ℂ)
160158, 159, 82divcld 11681 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (((2 · 𝑘) + 3) / (𝑘 + 2)) ∈ ℂ)
161140, 160mulcld 10926 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2 · (((2 · 𝑘) + 3) / (𝑘 + 2))) ∈ ℂ)
162153, 161mulcomd 10927 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → ((((2 · 𝑘) + 1)C𝑘) · (2 · (((2 · 𝑘) + 3) / (𝑘 + 2)))) = ((2 · (((2 · 𝑘) + 3) / (𝑘 + 2))) · (((2 · 𝑘) + 1)C𝑘)))
163152, 162eqtrd 2778 . . . . . 6 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (((2 · (𝑘 + 1)) + 1)C(𝑘 + 1)) = ((2 · (((2 · 𝑘) + 3) / (𝑘 + 2))) · (((2 · 𝑘) + 1)C𝑘)))
164163eqcomd 2744 . . . . 5 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → ((2 · (((2 · 𝑘) + 3) / (𝑘 + 2))) · (((2 · 𝑘) + 1)C𝑘)) = (((2 · (𝑘 + 1)) + 1)C(𝑘 + 1)))
1651643ad2ant3 1133 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → ((2 · (((2 · 𝑘) + 3) / (𝑘 + 2))) · (((2 · 𝑘) + 1)C𝑘)) = (((2 · (𝑘 + 1)) + 1)C(𝑘 + 1)))
166151, 165breq12d 5083 . . 3 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → ((2 · (2↑(𝑘 + 1))) < ((2 · (((2 · 𝑘) + 3) / (𝑘 + 2))) · (((2 · 𝑘) + 1)C𝑘)) ↔ (2↑((𝑘 + 1) + 1)) < (((2 · (𝑘 + 1)) + 1)C(𝑘 + 1))))
167139, 166mpbid 231 . 2 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (2↑((𝑘 + 1) + 1)) < (((2 · (𝑘 + 1)) + 1)C(𝑘 + 1)))
168 2z 12282 . . 3 2 ∈ ℤ
169168a1i 11 . 2 (𝜑 → 2 ∈ ℤ)
170 2ap1caineq.1 . 2 (𝜑𝑁 ∈ ℤ)
171 2ap1caineq.2 . 2 (𝜑 → 2 ≤ 𝑁)
1727, 14, 21, 28, 48, 167, 169, 170, 171uzindd 39913 1 (𝜑 → (2↑(𝑁 + 1)) < (((2 · 𝑁) + 1)C𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941   / cdiv 11562  cn 11903  2c2 11958  3c3 11959  4c4 11960  5c5 11961  8c8 11964  0cn0 12163  cz 12249  cdc 12366  +crp 12659  cexp 13710  Ccbc 13944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-rp 12660  df-fz 13169  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator