Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumlessf Structured version   Visualization version   GIF version

Theorem fsumlessf 42793
Description: A shorter sum of nonnegative terms is smaller than a longer one. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
fsumlessf.k 𝑘𝜑
fsumge0.a (𝜑𝐴 ∈ Fin)
fsumge0.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
fsumge0.l ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
fsumless.c (𝜑𝐶𝐴)
Assertion
Ref Expression
fsumlessf (𝜑 → Σ𝑘𝐶 𝐵 ≤ Σ𝑘𝐴 𝐵)
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem fsumlessf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fsumge0.a . . 3 (𝜑𝐴 ∈ Fin)
2 fsumlessf.k . . . . . 6 𝑘𝜑
3 nfv 1922 . . . . . 6 𝑘 𝑗𝐴
42, 3nfan 1907 . . . . 5 𝑘(𝜑𝑗𝐴)
5 nfcsb1v 3836 . . . . . 6 𝑘𝑗 / 𝑘𝐵
65nfel1 2920 . . . . 5 𝑘𝑗 / 𝑘𝐵 ∈ ℝ
74, 6nfim 1904 . . . 4 𝑘((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℝ)
8 eleq1w 2820 . . . . . 6 (𝑘 = 𝑗 → (𝑘𝐴𝑗𝐴))
98anbi2d 632 . . . . 5 (𝑘 = 𝑗 → ((𝜑𝑘𝐴) ↔ (𝜑𝑗𝐴)))
10 csbeq1a 3825 . . . . . 6 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
1110eleq1d 2822 . . . . 5 (𝑘 = 𝑗 → (𝐵 ∈ ℝ ↔ 𝑗 / 𝑘𝐵 ∈ ℝ))
129, 11imbi12d 348 . . . 4 (𝑘 = 𝑗 → (((𝜑𝑘𝐴) → 𝐵 ∈ ℝ) ↔ ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℝ)))
13 fsumge0.b . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
147, 12, 13chvarfv 2238 . . 3 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℝ)
15 nfcv 2904 . . . . . 6 𝑘0
16 nfcv 2904 . . . . . 6 𝑘
1715, 16, 5nfbr 5100 . . . . 5 𝑘0 ≤ 𝑗 / 𝑘𝐵
184, 17nfim 1904 . . . 4 𝑘((𝜑𝑗𝐴) → 0 ≤ 𝑗 / 𝑘𝐵)
1910breq2d 5065 . . . . 5 (𝑘 = 𝑗 → (0 ≤ 𝐵 ↔ 0 ≤ 𝑗 / 𝑘𝐵))
209, 19imbi12d 348 . . . 4 (𝑘 = 𝑗 → (((𝜑𝑘𝐴) → 0 ≤ 𝐵) ↔ ((𝜑𝑗𝐴) → 0 ≤ 𝑗 / 𝑘𝐵)))
21 fsumge0.l . . . 4 ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
2218, 20, 21chvarfv 2238 . . 3 ((𝜑𝑗𝐴) → 0 ≤ 𝑗 / 𝑘𝐵)
23 fsumless.c . . 3 (𝜑𝐶𝐴)
241, 14, 22, 23fsumless 15360 . 2 (𝜑 → Σ𝑗𝐶 𝑗 / 𝑘𝐵 ≤ Σ𝑗𝐴 𝑗 / 𝑘𝐵)
25 nfcv 2904 . . . 4 𝑗𝐶
26 nfcv 2904 . . . 4 𝑘𝐶
27 nfcv 2904 . . . 4 𝑗𝐵
2810, 25, 26, 27, 5cbvsum 15259 . . 3 Σ𝑘𝐶 𝐵 = Σ𝑗𝐶 𝑗 / 𝑘𝐵
29 nfcv 2904 . . . 4 𝑗𝐴
30 nfcv 2904 . . . 4 𝑘𝐴
3110, 29, 30, 27, 5cbvsum 15259 . . 3 Σ𝑘𝐴 𝐵 = Σ𝑗𝐴 𝑗 / 𝑘𝐵
3228, 31breq12i 5062 . 2 𝑘𝐶 𝐵 ≤ Σ𝑘𝐴 𝐵 ↔ Σ𝑗𝐶 𝑗 / 𝑘𝐵 ≤ Σ𝑗𝐴 𝑗 / 𝑘𝐵)
3324, 32sylibr 237 1 (𝜑 → Σ𝑘𝐶 𝐵 ≤ Σ𝑘𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wnf 1791  wcel 2110  csb 3811  wss 3866   class class class wbr 5053  Fincfn 8626  cr 10728  0cc0 10729  cle 10868  Σcsu 15249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-ico 12941  df-fz 13096  df-fzo 13239  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-sum 15250
This theorem is referenced by:  sge0uzfsumgt  43657  sge0reuz  43660
  Copyright terms: Public domain W3C validator