Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  divcnvlin Structured version   Visualization version   GIF version

Theorem divcnvlin 35755
Description: Limit of the ratio of two linear functions. (Contributed by Scott Fenton, 17-Dec-2017.)
Hypotheses
Ref Expression
divcnvlin.1 𝑍 = (ℤ𝑀)
divcnvlin.2 (𝜑𝑀 ∈ ℤ)
divcnvlin.3 (𝜑𝐴 ∈ ℂ)
divcnvlin.4 (𝜑𝐵 ∈ ℤ)
divcnvlin.5 (𝜑𝐹𝑉)
divcnvlin.6 ((𝜑𝑘𝑍) → (𝐹𝑘) = ((𝑘 + 𝐴) / (𝑘 + 𝐵)))
Assertion
Ref Expression
divcnvlin (𝜑𝐹 ⇝ 1)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝑉(𝑘)

Proof of Theorem divcnvlin
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 nncn 12253 . . . . . . . 8 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
21adantl 481 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
3 divcnvlin.3 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
4 divcnvlin.4 . . . . . . . . . 10 (𝜑𝐵 ∈ ℤ)
54zcnd 12703 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
63, 5subcld 11599 . . . . . . . 8 (𝜑 → (𝐴𝐵) ∈ ℂ)
76adantr 480 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝐴𝐵) ∈ ℂ)
8 nnne0 12279 . . . . . . . 8 (𝑚 ∈ ℕ → 𝑚 ≠ 0)
98adantl 481 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → 𝑚 ≠ 0)
102, 7, 2, 9divdird 12060 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → ((𝑚 + (𝐴𝐵)) / 𝑚) = ((𝑚 / 𝑚) + ((𝐴𝐵) / 𝑚)))
112, 9dividd 12020 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝑚 / 𝑚) = 1)
1211oveq1d 7425 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → ((𝑚 / 𝑚) + ((𝐴𝐵) / 𝑚)) = (1 + ((𝐴𝐵) / 𝑚)))
1310, 12eqtrd 2771 . . . . 5 ((𝜑𝑚 ∈ ℕ) → ((𝑚 + (𝐴𝐵)) / 𝑚) = (1 + ((𝐴𝐵) / 𝑚)))
1413mpteq2dva 5219 . . . 4 (𝜑 → (𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) = (𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚))))
15 nnuz 12900 . . . . 5 ℕ = (ℤ‘1)
16 1zzd 12628 . . . . 5 (𝜑 → 1 ∈ ℤ)
17 divcnv 15874 . . . . . 6 ((𝐴𝐵) ∈ ℂ → (𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚)) ⇝ 0)
186, 17syl 17 . . . . 5 (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚)) ⇝ 0)
19 1cnd 11235 . . . . 5 (𝜑 → 1 ∈ ℂ)
20 nnex 12251 . . . . . . 7 ℕ ∈ V
2120mptex 7220 . . . . . 6 (𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚))) ∈ V
2221a1i 11 . . . . 5 (𝜑 → (𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚))) ∈ V)
237, 2, 9divcld 12022 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → ((𝐴𝐵) / 𝑚) ∈ ℂ)
2423fmpttd 7110 . . . . . 6 (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚)):ℕ⟶ℂ)
2524ffvelcdmda 7079 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚))‘𝑘) ∈ ℂ)
26 oveq2 7418 . . . . . . . . 9 (𝑚 = 𝑘 → ((𝐴𝐵) / 𝑚) = ((𝐴𝐵) / 𝑘))
2726oveq2d 7426 . . . . . . . 8 (𝑚 = 𝑘 → (1 + ((𝐴𝐵) / 𝑚)) = (1 + ((𝐴𝐵) / 𝑘)))
28 eqid 2736 . . . . . . . 8 (𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚))) = (𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚)))
29 ovex 7443 . . . . . . . 8 (1 + ((𝐴𝐵) / 𝑘)) ∈ V
3027, 28, 29fvmpt 6991 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚)))‘𝑘) = (1 + ((𝐴𝐵) / 𝑘)))
31 eqid 2736 . . . . . . . . 9 (𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚)) = (𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚))
32 ovex 7443 . . . . . . . . 9 ((𝐴𝐵) / 𝑘) ∈ V
3326, 31, 32fvmpt 6991 . . . . . . . 8 (𝑘 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚))‘𝑘) = ((𝐴𝐵) / 𝑘))
3433oveq2d 7426 . . . . . . 7 (𝑘 ∈ ℕ → (1 + ((𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚))‘𝑘)) = (1 + ((𝐴𝐵) / 𝑘)))
3530, 34eqtr4d 2774 . . . . . 6 (𝑘 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚)))‘𝑘) = (1 + ((𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚))‘𝑘)))
3635adantl 481 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚)))‘𝑘) = (1 + ((𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚))‘𝑘)))
3715, 16, 18, 19, 22, 25, 36climaddc2 15657 . . . 4 (𝜑 → (𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚))) ⇝ (1 + 0))
3814, 37eqbrtrd 5146 . . 3 (𝜑 → (𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ (1 + 0))
39 nnssz 12615 . . . . . . 7 ℕ ⊆ ℤ
40 resmpt 6029 . . . . . . 7 (ℕ ⊆ ℤ → ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ ℕ) = (𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)))
4139, 40ax-mp 5 . . . . . 6 ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ ℕ) = (𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚))
4215reseq2i 5968 . . . . . 6 ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ ℕ) = ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ (ℤ‘1))
4341, 42eqtr3i 2761 . . . . 5 (𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) = ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ (ℤ‘1))
44 1p0e1 12369 . . . . 5 (1 + 0) = 1
4543, 44breq12i 5133 . . . 4 ((𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ (1 + 0) ↔ ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ (ℤ‘1)) ⇝ 1)
46 1z 12627 . . . . 5 1 ∈ ℤ
47 zex 12602 . . . . . 6 ℤ ∈ V
4847mptex 7220 . . . . 5 (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ∈ V
49 climres 15596 . . . . 5 ((1 ∈ ℤ ∧ (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ∈ V) → (((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ (ℤ‘1)) ⇝ 1 ↔ (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ 1))
5046, 48, 49mp2an 692 . . . 4 (((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ (ℤ‘1)) ⇝ 1 ↔ (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ 1)
5145, 50bitri 275 . . 3 ((𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ (1 + 0) ↔ (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ 1)
5238, 51sylib 218 . 2 (𝜑 → (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ 1)
53 divcnvlin.1 . . 3 𝑍 = (ℤ𝑀)
54 divcnvlin.2 . . 3 (𝜑𝑀 ∈ ℤ)
55 divcnvlin.5 . . 3 (𝜑𝐹𝑉)
5648a1i 11 . . 3 (𝜑 → (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ∈ V)
57 eluzelz 12867 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
5857, 53eleq2s 2853 . . . . . . . 8 (𝑘𝑍𝑘 ∈ ℤ)
5958zcnd 12703 . . . . . . 7 (𝑘𝑍𝑘 ∈ ℂ)
6059adantl 481 . . . . . 6 ((𝜑𝑘𝑍) → 𝑘 ∈ ℂ)
614adantr 480 . . . . . . 7 ((𝜑𝑘𝑍) → 𝐵 ∈ ℤ)
6261zcnd 12703 . . . . . 6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
633adantr 480 . . . . . 6 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
6460, 62, 63ppncand 11639 . . . . 5 ((𝜑𝑘𝑍) → ((𝑘 + 𝐵) + (𝐴𝐵)) = (𝑘 + 𝐴))
6564oveq1d 7425 . . . 4 ((𝜑𝑘𝑍) → (((𝑘 + 𝐵) + (𝐴𝐵)) / (𝑘 + 𝐵)) = ((𝑘 + 𝐴) / (𝑘 + 𝐵)))
6658adantl 481 . . . . . 6 ((𝜑𝑘𝑍) → 𝑘 ∈ ℤ)
6766, 61zaddcld 12706 . . . . 5 ((𝜑𝑘𝑍) → (𝑘 + 𝐵) ∈ ℤ)
68 oveq1 7417 . . . . . . 7 (𝑚 = (𝑘 + 𝐵) → (𝑚 + (𝐴𝐵)) = ((𝑘 + 𝐵) + (𝐴𝐵)))
69 id 22 . . . . . . 7 (𝑚 = (𝑘 + 𝐵) → 𝑚 = (𝑘 + 𝐵))
7068, 69oveq12d 7428 . . . . . 6 (𝑚 = (𝑘 + 𝐵) → ((𝑚 + (𝐴𝐵)) / 𝑚) = (((𝑘 + 𝐵) + (𝐴𝐵)) / (𝑘 + 𝐵)))
71 eqid 2736 . . . . . 6 (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) = (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚))
72 ovex 7443 . . . . . 6 (((𝑘 + 𝐵) + (𝐴𝐵)) / (𝑘 + 𝐵)) ∈ V
7370, 71, 72fvmpt 6991 . . . . 5 ((𝑘 + 𝐵) ∈ ℤ → ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚))‘(𝑘 + 𝐵)) = (((𝑘 + 𝐵) + (𝐴𝐵)) / (𝑘 + 𝐵)))
7467, 73syl 17 . . . 4 ((𝜑𝑘𝑍) → ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚))‘(𝑘 + 𝐵)) = (((𝑘 + 𝐵) + (𝐴𝐵)) / (𝑘 + 𝐵)))
75 divcnvlin.6 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) = ((𝑘 + 𝐴) / (𝑘 + 𝐵)))
7665, 74, 753eqtr4d 2781 . . 3 ((𝜑𝑘𝑍) → ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚))‘(𝑘 + 𝐵)) = (𝐹𝑘))
7753, 54, 4, 55, 56, 76climshft2 15603 . 2 (𝜑 → (𝐹 ⇝ 1 ↔ (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ 1))
7852, 77mpbird 257 1 (𝜑𝐹 ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933  Vcvv 3464  wss 3931   class class class wbr 5124  cmpt 5206  cres 5661  cfv 6536  (class class class)co 7410  cc 11132  0cc0 11134  1c1 11135   + caddc 11137  cmin 11471   / cdiv 11899  cn 12245  cz 12593  cuz 12857  cli 15505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fl 13814  df-seq 14025  df-exp 14085  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-rlim 15510
This theorem is referenced by:  faclimlem2  35766  faclim2  35770
  Copyright terms: Public domain W3C validator