| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > upgrwlkcompim | Structured version Visualization version GIF version | ||
| Description: Implications for the properties of the components of a walk in a pseudograph. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 14-Apr-2021.) |
| Ref | Expression |
|---|---|
| upgrwlkcompim.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| upgrwlkcompim.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| upgrwlkcompim.1 | ⊢ 𝐹 = (1st ‘𝑊) |
| upgrwlkcompim.2 | ⊢ 𝑃 = (2nd ‘𝑊) |
| Ref | Expression |
|---|---|
| upgrwlkcompim | ⊢ ((𝐺 ∈ UPGraph ∧ 𝑊 ∈ (Walks‘𝐺)) → (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkcpr 29605 | . . . 4 ⊢ (𝑊 ∈ (Walks‘𝐺) ↔ (1st ‘𝑊)(Walks‘𝐺)(2nd ‘𝑊)) | |
| 2 | upgrwlkcompim.1 | . . . . 5 ⊢ 𝐹 = (1st ‘𝑊) | |
| 3 | upgrwlkcompim.2 | . . . . 5 ⊢ 𝑃 = (2nd ‘𝑊) | |
| 4 | 2, 3 | breq12i 5100 | . . . 4 ⊢ (𝐹(Walks‘𝐺)𝑃 ↔ (1st ‘𝑊)(Walks‘𝐺)(2nd ‘𝑊)) |
| 5 | 1, 4 | bitr4i 278 | . . 3 ⊢ (𝑊 ∈ (Walks‘𝐺) ↔ 𝐹(Walks‘𝐺)𝑃) |
| 6 | upgrwlkcompim.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 7 | upgrwlkcompim.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 8 | 6, 7 | upgriswlk 29617 | . . . 4 ⊢ (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
| 9 | 8 | biimpd 229 | . . 3 ⊢ (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
| 10 | 5, 9 | biimtrid 242 | . 2 ⊢ (𝐺 ∈ UPGraph → (𝑊 ∈ (Walks‘𝐺) → (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
| 11 | 10 | imp 406 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑊 ∈ (Walks‘𝐺)) → (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {cpr 4578 class class class wbr 5091 dom cdm 5616 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 1st c1st 7919 2nd c2nd 7920 0cc0 11003 1c1 11004 + caddc 11006 ...cfz 13404 ..^cfzo 13551 ♯chash 14234 Word cword 14417 Vtxcvtx 28972 iEdgciedg 28973 UPGraphcupgr 29056 Walkscwlks 29573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9791 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-n0 12379 df-xnn0 12452 df-z 12466 df-uz 12730 df-fz 13405 df-fzo 13552 df-hash 14235 df-word 14418 df-edg 29024 df-uhgr 29034 df-upgr 29058 df-wlks 29576 |
| This theorem is referenced by: uspgr2wlkeq 29622 upgrclwlkcompim 29757 |
| Copyright terms: Public domain | W3C validator |