Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2ap1caineq Structured version   Visualization version   GIF version

Theorem 2ap1caineq 42128
Description: Inequality for Theorem 6.6 for AKS. (Contributed by metakunt, 8-Jun-2024.)
Hypotheses
Ref Expression
2ap1caineq.1 (𝜑𝑁 ∈ ℤ)
2ap1caineq.2 (𝜑 → 2 ≤ 𝑁)
Assertion
Ref Expression
2ap1caineq (𝜑 → (2↑(𝑁 + 1)) < (((2 · 𝑁) + 1)C𝑁))

Proof of Theorem 2ap1caineq
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7356 . . . 4 (𝑗 = 2 → (𝑗 + 1) = (2 + 1))
21oveq2d 7365 . . 3 (𝑗 = 2 → (2↑(𝑗 + 1)) = (2↑(2 + 1)))
3 oveq2 7357 . . . . 5 (𝑗 = 2 → (2 · 𝑗) = (2 · 2))
43oveq1d 7364 . . . 4 (𝑗 = 2 → ((2 · 𝑗) + 1) = ((2 · 2) + 1))
5 id 22 . . . 4 (𝑗 = 2 → 𝑗 = 2)
64, 5oveq12d 7367 . . 3 (𝑗 = 2 → (((2 · 𝑗) + 1)C𝑗) = (((2 · 2) + 1)C2))
72, 6breq12d 5105 . 2 (𝑗 = 2 → ((2↑(𝑗 + 1)) < (((2 · 𝑗) + 1)C𝑗) ↔ (2↑(2 + 1)) < (((2 · 2) + 1)C2)))
8 oveq1 7356 . . . 4 (𝑗 = 𝑘 → (𝑗 + 1) = (𝑘 + 1))
98oveq2d 7365 . . 3 (𝑗 = 𝑘 → (2↑(𝑗 + 1)) = (2↑(𝑘 + 1)))
10 oveq2 7357 . . . . 5 (𝑗 = 𝑘 → (2 · 𝑗) = (2 · 𝑘))
1110oveq1d 7364 . . . 4 (𝑗 = 𝑘 → ((2 · 𝑗) + 1) = ((2 · 𝑘) + 1))
12 id 22 . . . 4 (𝑗 = 𝑘𝑗 = 𝑘)
1311, 12oveq12d 7367 . . 3 (𝑗 = 𝑘 → (((2 · 𝑗) + 1)C𝑗) = (((2 · 𝑘) + 1)C𝑘))
149, 13breq12d 5105 . 2 (𝑗 = 𝑘 → ((2↑(𝑗 + 1)) < (((2 · 𝑗) + 1)C𝑗) ↔ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘)))
15 oveq1 7356 . . . 4 (𝑗 = (𝑘 + 1) → (𝑗 + 1) = ((𝑘 + 1) + 1))
1615oveq2d 7365 . . 3 (𝑗 = (𝑘 + 1) → (2↑(𝑗 + 1)) = (2↑((𝑘 + 1) + 1)))
17 oveq2 7357 . . . . 5 (𝑗 = (𝑘 + 1) → (2 · 𝑗) = (2 · (𝑘 + 1)))
1817oveq1d 7364 . . . 4 (𝑗 = (𝑘 + 1) → ((2 · 𝑗) + 1) = ((2 · (𝑘 + 1)) + 1))
19 id 22 . . . 4 (𝑗 = (𝑘 + 1) → 𝑗 = (𝑘 + 1))
2018, 19oveq12d 7367 . . 3 (𝑗 = (𝑘 + 1) → (((2 · 𝑗) + 1)C𝑗) = (((2 · (𝑘 + 1)) + 1)C(𝑘 + 1)))
2116, 20breq12d 5105 . 2 (𝑗 = (𝑘 + 1) → ((2↑(𝑗 + 1)) < (((2 · 𝑗) + 1)C𝑗) ↔ (2↑((𝑘 + 1) + 1)) < (((2 · (𝑘 + 1)) + 1)C(𝑘 + 1))))
22 oveq1 7356 . . . 4 (𝑗 = 𝑁 → (𝑗 + 1) = (𝑁 + 1))
2322oveq2d 7365 . . 3 (𝑗 = 𝑁 → (2↑(𝑗 + 1)) = (2↑(𝑁 + 1)))
24 oveq2 7357 . . . . 5 (𝑗 = 𝑁 → (2 · 𝑗) = (2 · 𝑁))
2524oveq1d 7364 . . . 4 (𝑗 = 𝑁 → ((2 · 𝑗) + 1) = ((2 · 𝑁) + 1))
26 id 22 . . . 4 (𝑗 = 𝑁𝑗 = 𝑁)
2725, 26oveq12d 7367 . . 3 (𝑗 = 𝑁 → (((2 · 𝑗) + 1)C𝑗) = (((2 · 𝑁) + 1)C𝑁))
2823, 27breq12d 5105 . 2 (𝑗 = 𝑁 → ((2↑(𝑗 + 1)) < (((2 · 𝑗) + 1)C𝑗) ↔ (2↑(𝑁 + 1)) < (((2 · 𝑁) + 1)C𝑁)))
29 8lt10 12723 . . . . 5 8 < 10
30 eqid 2729 . . . . . . 7 8 = 8
31 cu2 14107 . . . . . . 7 (2↑3) = 8
3230, 31eqtr4i 2755 . . . . . 6 8 = (2↑3)
33 5bc2eq10 42125 . . . . . . 7 (5C2) = 10
3433eqcomi 2738 . . . . . 6 10 = (5C2)
3532, 34breq12i 5101 . . . . 5 (8 < 10 ↔ (2↑3) < (5C2))
3629, 35mpbi 230 . . . 4 (2↑3) < (5C2)
37 df-3 12192 . . . . . 6 3 = (2 + 1)
3837oveq2i 7360 . . . . 5 (2↑3) = (2↑(2 + 1))
39 eqid 2729 . . . . . . 7 5 = 5
40 2t2e4 12287 . . . . . . . . 9 (2 · 2) = 4
4140oveq1i 7359 . . . . . . . 8 ((2 · 2) + 1) = (4 + 1)
42 4p1e5 12269 . . . . . . . 8 (4 + 1) = 5
4341, 42eqtri 2752 . . . . . . 7 ((2 · 2) + 1) = 5
4439, 43eqtr4i 2755 . . . . . 6 5 = ((2 · 2) + 1)
4544oveq1i 7359 . . . . 5 (5C2) = (((2 · 2) + 1)C2)
4638, 45breq12i 5101 . . . 4 ((2↑3) < (5C2) ↔ (2↑(2 + 1)) < (((2 · 2) + 1)C2))
4736, 46mpbi 230 . . 3 (2↑(2 + 1)) < (((2 · 2) + 1)C2)
4847a1i 11 . 2 (𝜑 → (2↑(2 + 1)) < (((2 · 2) + 1)C2))
49 2re 12202 . . . . 5 2 ∈ ℝ
5049a1i 11 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → 2 ∈ ℝ)
51 simpl 482 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 𝑘 ∈ ℤ)
52 0red 11118 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 0 ∈ ℝ)
5349a1i 11 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 2 ∈ ℝ)
5451zred 12580 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 𝑘 ∈ ℝ)
55 2pos 12231 . . . . . . . . . . . . . . . . . . 19 0 < 2
5655a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 0 < 2)
57 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 2 ≤ 𝑘)
5852, 53, 54, 56, 57ltletrd 11276 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 0 < 𝑘)
5951, 58jca 511 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (𝑘 ∈ ℤ ∧ 0 < 𝑘))
60 elnnz 12481 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℤ ∧ 0 < 𝑘))
6159, 60sylibr 234 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 𝑘 ∈ ℕ)
62 nnnn0 12391 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
6361, 62syl 17 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 𝑘 ∈ ℕ0)
6463nn0red 12446 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 𝑘 ∈ ℝ)
6552, 53, 64, 56, 57ltletrd 11276 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 0 < 𝑘)
6651, 65jca 511 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (𝑘 ∈ ℤ ∧ 0 < 𝑘))
6766, 60sylibr 234 . . . . . . . . . 10 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 𝑘 ∈ ℕ)
6867nnred 12143 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 𝑘 ∈ ℝ)
69683ad2ant3 1135 . . . . . . . 8 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → 𝑘 ∈ ℝ)
7050, 69remulcld 11145 . . . . . . 7 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (2 · 𝑘) ∈ ℝ)
71 3re 12208 . . . . . . . 8 3 ∈ ℝ
7271a1i 11 . . . . . . 7 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → 3 ∈ ℝ)
7370, 72readdcld 11144 . . . . . 6 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → ((2 · 𝑘) + 3) ∈ ℝ)
7469, 50readdcld 11144 . . . . . 6 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (𝑘 + 2) ∈ ℝ)
7568, 53readdcld 11144 . . . . . . . . . 10 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (𝑘 + 2) ∈ ℝ)
7667nngt0d 12177 . . . . . . . . . 10 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 0 < 𝑘)
77 2rp 12898 . . . . . . . . . . . 12 2 ∈ ℝ+
7877a1i 11 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 2 ∈ ℝ+)
7968, 78ltaddrpd 12970 . . . . . . . . . 10 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 𝑘 < (𝑘 + 2))
8052, 68, 75, 76, 79lttrd 11277 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 0 < (𝑘 + 2))
8152, 80ltned 11252 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 0 ≠ (𝑘 + 2))
8281necomd 2980 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (𝑘 + 2) ≠ 0)
83823ad2ant3 1135 . . . . . 6 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (𝑘 + 2) ≠ 0)
8473, 74, 83redivcld 11952 . . . . 5 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (((2 · 𝑘) + 3) / (𝑘 + 2)) ∈ ℝ)
8550, 84remulcld 11145 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (2 · (((2 · 𝑘) + 3) / (𝑘 + 2))) ∈ ℝ)
86 1nn0 12400 . . . . . . . 8 1 ∈ ℕ0
8786a1i 11 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 1 ∈ ℕ0)
8863, 87nn0addcld 12449 . . . . . 6 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (𝑘 + 1) ∈ ℕ0)
8953, 88reexpcld 14070 . . . . 5 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2↑(𝑘 + 1)) ∈ ℝ)
90893ad2ant3 1135 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (2↑(𝑘 + 1)) ∈ ℝ)
91 2nn0 12401 . . . . . . . . . 10 2 ∈ ℕ0
9291a1i 11 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 2 ∈ ℕ0)
9392, 63nn0mulcld 12450 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2 · 𝑘) ∈ ℕ0)
9493, 87nn0addcld 12449 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → ((2 · 𝑘) + 1) ∈ ℕ0)
95 bccl 14229 . . . . . . 7 ((((2 · 𝑘) + 1) ∈ ℕ0𝑘 ∈ ℤ) → (((2 · 𝑘) + 1)C𝑘) ∈ ℕ0)
9694, 51, 95syl2anc 584 . . . . . 6 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (((2 · 𝑘) + 1)C𝑘) ∈ ℕ0)
9796nn0red 12446 . . . . 5 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (((2 · 𝑘) + 1)C𝑘) ∈ ℝ)
98973ad2ant3 1135 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (((2 · 𝑘) + 1)C𝑘) ∈ ℝ)
99 0le2 12230 . . . . 5 0 ≤ 2
10099a1i 11 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → 0 ≤ 2)
101 eqid 2729 . . . . . . . 8 2 = 2
102 2t1e2 12286 . . . . . . . 8 (2 · 1) = 2
103101, 102eqtr4i 2755 . . . . . . 7 2 = (2 · 1)
104103a1i 11 . . . . . 6 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 2 = (2 · 1))
105 1red 11116 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 1 ∈ ℝ)
10653, 68remulcld 11145 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2 · 𝑘) ∈ ℝ)
10771a1i 11 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 3 ∈ ℝ)
108106, 107readdcld 11144 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → ((2 · 𝑘) + 3) ∈ ℝ)
109108, 75, 82redivcld 11952 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (((2 · 𝑘) + 3) / (𝑘 + 2)) ∈ ℝ)
110 nnrp 12905 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
11177a1i 11 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 2 ∈ ℝ+)
112110, 111rpaddcld 12952 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝑘 + 2) ∈ ℝ+)
113112rpcnd 12939 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝑘 + 2) ∈ ℂ)
114113mulridd 11132 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((𝑘 + 2) · 1) = (𝑘 + 2))
115 nnre 12135 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
11649a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 2 ∈ ℝ)
117116, 115remulcld 11145 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℝ)
11871a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 3 ∈ ℝ)
119110rpge0d 12941 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 0 ≤ 𝑘)
120 1le2 12332 . . . . . . . . . . . . 13 1 ≤ 2
121120a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 1 ≤ 2)
122115, 116, 119, 121lemulge12d 12063 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ≤ (2 · 𝑘))
123 2lt3 12295 . . . . . . . . . . . 12 2 < 3
124123a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 2 < 3)
125115, 116, 117, 118, 122, 124leltaddd 11742 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝑘 + 2) < ((2 · 𝑘) + 3))
126114, 125eqbrtrd 5114 . . . . . . . . 9 (𝑘 ∈ ℕ → ((𝑘 + 2) · 1) < ((2 · 𝑘) + 3))
127 1red 11116 . . . . . . . . . 10 (𝑘 ∈ ℕ → 1 ∈ ℝ)
128117, 118readdcld 11144 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((2 · 𝑘) + 3) ∈ ℝ)
129127, 128, 112ltmuldiv2d 12985 . . . . . . . . 9 (𝑘 ∈ ℕ → (((𝑘 + 2) · 1) < ((2 · 𝑘) + 3) ↔ 1 < (((2 · 𝑘) + 3) / (𝑘 + 2))))
130126, 129mpbid 232 . . . . . . . 8 (𝑘 ∈ ℕ → 1 < (((2 · 𝑘) + 3) / (𝑘 + 2)))
13167, 130syl 17 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 1 < (((2 · 𝑘) + 3) / (𝑘 + 2)))
132105, 109, 78, 131ltmul2dd 12993 . . . . . 6 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2 · 1) < (2 · (((2 · 𝑘) + 3) / (𝑘 + 2))))
133104, 132eqbrtrd 5114 . . . . 5 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 2 < (2 · (((2 · 𝑘) + 3) / (𝑘 + 2))))
1341333ad2ant3 1135 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → 2 < (2 · (((2 · 𝑘) + 3) / (𝑘 + 2))))
13599a1i 11 . . . . . 6 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 0 ≤ 2)
13653, 88, 135expge0d 14071 . . . . 5 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 0 ≤ (2↑(𝑘 + 1)))
1371363ad2ant3 1135 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → 0 ≤ (2↑(𝑘 + 1)))
138 simp2 1137 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘))
13950, 85, 90, 98, 100, 134, 137, 138ltmul12ad 12066 . . 3 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (2 · (2↑(𝑘 + 1))) < ((2 · (((2 · 𝑘) + 3) / (𝑘 + 2))) · (((2 · 𝑘) + 1)C𝑘)))
140 2cnd 12206 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 2 ∈ ℂ)
141140, 87, 88expaddd 14055 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2↑((𝑘 + 1) + 1)) = ((2↑(𝑘 + 1)) · (2↑1)))
142140, 88expcld 14053 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2↑(𝑘 + 1)) ∈ ℂ)
143140, 87expcld 14053 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2↑1) ∈ ℂ)
144142, 143mulcomd 11136 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → ((2↑(𝑘 + 1)) · (2↑1)) = ((2↑1) · (2↑(𝑘 + 1))))
145140exp1d 14048 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2↑1) = 2)
146145oveq1d 7364 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → ((2↑1) · (2↑(𝑘 + 1))) = (2 · (2↑(𝑘 + 1))))
147 eqidd 2730 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2 · (2↑(𝑘 + 1))) = (2 · (2↑(𝑘 + 1))))
148144, 146, 1473eqtrd 2768 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → ((2↑(𝑘 + 1)) · (2↑1)) = (2 · (2↑(𝑘 + 1))))
149141, 148eqtrd 2764 . . . . . 6 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2↑((𝑘 + 1) + 1)) = (2 · (2↑(𝑘 + 1))))
150149eqcomd 2735 . . . . 5 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2 · (2↑(𝑘 + 1))) = (2↑((𝑘 + 1) + 1)))
1511503ad2ant3 1135 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (2 · (2↑(𝑘 + 1))) = (2↑((𝑘 + 1) + 1)))
152632np3bcnp1 42127 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (((2 · (𝑘 + 1)) + 1)C(𝑘 + 1)) = ((((2 · 𝑘) + 1)C𝑘) · (2 · (((2 · 𝑘) + 3) / (𝑘 + 2)))))
15396nn0cnd 12447 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (((2 · 𝑘) + 1)C𝑘) ∈ ℂ)
15467nncnd 12144 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 𝑘 ∈ ℂ)
155140, 154mulcld 11135 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2 · 𝑘) ∈ ℂ)
156 3cn 12209 . . . . . . . . . . . 12 3 ∈ ℂ
157156a1i 11 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 3 ∈ ℂ)
158155, 157addcld 11134 . . . . . . . . . 10 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → ((2 · 𝑘) + 3) ∈ ℂ)
159154, 140addcld 11134 . . . . . . . . . 10 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (𝑘 + 2) ∈ ℂ)
160158, 159, 82divcld 11900 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (((2 · 𝑘) + 3) / (𝑘 + 2)) ∈ ℂ)
161140, 160mulcld 11135 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2 · (((2 · 𝑘) + 3) / (𝑘 + 2))) ∈ ℂ)
162153, 161mulcomd 11136 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → ((((2 · 𝑘) + 1)C𝑘) · (2 · (((2 · 𝑘) + 3) / (𝑘 + 2)))) = ((2 · (((2 · 𝑘) + 3) / (𝑘 + 2))) · (((2 · 𝑘) + 1)C𝑘)))
163152, 162eqtrd 2764 . . . . . 6 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (((2 · (𝑘 + 1)) + 1)C(𝑘 + 1)) = ((2 · (((2 · 𝑘) + 3) / (𝑘 + 2))) · (((2 · 𝑘) + 1)C𝑘)))
164163eqcomd 2735 . . . . 5 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → ((2 · (((2 · 𝑘) + 3) / (𝑘 + 2))) · (((2 · 𝑘) + 1)C𝑘)) = (((2 · (𝑘 + 1)) + 1)C(𝑘 + 1)))
1651643ad2ant3 1135 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → ((2 · (((2 · 𝑘) + 3) / (𝑘 + 2))) · (((2 · 𝑘) + 1)C𝑘)) = (((2 · (𝑘 + 1)) + 1)C(𝑘 + 1)))
166151, 165breq12d 5105 . . 3 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → ((2 · (2↑(𝑘 + 1))) < ((2 · (((2 · 𝑘) + 3) / (𝑘 + 2))) · (((2 · 𝑘) + 1)C𝑘)) ↔ (2↑((𝑘 + 1) + 1)) < (((2 · (𝑘 + 1)) + 1)C(𝑘 + 1))))
167139, 166mpbid 232 . 2 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (2↑((𝑘 + 1) + 1)) < (((2 · (𝑘 + 1)) + 1)C(𝑘 + 1)))
168 2z 12507 . . 3 2 ∈ ℤ
169168a1i 11 . 2 (𝜑 → 2 ∈ ℤ)
170 2ap1caineq.1 . 2 (𝜑𝑁 ∈ ℤ)
171 2ap1caineq.2 . 2 (𝜑 → 2 ≤ 𝑁)
1727, 14, 21, 28, 48, 167, 169, 170, 171uzindd 41960 1 (𝜑 → (2↑(𝑁 + 1)) < (((2 · 𝑁) + 1)C𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5092  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014   < clt 11149  cle 11150   / cdiv 11777  cn 12128  2c2 12183  3c3 12184  4c4 12185  5c5 12186  8c8 12189  0cn0 12384  cz 12471  cdc 12591  +crp 12893  cexp 13968  Ccbc 14209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-rp 12894  df-fz 13411  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210
This theorem is referenced by:  aks6d1c7lem1  42163
  Copyright terms: Public domain W3C validator