Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  divcnvlin Structured version   Visualization version   GIF version

Theorem divcnvlin 35555
Description: Limit of the ratio of two linear functions. (Contributed by Scott Fenton, 17-Dec-2017.)
Hypotheses
Ref Expression
divcnvlin.1 𝑍 = (ℤ𝑀)
divcnvlin.2 (𝜑𝑀 ∈ ℤ)
divcnvlin.3 (𝜑𝐴 ∈ ℂ)
divcnvlin.4 (𝜑𝐵 ∈ ℤ)
divcnvlin.5 (𝜑𝐹𝑉)
divcnvlin.6 ((𝜑𝑘𝑍) → (𝐹𝑘) = ((𝑘 + 𝐴) / (𝑘 + 𝐵)))
Assertion
Ref Expression
divcnvlin (𝜑𝐹 ⇝ 1)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝑉(𝑘)

Proof of Theorem divcnvlin
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 nncn 12272 . . . . . . . 8 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
21adantl 480 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
3 divcnvlin.3 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
4 divcnvlin.4 . . . . . . . . . 10 (𝜑𝐵 ∈ ℤ)
54zcnd 12719 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
63, 5subcld 11621 . . . . . . . 8 (𝜑 → (𝐴𝐵) ∈ ℂ)
76adantr 479 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝐴𝐵) ∈ ℂ)
8 nnne0 12298 . . . . . . . 8 (𝑚 ∈ ℕ → 𝑚 ≠ 0)
98adantl 480 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → 𝑚 ≠ 0)
102, 7, 2, 9divdird 12079 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → ((𝑚 + (𝐴𝐵)) / 𝑚) = ((𝑚 / 𝑚) + ((𝐴𝐵) / 𝑚)))
112, 9dividd 12039 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝑚 / 𝑚) = 1)
1211oveq1d 7439 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → ((𝑚 / 𝑚) + ((𝐴𝐵) / 𝑚)) = (1 + ((𝐴𝐵) / 𝑚)))
1310, 12eqtrd 2766 . . . . 5 ((𝜑𝑚 ∈ ℕ) → ((𝑚 + (𝐴𝐵)) / 𝑚) = (1 + ((𝐴𝐵) / 𝑚)))
1413mpteq2dva 5253 . . . 4 (𝜑 → (𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) = (𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚))))
15 nnuz 12917 . . . . 5 ℕ = (ℤ‘1)
16 1zzd 12645 . . . . 5 (𝜑 → 1 ∈ ℤ)
17 divcnv 15857 . . . . . 6 ((𝐴𝐵) ∈ ℂ → (𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚)) ⇝ 0)
186, 17syl 17 . . . . 5 (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚)) ⇝ 0)
19 1cnd 11259 . . . . 5 (𝜑 → 1 ∈ ℂ)
20 nnex 12270 . . . . . . 7 ℕ ∈ V
2120mptex 7240 . . . . . 6 (𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚))) ∈ V
2221a1i 11 . . . . 5 (𝜑 → (𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚))) ∈ V)
237, 2, 9divcld 12041 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → ((𝐴𝐵) / 𝑚) ∈ ℂ)
2423fmpttd 7129 . . . . . 6 (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚)):ℕ⟶ℂ)
2524ffvelcdmda 7098 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚))‘𝑘) ∈ ℂ)
26 oveq2 7432 . . . . . . . . 9 (𝑚 = 𝑘 → ((𝐴𝐵) / 𝑚) = ((𝐴𝐵) / 𝑘))
2726oveq2d 7440 . . . . . . . 8 (𝑚 = 𝑘 → (1 + ((𝐴𝐵) / 𝑚)) = (1 + ((𝐴𝐵) / 𝑘)))
28 eqid 2726 . . . . . . . 8 (𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚))) = (𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚)))
29 ovex 7457 . . . . . . . 8 (1 + ((𝐴𝐵) / 𝑘)) ∈ V
3027, 28, 29fvmpt 7009 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚)))‘𝑘) = (1 + ((𝐴𝐵) / 𝑘)))
31 eqid 2726 . . . . . . . . 9 (𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚)) = (𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚))
32 ovex 7457 . . . . . . . . 9 ((𝐴𝐵) / 𝑘) ∈ V
3326, 31, 32fvmpt 7009 . . . . . . . 8 (𝑘 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚))‘𝑘) = ((𝐴𝐵) / 𝑘))
3433oveq2d 7440 . . . . . . 7 (𝑘 ∈ ℕ → (1 + ((𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚))‘𝑘)) = (1 + ((𝐴𝐵) / 𝑘)))
3530, 34eqtr4d 2769 . . . . . 6 (𝑘 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚)))‘𝑘) = (1 + ((𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚))‘𝑘)))
3635adantl 480 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚)))‘𝑘) = (1 + ((𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚))‘𝑘)))
3715, 16, 18, 19, 22, 25, 36climaddc2 15638 . . . 4 (𝜑 → (𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚))) ⇝ (1 + 0))
3814, 37eqbrtrd 5175 . . 3 (𝜑 → (𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ (1 + 0))
39 nnssz 12632 . . . . . . 7 ℕ ⊆ ℤ
40 resmpt 6046 . . . . . . 7 (ℕ ⊆ ℤ → ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ ℕ) = (𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)))
4139, 40ax-mp 5 . . . . . 6 ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ ℕ) = (𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚))
4215reseq2i 5986 . . . . . 6 ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ ℕ) = ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ (ℤ‘1))
4341, 42eqtr3i 2756 . . . . 5 (𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) = ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ (ℤ‘1))
44 1p0e1 12388 . . . . 5 (1 + 0) = 1
4543, 44breq12i 5162 . . . 4 ((𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ (1 + 0) ↔ ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ (ℤ‘1)) ⇝ 1)
46 1z 12644 . . . . 5 1 ∈ ℤ
47 zex 12619 . . . . . 6 ℤ ∈ V
4847mptex 7240 . . . . 5 (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ∈ V
49 climres 15577 . . . . 5 ((1 ∈ ℤ ∧ (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ∈ V) → (((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ (ℤ‘1)) ⇝ 1 ↔ (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ 1))
5046, 48, 49mp2an 690 . . . 4 (((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ (ℤ‘1)) ⇝ 1 ↔ (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ 1)
5145, 50bitri 274 . . 3 ((𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ (1 + 0) ↔ (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ 1)
5238, 51sylib 217 . 2 (𝜑 → (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ 1)
53 divcnvlin.1 . . 3 𝑍 = (ℤ𝑀)
54 divcnvlin.2 . . 3 (𝜑𝑀 ∈ ℤ)
55 divcnvlin.5 . . 3 (𝜑𝐹𝑉)
5648a1i 11 . . 3 (𝜑 → (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ∈ V)
57 eluzelz 12884 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
5857, 53eleq2s 2844 . . . . . . . 8 (𝑘𝑍𝑘 ∈ ℤ)
5958zcnd 12719 . . . . . . 7 (𝑘𝑍𝑘 ∈ ℂ)
6059adantl 480 . . . . . 6 ((𝜑𝑘𝑍) → 𝑘 ∈ ℂ)
614adantr 479 . . . . . . 7 ((𝜑𝑘𝑍) → 𝐵 ∈ ℤ)
6261zcnd 12719 . . . . . 6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
633adantr 479 . . . . . 6 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
6460, 62, 63ppncand 11661 . . . . 5 ((𝜑𝑘𝑍) → ((𝑘 + 𝐵) + (𝐴𝐵)) = (𝑘 + 𝐴))
6564oveq1d 7439 . . . 4 ((𝜑𝑘𝑍) → (((𝑘 + 𝐵) + (𝐴𝐵)) / (𝑘 + 𝐵)) = ((𝑘 + 𝐴) / (𝑘 + 𝐵)))
6658adantl 480 . . . . . 6 ((𝜑𝑘𝑍) → 𝑘 ∈ ℤ)
6766, 61zaddcld 12722 . . . . 5 ((𝜑𝑘𝑍) → (𝑘 + 𝐵) ∈ ℤ)
68 oveq1 7431 . . . . . . 7 (𝑚 = (𝑘 + 𝐵) → (𝑚 + (𝐴𝐵)) = ((𝑘 + 𝐵) + (𝐴𝐵)))
69 id 22 . . . . . . 7 (𝑚 = (𝑘 + 𝐵) → 𝑚 = (𝑘 + 𝐵))
7068, 69oveq12d 7442 . . . . . 6 (𝑚 = (𝑘 + 𝐵) → ((𝑚 + (𝐴𝐵)) / 𝑚) = (((𝑘 + 𝐵) + (𝐴𝐵)) / (𝑘 + 𝐵)))
71 eqid 2726 . . . . . 6 (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) = (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚))
72 ovex 7457 . . . . . 6 (((𝑘 + 𝐵) + (𝐴𝐵)) / (𝑘 + 𝐵)) ∈ V
7370, 71, 72fvmpt 7009 . . . . 5 ((𝑘 + 𝐵) ∈ ℤ → ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚))‘(𝑘 + 𝐵)) = (((𝑘 + 𝐵) + (𝐴𝐵)) / (𝑘 + 𝐵)))
7467, 73syl 17 . . . 4 ((𝜑𝑘𝑍) → ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚))‘(𝑘 + 𝐵)) = (((𝑘 + 𝐵) + (𝐴𝐵)) / (𝑘 + 𝐵)))
75 divcnvlin.6 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) = ((𝑘 + 𝐴) / (𝑘 + 𝐵)))
7665, 74, 753eqtr4d 2776 . . 3 ((𝜑𝑘𝑍) → ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚))‘(𝑘 + 𝐵)) = (𝐹𝑘))
7753, 54, 4, 55, 56, 76climshft2 15584 . 2 (𝜑 → (𝐹 ⇝ 1 ↔ (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ 1))
7852, 77mpbird 256 1 (𝜑𝐹 ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wne 2930  Vcvv 3462  wss 3947   class class class wbr 5153  cmpt 5236  cres 5684  cfv 6554  (class class class)co 7424  cc 11156  0cc0 11158  1c1 11159   + caddc 11161  cmin 11494   / cdiv 11921  cn 12264  cz 12610  cuz 12874  cli 15486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-pm 8858  df-en 8975  df-dom 8976  df-sdom 8977  df-sup 9485  df-inf 9486  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12611  df-uz 12875  df-rp 13029  df-fl 13812  df-seq 14022  df-exp 14082  df-shft 15072  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-clim 15490  df-rlim 15491
This theorem is referenced by:  faclimlem2  35566  faclim2  35570
  Copyright terms: Public domain W3C validator