Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  divcnvlin Structured version   Visualization version   GIF version

Theorem divcnvlin 35849
Description: Limit of the ratio of two linear functions. (Contributed by Scott Fenton, 17-Dec-2017.)
Hypotheses
Ref Expression
divcnvlin.1 𝑍 = (ℤ𝑀)
divcnvlin.2 (𝜑𝑀 ∈ ℤ)
divcnvlin.3 (𝜑𝐴 ∈ ℂ)
divcnvlin.4 (𝜑𝐵 ∈ ℤ)
divcnvlin.5 (𝜑𝐹𝑉)
divcnvlin.6 ((𝜑𝑘𝑍) → (𝐹𝑘) = ((𝑘 + 𝐴) / (𝑘 + 𝐵)))
Assertion
Ref Expression
divcnvlin (𝜑𝐹 ⇝ 1)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝑉(𝑘)

Proof of Theorem divcnvlin
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 nncn 12144 . . . . . . . 8 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
21adantl 481 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
3 divcnvlin.3 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
4 divcnvlin.4 . . . . . . . . . 10 (𝜑𝐵 ∈ ℤ)
54zcnd 12588 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
63, 5subcld 11483 . . . . . . . 8 (𝜑 → (𝐴𝐵) ∈ ℂ)
76adantr 480 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝐴𝐵) ∈ ℂ)
8 nnne0 12170 . . . . . . . 8 (𝑚 ∈ ℕ → 𝑚 ≠ 0)
98adantl 481 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → 𝑚 ≠ 0)
102, 7, 2, 9divdird 11946 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → ((𝑚 + (𝐴𝐵)) / 𝑚) = ((𝑚 / 𝑚) + ((𝐴𝐵) / 𝑚)))
112, 9dividd 11906 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝑚 / 𝑚) = 1)
1211oveq1d 7370 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → ((𝑚 / 𝑚) + ((𝐴𝐵) / 𝑚)) = (1 + ((𝐴𝐵) / 𝑚)))
1310, 12eqtrd 2768 . . . . 5 ((𝜑𝑚 ∈ ℕ) → ((𝑚 + (𝐴𝐵)) / 𝑚) = (1 + ((𝐴𝐵) / 𝑚)))
1413mpteq2dva 5188 . . . 4 (𝜑 → (𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) = (𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚))))
15 nnuz 12781 . . . . 5 ℕ = (ℤ‘1)
16 1zzd 12513 . . . . 5 (𝜑 → 1 ∈ ℤ)
17 divcnv 15767 . . . . . 6 ((𝐴𝐵) ∈ ℂ → (𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚)) ⇝ 0)
186, 17syl 17 . . . . 5 (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚)) ⇝ 0)
19 1cnd 11118 . . . . 5 (𝜑 → 1 ∈ ℂ)
20 nnex 12142 . . . . . . 7 ℕ ∈ V
2120mptex 7166 . . . . . 6 (𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚))) ∈ V
2221a1i 11 . . . . 5 (𝜑 → (𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚))) ∈ V)
237, 2, 9divcld 11908 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → ((𝐴𝐵) / 𝑚) ∈ ℂ)
2423fmpttd 7057 . . . . . 6 (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚)):ℕ⟶ℂ)
2524ffvelcdmda 7026 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚))‘𝑘) ∈ ℂ)
26 oveq2 7363 . . . . . . . . 9 (𝑚 = 𝑘 → ((𝐴𝐵) / 𝑚) = ((𝐴𝐵) / 𝑘))
2726oveq2d 7371 . . . . . . . 8 (𝑚 = 𝑘 → (1 + ((𝐴𝐵) / 𝑚)) = (1 + ((𝐴𝐵) / 𝑘)))
28 eqid 2733 . . . . . . . 8 (𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚))) = (𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚)))
29 ovex 7388 . . . . . . . 8 (1 + ((𝐴𝐵) / 𝑘)) ∈ V
3027, 28, 29fvmpt 6938 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚)))‘𝑘) = (1 + ((𝐴𝐵) / 𝑘)))
31 eqid 2733 . . . . . . . . 9 (𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚)) = (𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚))
32 ovex 7388 . . . . . . . . 9 ((𝐴𝐵) / 𝑘) ∈ V
3326, 31, 32fvmpt 6938 . . . . . . . 8 (𝑘 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚))‘𝑘) = ((𝐴𝐵) / 𝑘))
3433oveq2d 7371 . . . . . . 7 (𝑘 ∈ ℕ → (1 + ((𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚))‘𝑘)) = (1 + ((𝐴𝐵) / 𝑘)))
3530, 34eqtr4d 2771 . . . . . 6 (𝑘 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚)))‘𝑘) = (1 + ((𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚))‘𝑘)))
3635adantl 481 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚)))‘𝑘) = (1 + ((𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚))‘𝑘)))
3715, 16, 18, 19, 22, 25, 36climaddc2 15550 . . . 4 (𝜑 → (𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚))) ⇝ (1 + 0))
3814, 37eqbrtrd 5117 . . 3 (𝜑 → (𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ (1 + 0))
39 nnssz 12501 . . . . . . 7 ℕ ⊆ ℤ
40 resmpt 5993 . . . . . . 7 (ℕ ⊆ ℤ → ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ ℕ) = (𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)))
4139, 40ax-mp 5 . . . . . 6 ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ ℕ) = (𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚))
4215reseq2i 5932 . . . . . 6 ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ ℕ) = ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ (ℤ‘1))
4341, 42eqtr3i 2758 . . . . 5 (𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) = ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ (ℤ‘1))
44 1p0e1 12255 . . . . 5 (1 + 0) = 1
4543, 44breq12i 5104 . . . 4 ((𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ (1 + 0) ↔ ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ (ℤ‘1)) ⇝ 1)
46 1z 12512 . . . . 5 1 ∈ ℤ
47 zex 12488 . . . . . 6 ℤ ∈ V
4847mptex 7166 . . . . 5 (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ∈ V
49 climres 15489 . . . . 5 ((1 ∈ ℤ ∧ (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ∈ V) → (((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ (ℤ‘1)) ⇝ 1 ↔ (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ 1))
5046, 48, 49mp2an 692 . . . 4 (((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ (ℤ‘1)) ⇝ 1 ↔ (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ 1)
5145, 50bitri 275 . . 3 ((𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ (1 + 0) ↔ (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ 1)
5238, 51sylib 218 . 2 (𝜑 → (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ 1)
53 divcnvlin.1 . . 3 𝑍 = (ℤ𝑀)
54 divcnvlin.2 . . 3 (𝜑𝑀 ∈ ℤ)
55 divcnvlin.5 . . 3 (𝜑𝐹𝑉)
5648a1i 11 . . 3 (𝜑 → (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ∈ V)
57 eluzelz 12752 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
5857, 53eleq2s 2851 . . . . . . . 8 (𝑘𝑍𝑘 ∈ ℤ)
5958zcnd 12588 . . . . . . 7 (𝑘𝑍𝑘 ∈ ℂ)
6059adantl 481 . . . . . 6 ((𝜑𝑘𝑍) → 𝑘 ∈ ℂ)
614adantr 480 . . . . . . 7 ((𝜑𝑘𝑍) → 𝐵 ∈ ℤ)
6261zcnd 12588 . . . . . 6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
633adantr 480 . . . . . 6 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
6460, 62, 63ppncand 11523 . . . . 5 ((𝜑𝑘𝑍) → ((𝑘 + 𝐵) + (𝐴𝐵)) = (𝑘 + 𝐴))
6564oveq1d 7370 . . . 4 ((𝜑𝑘𝑍) → (((𝑘 + 𝐵) + (𝐴𝐵)) / (𝑘 + 𝐵)) = ((𝑘 + 𝐴) / (𝑘 + 𝐵)))
6658adantl 481 . . . . . 6 ((𝜑𝑘𝑍) → 𝑘 ∈ ℤ)
6766, 61zaddcld 12591 . . . . 5 ((𝜑𝑘𝑍) → (𝑘 + 𝐵) ∈ ℤ)
68 oveq1 7362 . . . . . . 7 (𝑚 = (𝑘 + 𝐵) → (𝑚 + (𝐴𝐵)) = ((𝑘 + 𝐵) + (𝐴𝐵)))
69 id 22 . . . . . . 7 (𝑚 = (𝑘 + 𝐵) → 𝑚 = (𝑘 + 𝐵))
7068, 69oveq12d 7373 . . . . . 6 (𝑚 = (𝑘 + 𝐵) → ((𝑚 + (𝐴𝐵)) / 𝑚) = (((𝑘 + 𝐵) + (𝐴𝐵)) / (𝑘 + 𝐵)))
71 eqid 2733 . . . . . 6 (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) = (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚))
72 ovex 7388 . . . . . 6 (((𝑘 + 𝐵) + (𝐴𝐵)) / (𝑘 + 𝐵)) ∈ V
7370, 71, 72fvmpt 6938 . . . . 5 ((𝑘 + 𝐵) ∈ ℤ → ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚))‘(𝑘 + 𝐵)) = (((𝑘 + 𝐵) + (𝐴𝐵)) / (𝑘 + 𝐵)))
7467, 73syl 17 . . . 4 ((𝜑𝑘𝑍) → ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚))‘(𝑘 + 𝐵)) = (((𝑘 + 𝐵) + (𝐴𝐵)) / (𝑘 + 𝐵)))
75 divcnvlin.6 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) = ((𝑘 + 𝐴) / (𝑘 + 𝐵)))
7665, 74, 753eqtr4d 2778 . . 3 ((𝜑𝑘𝑍) → ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚))‘(𝑘 + 𝐵)) = (𝐹𝑘))
7753, 54, 4, 55, 56, 76climshft2 15496 . 2 (𝜑 → (𝐹 ⇝ 1 ↔ (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ 1))
7852, 77mpbird 257 1 (𝜑𝐹 ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  Vcvv 3437  wss 3898   class class class wbr 5095  cmpt 5176  cres 5623  cfv 6489  (class class class)co 7355  cc 11015  0cc0 11017  1c1 11018   + caddc 11020  cmin 11355   / cdiv 11785  cn 12136  cz 12479  cuz 12742  cli 15398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-pm 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9337  df-inf 9338  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-n0 12393  df-z 12480  df-uz 12743  df-rp 12897  df-fl 13703  df-seq 13916  df-exp 13976  df-shft 14981  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-clim 15402  df-rlim 15403
This theorem is referenced by:  faclimlem2  35860  faclim2  35864
  Copyright terms: Public domain W3C validator