| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fsumlessf | Structured version Visualization version GIF version | ||
| Description: A shorter sum of nonnegative terms is smaller than a longer one. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| Ref | Expression |
|---|---|
| fsumlessf.k | ⊢ Ⅎ𝑘𝜑 |
| fsumge0.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fsumge0.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| fsumge0.l | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) |
| fsumless.c | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| fsumlessf | ⊢ (𝜑 → Σ𝑘 ∈ 𝐶 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumge0.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 2 | fsumlessf.k | . . . . . 6 ⊢ Ⅎ𝑘𝜑 | |
| 3 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑘 𝑗 ∈ 𝐴 | |
| 4 | 2, 3 | nfan 1899 | . . . . 5 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝐴) |
| 5 | nfcsb1v 3898 | . . . . . 6 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 | |
| 6 | 5 | nfel1 2915 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ |
| 7 | 4, 6 | nfim 1896 | . . . 4 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ) |
| 8 | eleq1w 2817 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝐴 ↔ 𝑗 ∈ 𝐴)) | |
| 9 | 8 | anbi2d 630 | . . . . 5 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝑗 ∈ 𝐴))) |
| 10 | csbeq1a 3888 | . . . . . 6 ⊢ (𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) | |
| 11 | 10 | eleq1d 2819 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐵 ∈ ℝ ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ)) |
| 12 | 9, 11 | imbi12d 344 | . . . 4 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ))) |
| 13 | fsumge0.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 14 | 7, 12, 13 | chvarfv 2240 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ) |
| 15 | nfcv 2898 | . . . . . 6 ⊢ Ⅎ𝑘0 | |
| 16 | nfcv 2898 | . . . . . 6 ⊢ Ⅎ𝑘 ≤ | |
| 17 | 15, 16, 5 | nfbr 5166 | . . . . 5 ⊢ Ⅎ𝑘0 ≤ ⦋𝑗 / 𝑘⦌𝐵 |
| 18 | 4, 17 | nfim 1896 | . . . 4 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝐴) → 0 ≤ ⦋𝑗 / 𝑘⦌𝐵) |
| 19 | 10 | breq2d 5131 | . . . . 5 ⊢ (𝑘 = 𝑗 → (0 ≤ 𝐵 ↔ 0 ≤ ⦋𝑗 / 𝑘⦌𝐵)) |
| 20 | 9, 19 | imbi12d 344 | . . . 4 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) ↔ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 0 ≤ ⦋𝑗 / 𝑘⦌𝐵))) |
| 21 | fsumge0.l | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) | |
| 22 | 18, 20, 21 | chvarfv 2240 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 0 ≤ ⦋𝑗 / 𝑘⦌𝐵) |
| 23 | fsumless.c | . . 3 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
| 24 | 1, 14, 22, 23 | fsumless 15812 | . 2 ⊢ (𝜑 → Σ𝑗 ∈ 𝐶 ⦋𝑗 / 𝑘⦌𝐵 ≤ Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵) |
| 25 | nfcv 2898 | . . . 4 ⊢ Ⅎ𝑗𝐵 | |
| 26 | 10, 25, 5 | cbvsum 15711 | . . 3 ⊢ Σ𝑘 ∈ 𝐶 𝐵 = Σ𝑗 ∈ 𝐶 ⦋𝑗 / 𝑘⦌𝐵 |
| 27 | 10, 25, 5 | cbvsum 15711 | . . 3 ⊢ Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 |
| 28 | 26, 27 | breq12i 5128 | . 2 ⊢ (Σ𝑘 ∈ 𝐶 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐵 ↔ Σ𝑗 ∈ 𝐶 ⦋𝑗 / 𝑘⦌𝐵 ≤ Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵) |
| 29 | 24, 28 | sylibr 234 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐶 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 ⦋csb 3874 ⊆ wss 3926 class class class wbr 5119 Fincfn 8959 ℝcr 11128 0cc0 11129 ≤ cle 11270 Σcsu 15702 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-ico 13368 df-fz 13525 df-fzo 13672 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-sum 15703 |
| This theorem is referenced by: sge0uzfsumgt 46473 sge0reuz 46476 |
| Copyright terms: Public domain | W3C validator |