| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fsumlessf | Structured version Visualization version GIF version | ||
| Description: A shorter sum of nonnegative terms is smaller than a longer one. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| Ref | Expression |
|---|---|
| fsumlessf.k | ⊢ Ⅎ𝑘𝜑 |
| fsumge0.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fsumge0.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| fsumge0.l | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) |
| fsumless.c | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| fsumlessf | ⊢ (𝜑 → Σ𝑘 ∈ 𝐶 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumge0.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 2 | fsumlessf.k | . . . . . 6 ⊢ Ⅎ𝑘𝜑 | |
| 3 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑘 𝑗 ∈ 𝐴 | |
| 4 | 2, 3 | nfan 1899 | . . . . 5 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝐴) |
| 5 | nfcsb1v 3875 | . . . . . 6 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 | |
| 6 | 5 | nfel1 2908 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ |
| 7 | 4, 6 | nfim 1896 | . . . 4 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ) |
| 8 | eleq1w 2811 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝐴 ↔ 𝑗 ∈ 𝐴)) | |
| 9 | 8 | anbi2d 630 | . . . . 5 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝑗 ∈ 𝐴))) |
| 10 | csbeq1a 3865 | . . . . . 6 ⊢ (𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) | |
| 11 | 10 | eleq1d 2813 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐵 ∈ ℝ ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ)) |
| 12 | 9, 11 | imbi12d 344 | . . . 4 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ))) |
| 13 | fsumge0.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 14 | 7, 12, 13 | chvarfv 2241 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ) |
| 15 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑘0 | |
| 16 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑘 ≤ | |
| 17 | 15, 16, 5 | nfbr 5139 | . . . . 5 ⊢ Ⅎ𝑘0 ≤ ⦋𝑗 / 𝑘⦌𝐵 |
| 18 | 4, 17 | nfim 1896 | . . . 4 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝐴) → 0 ≤ ⦋𝑗 / 𝑘⦌𝐵) |
| 19 | 10 | breq2d 5104 | . . . . 5 ⊢ (𝑘 = 𝑗 → (0 ≤ 𝐵 ↔ 0 ≤ ⦋𝑗 / 𝑘⦌𝐵)) |
| 20 | 9, 19 | imbi12d 344 | . . . 4 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) ↔ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 0 ≤ ⦋𝑗 / 𝑘⦌𝐵))) |
| 21 | fsumge0.l | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) | |
| 22 | 18, 20, 21 | chvarfv 2241 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 0 ≤ ⦋𝑗 / 𝑘⦌𝐵) |
| 23 | fsumless.c | . . 3 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
| 24 | 1, 14, 22, 23 | fsumless 15703 | . 2 ⊢ (𝜑 → Σ𝑗 ∈ 𝐶 ⦋𝑗 / 𝑘⦌𝐵 ≤ Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵) |
| 25 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑗𝐵 | |
| 26 | 10, 25, 5 | cbvsum 15602 | . . 3 ⊢ Σ𝑘 ∈ 𝐶 𝐵 = Σ𝑗 ∈ 𝐶 ⦋𝑗 / 𝑘⦌𝐵 |
| 27 | 10, 25, 5 | cbvsum 15602 | . . 3 ⊢ Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 |
| 28 | 26, 27 | breq12i 5101 | . 2 ⊢ (Σ𝑘 ∈ 𝐶 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐵 ↔ Σ𝑗 ∈ 𝐶 ⦋𝑗 / 𝑘⦌𝐵 ≤ Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵) |
| 29 | 24, 28 | sylibr 234 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐶 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ⦋csb 3851 ⊆ wss 3903 class class class wbr 5092 Fincfn 8872 ℝcr 11008 0cc0 11009 ≤ cle 11150 Σcsu 15593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-ico 13254 df-fz 13411 df-fzo 13558 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 |
| This theorem is referenced by: sge0uzfsumgt 46425 sge0reuz 46428 |
| Copyright terms: Public domain | W3C validator |