![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsumlessf | Structured version Visualization version GIF version |
Description: A shorter sum of nonnegative terms is smaller than a longer one. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
Ref | Expression |
---|---|
fsumlessf.k | ⊢ Ⅎ𝑘𝜑 |
fsumge0.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fsumge0.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) |
fsumge0.l | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) |
fsumless.c | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
Ref | Expression |
---|---|
fsumlessf | ⊢ (𝜑 → Σ𝑘 ∈ 𝐶 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumge0.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
2 | fsumlessf.k | . . . . . 6 ⊢ Ⅎ𝑘𝜑 | |
3 | nfv 1909 | . . . . . 6 ⊢ Ⅎ𝑘 𝑗 ∈ 𝐴 | |
4 | 2, 3 | nfan 1894 | . . . . 5 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝐴) |
5 | nfcsb1v 3909 | . . . . . 6 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 | |
6 | 5 | nfel1 2909 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ |
7 | 4, 6 | nfim 1891 | . . . 4 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ) |
8 | eleq1w 2808 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝐴 ↔ 𝑗 ∈ 𝐴)) | |
9 | 8 | anbi2d 628 | . . . . 5 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝑗 ∈ 𝐴))) |
10 | csbeq1a 3898 | . . . . . 6 ⊢ (𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) | |
11 | 10 | eleq1d 2810 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐵 ∈ ℝ ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ)) |
12 | 9, 11 | imbi12d 343 | . . . 4 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ))) |
13 | fsumge0.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
14 | 7, 12, 13 | chvarfv 2228 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ) |
15 | nfcv 2892 | . . . . . 6 ⊢ Ⅎ𝑘0 | |
16 | nfcv 2892 | . . . . . 6 ⊢ Ⅎ𝑘 ≤ | |
17 | 15, 16, 5 | nfbr 5190 | . . . . 5 ⊢ Ⅎ𝑘0 ≤ ⦋𝑗 / 𝑘⦌𝐵 |
18 | 4, 17 | nfim 1891 | . . . 4 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝐴) → 0 ≤ ⦋𝑗 / 𝑘⦌𝐵) |
19 | 10 | breq2d 5155 | . . . . 5 ⊢ (𝑘 = 𝑗 → (0 ≤ 𝐵 ↔ 0 ≤ ⦋𝑗 / 𝑘⦌𝐵)) |
20 | 9, 19 | imbi12d 343 | . . . 4 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) ↔ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 0 ≤ ⦋𝑗 / 𝑘⦌𝐵))) |
21 | fsumge0.l | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) | |
22 | 18, 20, 21 | chvarfv 2228 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 0 ≤ ⦋𝑗 / 𝑘⦌𝐵) |
23 | fsumless.c | . . 3 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
24 | 1, 14, 22, 23 | fsumless 15774 | . 2 ⊢ (𝜑 → Σ𝑗 ∈ 𝐶 ⦋𝑗 / 𝑘⦌𝐵 ≤ Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵) |
25 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑗𝐶 | |
26 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑘𝐶 | |
27 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑗𝐵 | |
28 | 10, 25, 26, 27, 5 | cbvsum 15673 | . . 3 ⊢ Σ𝑘 ∈ 𝐶 𝐵 = Σ𝑗 ∈ 𝐶 ⦋𝑗 / 𝑘⦌𝐵 |
29 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑗𝐴 | |
30 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑘𝐴 | |
31 | 10, 29, 30, 27, 5 | cbvsum 15673 | . . 3 ⊢ Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 |
32 | 28, 31 | breq12i 5152 | . 2 ⊢ (Σ𝑘 ∈ 𝐶 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐵 ↔ Σ𝑗 ∈ 𝐶 ⦋𝑗 / 𝑘⦌𝐵 ≤ Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵) |
33 | 24, 32 | sylibr 233 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐶 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 Ⅎwnf 1777 ∈ wcel 2098 ⦋csb 3884 ⊆ wss 3939 class class class wbr 5143 Fincfn 8962 ℝcr 11137 0cc0 11138 ≤ cle 11279 Σcsu 15664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-inf2 9664 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7991 df-2nd 7992 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-sup 9465 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-n0 12503 df-z 12589 df-uz 12853 df-rp 13007 df-ico 13362 df-fz 13517 df-fzo 13660 df-seq 13999 df-exp 14059 df-hash 14322 df-cj 15078 df-re 15079 df-im 15080 df-sqrt 15214 df-abs 15215 df-clim 15464 df-sum 15665 |
This theorem is referenced by: sge0uzfsumgt 45895 sge0reuz 45898 |
Copyright terms: Public domain | W3C validator |