Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  divcnvlin Structured version   Visualization version   GIF version

Theorem divcnvlin 33604
Description: Limit of the ratio of two linear functions. (Contributed by Scott Fenton, 17-Dec-2017.)
Hypotheses
Ref Expression
divcnvlin.1 𝑍 = (ℤ𝑀)
divcnvlin.2 (𝜑𝑀 ∈ ℤ)
divcnvlin.3 (𝜑𝐴 ∈ ℂ)
divcnvlin.4 (𝜑𝐵 ∈ ℤ)
divcnvlin.5 (𝜑𝐹𝑉)
divcnvlin.6 ((𝜑𝑘𝑍) → (𝐹𝑘) = ((𝑘 + 𝐴) / (𝑘 + 𝐵)))
Assertion
Ref Expression
divcnvlin (𝜑𝐹 ⇝ 1)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝑉(𝑘)

Proof of Theorem divcnvlin
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 nncn 11911 . . . . . . . 8 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
21adantl 481 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
3 divcnvlin.3 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
4 divcnvlin.4 . . . . . . . . . 10 (𝜑𝐵 ∈ ℤ)
54zcnd 12356 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
63, 5subcld 11262 . . . . . . . 8 (𝜑 → (𝐴𝐵) ∈ ℂ)
76adantr 480 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝐴𝐵) ∈ ℂ)
8 nnne0 11937 . . . . . . . 8 (𝑚 ∈ ℕ → 𝑚 ≠ 0)
98adantl 481 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → 𝑚 ≠ 0)
102, 7, 2, 9divdird 11719 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → ((𝑚 + (𝐴𝐵)) / 𝑚) = ((𝑚 / 𝑚) + ((𝐴𝐵) / 𝑚)))
112, 9dividd 11679 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝑚 / 𝑚) = 1)
1211oveq1d 7270 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → ((𝑚 / 𝑚) + ((𝐴𝐵) / 𝑚)) = (1 + ((𝐴𝐵) / 𝑚)))
1310, 12eqtrd 2778 . . . . 5 ((𝜑𝑚 ∈ ℕ) → ((𝑚 + (𝐴𝐵)) / 𝑚) = (1 + ((𝐴𝐵) / 𝑚)))
1413mpteq2dva 5170 . . . 4 (𝜑 → (𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) = (𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚))))
15 nnuz 12550 . . . . 5 ℕ = (ℤ‘1)
16 1zzd 12281 . . . . 5 (𝜑 → 1 ∈ ℤ)
17 divcnv 15493 . . . . . 6 ((𝐴𝐵) ∈ ℂ → (𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚)) ⇝ 0)
186, 17syl 17 . . . . 5 (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚)) ⇝ 0)
19 1cnd 10901 . . . . 5 (𝜑 → 1 ∈ ℂ)
20 nnex 11909 . . . . . . 7 ℕ ∈ V
2120mptex 7081 . . . . . 6 (𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚))) ∈ V
2221a1i 11 . . . . 5 (𝜑 → (𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚))) ∈ V)
237, 2, 9divcld 11681 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → ((𝐴𝐵) / 𝑚) ∈ ℂ)
2423fmpttd 6971 . . . . . 6 (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚)):ℕ⟶ℂ)
2524ffvelrnda 6943 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚))‘𝑘) ∈ ℂ)
26 oveq2 7263 . . . . . . . . 9 (𝑚 = 𝑘 → ((𝐴𝐵) / 𝑚) = ((𝐴𝐵) / 𝑘))
2726oveq2d 7271 . . . . . . . 8 (𝑚 = 𝑘 → (1 + ((𝐴𝐵) / 𝑚)) = (1 + ((𝐴𝐵) / 𝑘)))
28 eqid 2738 . . . . . . . 8 (𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚))) = (𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚)))
29 ovex 7288 . . . . . . . 8 (1 + ((𝐴𝐵) / 𝑘)) ∈ V
3027, 28, 29fvmpt 6857 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚)))‘𝑘) = (1 + ((𝐴𝐵) / 𝑘)))
31 eqid 2738 . . . . . . . . 9 (𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚)) = (𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚))
32 ovex 7288 . . . . . . . . 9 ((𝐴𝐵) / 𝑘) ∈ V
3326, 31, 32fvmpt 6857 . . . . . . . 8 (𝑘 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚))‘𝑘) = ((𝐴𝐵) / 𝑘))
3433oveq2d 7271 . . . . . . 7 (𝑘 ∈ ℕ → (1 + ((𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚))‘𝑘)) = (1 + ((𝐴𝐵) / 𝑘)))
3530, 34eqtr4d 2781 . . . . . 6 (𝑘 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚)))‘𝑘) = (1 + ((𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚))‘𝑘)))
3635adantl 481 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚)))‘𝑘) = (1 + ((𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚))‘𝑘)))
3715, 16, 18, 19, 22, 25, 36climaddc2 15273 . . . 4 (𝜑 → (𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚))) ⇝ (1 + 0))
3814, 37eqbrtrd 5092 . . 3 (𝜑 → (𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ (1 + 0))
39 nnssz 12270 . . . . . . 7 ℕ ⊆ ℤ
40 resmpt 5934 . . . . . . 7 (ℕ ⊆ ℤ → ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ ℕ) = (𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)))
4139, 40ax-mp 5 . . . . . 6 ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ ℕ) = (𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚))
4215reseq2i 5877 . . . . . 6 ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ ℕ) = ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ (ℤ‘1))
4341, 42eqtr3i 2768 . . . . 5 (𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) = ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ (ℤ‘1))
44 1p0e1 12027 . . . . 5 (1 + 0) = 1
4543, 44breq12i 5079 . . . 4 ((𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ (1 + 0) ↔ ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ (ℤ‘1)) ⇝ 1)
46 1z 12280 . . . . 5 1 ∈ ℤ
47 zex 12258 . . . . . 6 ℤ ∈ V
4847mptex 7081 . . . . 5 (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ∈ V
49 climres 15212 . . . . 5 ((1 ∈ ℤ ∧ (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ∈ V) → (((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ (ℤ‘1)) ⇝ 1 ↔ (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ 1))
5046, 48, 49mp2an 688 . . . 4 (((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ (ℤ‘1)) ⇝ 1 ↔ (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ 1)
5145, 50bitri 274 . . 3 ((𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ (1 + 0) ↔ (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ 1)
5238, 51sylib 217 . 2 (𝜑 → (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ 1)
53 divcnvlin.1 . . 3 𝑍 = (ℤ𝑀)
54 divcnvlin.2 . . 3 (𝜑𝑀 ∈ ℤ)
55 divcnvlin.5 . . 3 (𝜑𝐹𝑉)
5648a1i 11 . . 3 (𝜑 → (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ∈ V)
57 eluzelz 12521 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
5857, 53eleq2s 2857 . . . . . . . 8 (𝑘𝑍𝑘 ∈ ℤ)
5958zcnd 12356 . . . . . . 7 (𝑘𝑍𝑘 ∈ ℂ)
6059adantl 481 . . . . . 6 ((𝜑𝑘𝑍) → 𝑘 ∈ ℂ)
614adantr 480 . . . . . . 7 ((𝜑𝑘𝑍) → 𝐵 ∈ ℤ)
6261zcnd 12356 . . . . . 6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
633adantr 480 . . . . . 6 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
6460, 62, 63ppncand 11302 . . . . 5 ((𝜑𝑘𝑍) → ((𝑘 + 𝐵) + (𝐴𝐵)) = (𝑘 + 𝐴))
6564oveq1d 7270 . . . 4 ((𝜑𝑘𝑍) → (((𝑘 + 𝐵) + (𝐴𝐵)) / (𝑘 + 𝐵)) = ((𝑘 + 𝐴) / (𝑘 + 𝐵)))
6658adantl 481 . . . . . 6 ((𝜑𝑘𝑍) → 𝑘 ∈ ℤ)
6766, 61zaddcld 12359 . . . . 5 ((𝜑𝑘𝑍) → (𝑘 + 𝐵) ∈ ℤ)
68 oveq1 7262 . . . . . . 7 (𝑚 = (𝑘 + 𝐵) → (𝑚 + (𝐴𝐵)) = ((𝑘 + 𝐵) + (𝐴𝐵)))
69 id 22 . . . . . . 7 (𝑚 = (𝑘 + 𝐵) → 𝑚 = (𝑘 + 𝐵))
7068, 69oveq12d 7273 . . . . . 6 (𝑚 = (𝑘 + 𝐵) → ((𝑚 + (𝐴𝐵)) / 𝑚) = (((𝑘 + 𝐵) + (𝐴𝐵)) / (𝑘 + 𝐵)))
71 eqid 2738 . . . . . 6 (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) = (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚))
72 ovex 7288 . . . . . 6 (((𝑘 + 𝐵) + (𝐴𝐵)) / (𝑘 + 𝐵)) ∈ V
7370, 71, 72fvmpt 6857 . . . . 5 ((𝑘 + 𝐵) ∈ ℤ → ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚))‘(𝑘 + 𝐵)) = (((𝑘 + 𝐵) + (𝐴𝐵)) / (𝑘 + 𝐵)))
7467, 73syl 17 . . . 4 ((𝜑𝑘𝑍) → ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚))‘(𝑘 + 𝐵)) = (((𝑘 + 𝐵) + (𝐴𝐵)) / (𝑘 + 𝐵)))
75 divcnvlin.6 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) = ((𝑘 + 𝐴) / (𝑘 + 𝐵)))
7665, 74, 753eqtr4d 2788 . . 3 ((𝜑𝑘𝑍) → ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚))‘(𝑘 + 𝐵)) = (𝐹𝑘))
7753, 54, 4, 55, 56, 76climshft2 15219 . 2 (𝜑 → (𝐹 ⇝ 1 ↔ (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ 1))
7852, 77mpbird 256 1 (𝜑𝐹 ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  wss 3883   class class class wbr 5070  cmpt 5153  cres 5582  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805  cmin 11135   / cdiv 11562  cn 11903  cz 12249  cuz 12511  cli 15121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fl 13440  df-seq 13650  df-exp 13711  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126
This theorem is referenced by:  faclimlem2  33616  faclim2  33620
  Copyright terms: Public domain W3C validator