| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fsumlessf | Structured version Visualization version GIF version | ||
| Description: A shorter sum of nonnegative terms is smaller than a longer one. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| Ref | Expression |
|---|---|
| fsumlessf.k | ⊢ Ⅎ𝑘𝜑 |
| fsumge0.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fsumge0.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| fsumge0.l | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) |
| fsumless.c | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| fsumlessf | ⊢ (𝜑 → Σ𝑘 ∈ 𝐶 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumge0.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 2 | fsumlessf.k | . . . . . 6 ⊢ Ⅎ𝑘𝜑 | |
| 3 | nfv 1915 | . . . . . 6 ⊢ Ⅎ𝑘 𝑗 ∈ 𝐴 | |
| 4 | 2, 3 | nfan 1900 | . . . . 5 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝐴) |
| 5 | nfcsb1v 3869 | . . . . . 6 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 | |
| 6 | 5 | nfel1 2911 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ |
| 7 | 4, 6 | nfim 1897 | . . . 4 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ) |
| 8 | eleq1w 2814 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝐴 ↔ 𝑗 ∈ 𝐴)) | |
| 9 | 8 | anbi2d 630 | . . . . 5 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝑗 ∈ 𝐴))) |
| 10 | csbeq1a 3859 | . . . . . 6 ⊢ (𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) | |
| 11 | 10 | eleq1d 2816 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐵 ∈ ℝ ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ)) |
| 12 | 9, 11 | imbi12d 344 | . . . 4 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ))) |
| 13 | fsumge0.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 14 | 7, 12, 13 | chvarfv 2243 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ) |
| 15 | nfcv 2894 | . . . . . 6 ⊢ Ⅎ𝑘0 | |
| 16 | nfcv 2894 | . . . . . 6 ⊢ Ⅎ𝑘 ≤ | |
| 17 | 15, 16, 5 | nfbr 5136 | . . . . 5 ⊢ Ⅎ𝑘0 ≤ ⦋𝑗 / 𝑘⦌𝐵 |
| 18 | 4, 17 | nfim 1897 | . . . 4 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝐴) → 0 ≤ ⦋𝑗 / 𝑘⦌𝐵) |
| 19 | 10 | breq2d 5101 | . . . . 5 ⊢ (𝑘 = 𝑗 → (0 ≤ 𝐵 ↔ 0 ≤ ⦋𝑗 / 𝑘⦌𝐵)) |
| 20 | 9, 19 | imbi12d 344 | . . . 4 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) ↔ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 0 ≤ ⦋𝑗 / 𝑘⦌𝐵))) |
| 21 | fsumge0.l | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) | |
| 22 | 18, 20, 21 | chvarfv 2243 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 0 ≤ ⦋𝑗 / 𝑘⦌𝐵) |
| 23 | fsumless.c | . . 3 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
| 24 | 1, 14, 22, 23 | fsumless 15703 | . 2 ⊢ (𝜑 → Σ𝑗 ∈ 𝐶 ⦋𝑗 / 𝑘⦌𝐵 ≤ Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵) |
| 25 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑗𝐵 | |
| 26 | 10, 25, 5 | cbvsum 15602 | . . 3 ⊢ Σ𝑘 ∈ 𝐶 𝐵 = Σ𝑗 ∈ 𝐶 ⦋𝑗 / 𝑘⦌𝐵 |
| 27 | 10, 25, 5 | cbvsum 15602 | . . 3 ⊢ Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 |
| 28 | 26, 27 | breq12i 5098 | . 2 ⊢ (Σ𝑘 ∈ 𝐶 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐵 ↔ Σ𝑗 ∈ 𝐶 ⦋𝑗 / 𝑘⦌𝐵 ≤ Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵) |
| 29 | 24, 28 | sylibr 234 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐶 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 ⦋csb 3845 ⊆ wss 3897 class class class wbr 5089 Fincfn 8869 ℝcr 11005 0cc0 11006 ≤ cle 11147 Σcsu 15593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-ico 13251 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 |
| This theorem is referenced by: sge0uzfsumgt 46490 sge0reuz 46493 |
| Copyright terms: Public domain | W3C validator |