Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2ap1caineq Structured version   Visualization version   GIF version

Theorem 2ap1caineq 39778
Description: Inequality for Theorem 6.6 for AKS. (Contributed by metakunt, 8-Jun-2024.)
Hypotheses
Ref Expression
2ap1caineq.1 (𝜑𝑁 ∈ ℤ)
2ap1caineq.2 (𝜑 → 2 ≤ 𝑁)
Assertion
Ref Expression
2ap1caineq (𝜑 → (2↑(𝑁 + 1)) < (((2 · 𝑁) + 1)C𝑁))

Proof of Theorem 2ap1caineq
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7209 . . . 4 (𝑗 = 2 → (𝑗 + 1) = (2 + 1))
21oveq2d 7218 . . 3 (𝑗 = 2 → (2↑(𝑗 + 1)) = (2↑(2 + 1)))
3 oveq2 7210 . . . . 5 (𝑗 = 2 → (2 · 𝑗) = (2 · 2))
43oveq1d 7217 . . . 4 (𝑗 = 2 → ((2 · 𝑗) + 1) = ((2 · 2) + 1))
5 id 22 . . . 4 (𝑗 = 2 → 𝑗 = 2)
64, 5oveq12d 7220 . . 3 (𝑗 = 2 → (((2 · 𝑗) + 1)C𝑗) = (((2 · 2) + 1)C2))
72, 6breq12d 5056 . 2 (𝑗 = 2 → ((2↑(𝑗 + 1)) < (((2 · 𝑗) + 1)C𝑗) ↔ (2↑(2 + 1)) < (((2 · 2) + 1)C2)))
8 oveq1 7209 . . . 4 (𝑗 = 𝑘 → (𝑗 + 1) = (𝑘 + 1))
98oveq2d 7218 . . 3 (𝑗 = 𝑘 → (2↑(𝑗 + 1)) = (2↑(𝑘 + 1)))
10 oveq2 7210 . . . . 5 (𝑗 = 𝑘 → (2 · 𝑗) = (2 · 𝑘))
1110oveq1d 7217 . . . 4 (𝑗 = 𝑘 → ((2 · 𝑗) + 1) = ((2 · 𝑘) + 1))
12 id 22 . . . 4 (𝑗 = 𝑘𝑗 = 𝑘)
1311, 12oveq12d 7220 . . 3 (𝑗 = 𝑘 → (((2 · 𝑗) + 1)C𝑗) = (((2 · 𝑘) + 1)C𝑘))
149, 13breq12d 5056 . 2 (𝑗 = 𝑘 → ((2↑(𝑗 + 1)) < (((2 · 𝑗) + 1)C𝑗) ↔ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘)))
15 oveq1 7209 . . . 4 (𝑗 = (𝑘 + 1) → (𝑗 + 1) = ((𝑘 + 1) + 1))
1615oveq2d 7218 . . 3 (𝑗 = (𝑘 + 1) → (2↑(𝑗 + 1)) = (2↑((𝑘 + 1) + 1)))
17 oveq2 7210 . . . . 5 (𝑗 = (𝑘 + 1) → (2 · 𝑗) = (2 · (𝑘 + 1)))
1817oveq1d 7217 . . . 4 (𝑗 = (𝑘 + 1) → ((2 · 𝑗) + 1) = ((2 · (𝑘 + 1)) + 1))
19 id 22 . . . 4 (𝑗 = (𝑘 + 1) → 𝑗 = (𝑘 + 1))
2018, 19oveq12d 7220 . . 3 (𝑗 = (𝑘 + 1) → (((2 · 𝑗) + 1)C𝑗) = (((2 · (𝑘 + 1)) + 1)C(𝑘 + 1)))
2116, 20breq12d 5056 . 2 (𝑗 = (𝑘 + 1) → ((2↑(𝑗 + 1)) < (((2 · 𝑗) + 1)C𝑗) ↔ (2↑((𝑘 + 1) + 1)) < (((2 · (𝑘 + 1)) + 1)C(𝑘 + 1))))
22 oveq1 7209 . . . 4 (𝑗 = 𝑁 → (𝑗 + 1) = (𝑁 + 1))
2322oveq2d 7218 . . 3 (𝑗 = 𝑁 → (2↑(𝑗 + 1)) = (2↑(𝑁 + 1)))
24 oveq2 7210 . . . . 5 (𝑗 = 𝑁 → (2 · 𝑗) = (2 · 𝑁))
2524oveq1d 7217 . . . 4 (𝑗 = 𝑁 → ((2 · 𝑗) + 1) = ((2 · 𝑁) + 1))
26 id 22 . . . 4 (𝑗 = 𝑁𝑗 = 𝑁)
2725, 26oveq12d 7220 . . 3 (𝑗 = 𝑁 → (((2 · 𝑗) + 1)C𝑗) = (((2 · 𝑁) + 1)C𝑁))
2823, 27breq12d 5056 . 2 (𝑗 = 𝑁 → ((2↑(𝑗 + 1)) < (((2 · 𝑗) + 1)C𝑗) ↔ (2↑(𝑁 + 1)) < (((2 · 𝑁) + 1)C𝑁)))
29 8lt10 12408 . . . . 5 8 < 10
30 eqid 2734 . . . . . . 7 8 = 8
31 cu2 13752 . . . . . . 7 (2↑3) = 8
3230, 31eqtr4i 2765 . . . . . 6 8 = (2↑3)
33 5bc2eq10 39775 . . . . . . 7 (5C2) = 10
3433eqcomi 2743 . . . . . 6 10 = (5C2)
3532, 34breq12i 5052 . . . . 5 (8 < 10 ↔ (2↑3) < (5C2))
3629, 35mpbi 233 . . . 4 (2↑3) < (5C2)
37 df-3 11877 . . . . . 6 3 = (2 + 1)
3837oveq2i 7213 . . . . 5 (2↑3) = (2↑(2 + 1))
39 eqid 2734 . . . . . . 7 5 = 5
40 2t2e4 11977 . . . . . . . . 9 (2 · 2) = 4
4140oveq1i 7212 . . . . . . . 8 ((2 · 2) + 1) = (4 + 1)
42 4p1e5 11959 . . . . . . . 8 (4 + 1) = 5
4341, 42eqtri 2762 . . . . . . 7 ((2 · 2) + 1) = 5
4439, 43eqtr4i 2765 . . . . . 6 5 = ((2 · 2) + 1)
4544oveq1i 7212 . . . . 5 (5C2) = (((2 · 2) + 1)C2)
4638, 45breq12i 5052 . . . 4 ((2↑3) < (5C2) ↔ (2↑(2 + 1)) < (((2 · 2) + 1)C2))
4736, 46mpbi 233 . . 3 (2↑(2 + 1)) < (((2 · 2) + 1)C2)
4847a1i 11 . 2 (𝜑 → (2↑(2 + 1)) < (((2 · 2) + 1)C2))
49 2re 11887 . . . . 5 2 ∈ ℝ
5049a1i 11 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → 2 ∈ ℝ)
51 simpl 486 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 𝑘 ∈ ℤ)
52 0red 10819 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 0 ∈ ℝ)
5349a1i 11 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 2 ∈ ℝ)
5451zred 12265 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 𝑘 ∈ ℝ)
55 2pos 11916 . . . . . . . . . . . . . . . . . . 19 0 < 2
5655a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 0 < 2)
57 simpr 488 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 2 ≤ 𝑘)
5852, 53, 54, 56, 57ltletrd 10975 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 0 < 𝑘)
5951, 58jca 515 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (𝑘 ∈ ℤ ∧ 0 < 𝑘))
60 elnnz 12169 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℤ ∧ 0 < 𝑘))
6159, 60sylibr 237 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 𝑘 ∈ ℕ)
62 nnnn0 12080 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
6361, 62syl 17 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 𝑘 ∈ ℕ0)
6463nn0red 12134 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 𝑘 ∈ ℝ)
6552, 53, 64, 56, 57ltletrd 10975 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 0 < 𝑘)
6651, 65jca 515 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (𝑘 ∈ ℤ ∧ 0 < 𝑘))
6766, 60sylibr 237 . . . . . . . . . 10 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 𝑘 ∈ ℕ)
6867nnred 11828 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 𝑘 ∈ ℝ)
69683ad2ant3 1137 . . . . . . . 8 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → 𝑘 ∈ ℝ)
7050, 69remulcld 10846 . . . . . . 7 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (2 · 𝑘) ∈ ℝ)
71 3re 11893 . . . . . . . 8 3 ∈ ℝ
7271a1i 11 . . . . . . 7 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → 3 ∈ ℝ)
7370, 72readdcld 10845 . . . . . 6 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → ((2 · 𝑘) + 3) ∈ ℝ)
7469, 50readdcld 10845 . . . . . 6 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (𝑘 + 2) ∈ ℝ)
7568, 53readdcld 10845 . . . . . . . . . 10 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (𝑘 + 2) ∈ ℝ)
7667nngt0d 11862 . . . . . . . . . 10 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 0 < 𝑘)
77 2rp 12574 . . . . . . . . . . . 12 2 ∈ ℝ+
7877a1i 11 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 2 ∈ ℝ+)
7968, 78ltaddrpd 12644 . . . . . . . . . 10 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 𝑘 < (𝑘 + 2))
8052, 68, 75, 76, 79lttrd 10976 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 0 < (𝑘 + 2))
8152, 80ltned 10951 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 0 ≠ (𝑘 + 2))
8281necomd 2990 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (𝑘 + 2) ≠ 0)
83823ad2ant3 1137 . . . . . 6 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (𝑘 + 2) ≠ 0)
8473, 74, 83redivcld 11643 . . . . 5 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (((2 · 𝑘) + 3) / (𝑘 + 2)) ∈ ℝ)
8550, 84remulcld 10846 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (2 · (((2 · 𝑘) + 3) / (𝑘 + 2))) ∈ ℝ)
86 1nn0 12089 . . . . . . . 8 1 ∈ ℕ0
8786a1i 11 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 1 ∈ ℕ0)
8863, 87nn0addcld 12137 . . . . . 6 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (𝑘 + 1) ∈ ℕ0)
8953, 88reexpcld 13716 . . . . 5 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2↑(𝑘 + 1)) ∈ ℝ)
90893ad2ant3 1137 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (2↑(𝑘 + 1)) ∈ ℝ)
91 2nn0 12090 . . . . . . . . . 10 2 ∈ ℕ0
9291a1i 11 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 2 ∈ ℕ0)
9392, 63nn0mulcld 12138 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2 · 𝑘) ∈ ℕ0)
9493, 87nn0addcld 12137 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → ((2 · 𝑘) + 1) ∈ ℕ0)
95 bccl 13871 . . . . . . 7 ((((2 · 𝑘) + 1) ∈ ℕ0𝑘 ∈ ℤ) → (((2 · 𝑘) + 1)C𝑘) ∈ ℕ0)
9694, 51, 95syl2anc 587 . . . . . 6 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (((2 · 𝑘) + 1)C𝑘) ∈ ℕ0)
9796nn0red 12134 . . . . 5 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (((2 · 𝑘) + 1)C𝑘) ∈ ℝ)
98973ad2ant3 1137 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (((2 · 𝑘) + 1)C𝑘) ∈ ℝ)
99 0le2 11915 . . . . 5 0 ≤ 2
10099a1i 11 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → 0 ≤ 2)
101 eqid 2734 . . . . . . . 8 2 = 2
102 2t1e2 11976 . . . . . . . 8 (2 · 1) = 2
103101, 102eqtr4i 2765 . . . . . . 7 2 = (2 · 1)
104103a1i 11 . . . . . 6 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 2 = (2 · 1))
105 1red 10817 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 1 ∈ ℝ)
10653, 68remulcld 10846 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2 · 𝑘) ∈ ℝ)
10771a1i 11 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 3 ∈ ℝ)
108106, 107readdcld 10845 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → ((2 · 𝑘) + 3) ∈ ℝ)
109108, 75, 82redivcld 11643 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (((2 · 𝑘) + 3) / (𝑘 + 2)) ∈ ℝ)
110 nnrp 12580 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
11177a1i 11 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 2 ∈ ℝ+)
112110, 111rpaddcld 12626 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝑘 + 2) ∈ ℝ+)
113112rpcnd 12613 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝑘 + 2) ∈ ℂ)
114113mulid1d 10833 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((𝑘 + 2) · 1) = (𝑘 + 2))
115 nnre 11820 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
11649a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 2 ∈ ℝ)
117116, 115remulcld 10846 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℝ)
11871a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 3 ∈ ℝ)
119110rpge0d 12615 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 0 ≤ 𝑘)
120 1le2 12022 . . . . . . . . . . . . 13 1 ≤ 2
121120a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 1 ≤ 2)
122115, 116, 119, 121lemulge12d 11753 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ≤ (2 · 𝑘))
123 2lt3 11985 . . . . . . . . . . . 12 2 < 3
124123a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 2 < 3)
125115, 116, 117, 118, 122, 124leltaddd 11437 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝑘 + 2) < ((2 · 𝑘) + 3))
126114, 125eqbrtrd 5065 . . . . . . . . 9 (𝑘 ∈ ℕ → ((𝑘 + 2) · 1) < ((2 · 𝑘) + 3))
127 1red 10817 . . . . . . . . . 10 (𝑘 ∈ ℕ → 1 ∈ ℝ)
128117, 118readdcld 10845 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((2 · 𝑘) + 3) ∈ ℝ)
129127, 128, 112ltmuldiv2d 12659 . . . . . . . . 9 (𝑘 ∈ ℕ → (((𝑘 + 2) · 1) < ((2 · 𝑘) + 3) ↔ 1 < (((2 · 𝑘) + 3) / (𝑘 + 2))))
130126, 129mpbid 235 . . . . . . . 8 (𝑘 ∈ ℕ → 1 < (((2 · 𝑘) + 3) / (𝑘 + 2)))
13167, 130syl 17 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 1 < (((2 · 𝑘) + 3) / (𝑘 + 2)))
132105, 109, 78, 131ltmul2dd 12667 . . . . . 6 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2 · 1) < (2 · (((2 · 𝑘) + 3) / (𝑘 + 2))))
133104, 132eqbrtrd 5065 . . . . 5 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 2 < (2 · (((2 · 𝑘) + 3) / (𝑘 + 2))))
1341333ad2ant3 1137 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → 2 < (2 · (((2 · 𝑘) + 3) / (𝑘 + 2))))
13599a1i 11 . . . . . 6 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 0 ≤ 2)
13653, 88, 135expge0d 13717 . . . . 5 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 0 ≤ (2↑(𝑘 + 1)))
1371363ad2ant3 1137 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → 0 ≤ (2↑(𝑘 + 1)))
138 simp2 1139 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘))
13950, 85, 90, 98, 100, 134, 137, 138ltmul12ad 11756 . . 3 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (2 · (2↑(𝑘 + 1))) < ((2 · (((2 · 𝑘) + 3) / (𝑘 + 2))) · (((2 · 𝑘) + 1)C𝑘)))
140 2cnd 11891 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 2 ∈ ℂ)
141140, 87, 88expaddd 13701 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2↑((𝑘 + 1) + 1)) = ((2↑(𝑘 + 1)) · (2↑1)))
142140, 88expcld 13699 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2↑(𝑘 + 1)) ∈ ℂ)
143140, 87expcld 13699 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2↑1) ∈ ℂ)
144142, 143mulcomd 10837 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → ((2↑(𝑘 + 1)) · (2↑1)) = ((2↑1) · (2↑(𝑘 + 1))))
145140exp1d 13694 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2↑1) = 2)
146145oveq1d 7217 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → ((2↑1) · (2↑(𝑘 + 1))) = (2 · (2↑(𝑘 + 1))))
147 eqidd 2735 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2 · (2↑(𝑘 + 1))) = (2 · (2↑(𝑘 + 1))))
148144, 146, 1473eqtrd 2778 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → ((2↑(𝑘 + 1)) · (2↑1)) = (2 · (2↑(𝑘 + 1))))
149141, 148eqtrd 2774 . . . . . 6 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2↑((𝑘 + 1) + 1)) = (2 · (2↑(𝑘 + 1))))
150149eqcomd 2740 . . . . 5 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2 · (2↑(𝑘 + 1))) = (2↑((𝑘 + 1) + 1)))
1511503ad2ant3 1137 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (2 · (2↑(𝑘 + 1))) = (2↑((𝑘 + 1) + 1)))
152632np3bcnp1 39777 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (((2 · (𝑘 + 1)) + 1)C(𝑘 + 1)) = ((((2 · 𝑘) + 1)C𝑘) · (2 · (((2 · 𝑘) + 3) / (𝑘 + 2)))))
15396nn0cnd 12135 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (((2 · 𝑘) + 1)C𝑘) ∈ ℂ)
15467nncnd 11829 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 𝑘 ∈ ℂ)
155140, 154mulcld 10836 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2 · 𝑘) ∈ ℂ)
156 3cn 11894 . . . . . . . . . . . 12 3 ∈ ℂ
157156a1i 11 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → 3 ∈ ℂ)
158155, 157addcld 10835 . . . . . . . . . 10 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → ((2 · 𝑘) + 3) ∈ ℂ)
159154, 140addcld 10835 . . . . . . . . . 10 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (𝑘 + 2) ∈ ℂ)
160158, 159, 82divcld 11591 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (((2 · 𝑘) + 3) / (𝑘 + 2)) ∈ ℂ)
161140, 160mulcld 10836 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (2 · (((2 · 𝑘) + 3) / (𝑘 + 2))) ∈ ℂ)
162153, 161mulcomd 10837 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → ((((2 · 𝑘) + 1)C𝑘) · (2 · (((2 · 𝑘) + 3) / (𝑘 + 2)))) = ((2 · (((2 · 𝑘) + 3) / (𝑘 + 2))) · (((2 · 𝑘) + 1)C𝑘)))
163152, 162eqtrd 2774 . . . . . 6 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → (((2 · (𝑘 + 1)) + 1)C(𝑘 + 1)) = ((2 · (((2 · 𝑘) + 3) / (𝑘 + 2))) · (((2 · 𝑘) + 1)C𝑘)))
164163eqcomd 2740 . . . . 5 ((𝑘 ∈ ℤ ∧ 2 ≤ 𝑘) → ((2 · (((2 · 𝑘) + 3) / (𝑘 + 2))) · (((2 · 𝑘) + 1)C𝑘)) = (((2 · (𝑘 + 1)) + 1)C(𝑘 + 1)))
1651643ad2ant3 1137 . . . 4 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → ((2 · (((2 · 𝑘) + 3) / (𝑘 + 2))) · (((2 · 𝑘) + 1)C𝑘)) = (((2 · (𝑘 + 1)) + 1)C(𝑘 + 1)))
166151, 165breq12d 5056 . . 3 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → ((2 · (2↑(𝑘 + 1))) < ((2 · (((2 · 𝑘) + 3) / (𝑘 + 2))) · (((2 · 𝑘) + 1)C𝑘)) ↔ (2↑((𝑘 + 1) + 1)) < (((2 · (𝑘 + 1)) + 1)C(𝑘 + 1))))
167139, 166mpbid 235 . 2 ((𝜑 ∧ (2↑(𝑘 + 1)) < (((2 · 𝑘) + 1)C𝑘) ∧ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘)) → (2↑((𝑘 + 1) + 1)) < (((2 · (𝑘 + 1)) + 1)C(𝑘 + 1)))
168 2z 12192 . . 3 2 ∈ ℤ
169168a1i 11 . 2 (𝜑 → 2 ∈ ℤ)
170 2ap1caineq.1 . 2 (𝜑𝑁 ∈ ℤ)
171 2ap1caineq.2 . 2 (𝜑 → 2 ≤ 𝑁)
1727, 14, 21, 28, 48, 167, 169, 170, 171uzindd 39676 1 (𝜑 → (2↑(𝑁 + 1)) < (((2 · 𝑁) + 1)C𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2935   class class class wbr 5043  (class class class)co 7202  cc 10710  cr 10711  0cc0 10712  1c1 10713   + caddc 10715   · cmul 10717   < clt 10850  cle 10851   / cdiv 11472  cn 11813  2c2 11868  3c3 11869  4c4 11870  5c5 11871  8c8 11874  0cn0 12073  cz 12159  cdc 12276  +crp 12569  cexp 13618  Ccbc 13851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-4 11878  df-5 11879  df-6 11880  df-7 11881  df-8 11882  df-9 11883  df-n0 12074  df-z 12160  df-dec 12277  df-uz 12422  df-rp 12570  df-fz 13079  df-seq 13558  df-exp 13619  df-fac 13823  df-bc 13852
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator