Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  divcnvlin Structured version   Visualization version   GIF version

Theorem divcnvlin 33698
Description: Limit of the ratio of two linear functions. (Contributed by Scott Fenton, 17-Dec-2017.)
Hypotheses
Ref Expression
divcnvlin.1 𝑍 = (ℤ𝑀)
divcnvlin.2 (𝜑𝑀 ∈ ℤ)
divcnvlin.3 (𝜑𝐴 ∈ ℂ)
divcnvlin.4 (𝜑𝐵 ∈ ℤ)
divcnvlin.5 (𝜑𝐹𝑉)
divcnvlin.6 ((𝜑𝑘𝑍) → (𝐹𝑘) = ((𝑘 + 𝐴) / (𝑘 + 𝐵)))
Assertion
Ref Expression
divcnvlin (𝜑𝐹 ⇝ 1)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝑉(𝑘)

Proof of Theorem divcnvlin
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 nncn 11981 . . . . . . . 8 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
21adantl 482 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
3 divcnvlin.3 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
4 divcnvlin.4 . . . . . . . . . 10 (𝜑𝐵 ∈ ℤ)
54zcnd 12427 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
63, 5subcld 11332 . . . . . . . 8 (𝜑 → (𝐴𝐵) ∈ ℂ)
76adantr 481 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝐴𝐵) ∈ ℂ)
8 nnne0 12007 . . . . . . . 8 (𝑚 ∈ ℕ → 𝑚 ≠ 0)
98adantl 482 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → 𝑚 ≠ 0)
102, 7, 2, 9divdird 11789 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → ((𝑚 + (𝐴𝐵)) / 𝑚) = ((𝑚 / 𝑚) + ((𝐴𝐵) / 𝑚)))
112, 9dividd 11749 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝑚 / 𝑚) = 1)
1211oveq1d 7290 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → ((𝑚 / 𝑚) + ((𝐴𝐵) / 𝑚)) = (1 + ((𝐴𝐵) / 𝑚)))
1310, 12eqtrd 2778 . . . . 5 ((𝜑𝑚 ∈ ℕ) → ((𝑚 + (𝐴𝐵)) / 𝑚) = (1 + ((𝐴𝐵) / 𝑚)))
1413mpteq2dva 5174 . . . 4 (𝜑 → (𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) = (𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚))))
15 nnuz 12621 . . . . 5 ℕ = (ℤ‘1)
16 1zzd 12351 . . . . 5 (𝜑 → 1 ∈ ℤ)
17 divcnv 15565 . . . . . 6 ((𝐴𝐵) ∈ ℂ → (𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚)) ⇝ 0)
186, 17syl 17 . . . . 5 (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚)) ⇝ 0)
19 1cnd 10970 . . . . 5 (𝜑 → 1 ∈ ℂ)
20 nnex 11979 . . . . . . 7 ℕ ∈ V
2120mptex 7099 . . . . . 6 (𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚))) ∈ V
2221a1i 11 . . . . 5 (𝜑 → (𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚))) ∈ V)
237, 2, 9divcld 11751 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → ((𝐴𝐵) / 𝑚) ∈ ℂ)
2423fmpttd 6989 . . . . . 6 (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚)):ℕ⟶ℂ)
2524ffvelrnda 6961 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚))‘𝑘) ∈ ℂ)
26 oveq2 7283 . . . . . . . . 9 (𝑚 = 𝑘 → ((𝐴𝐵) / 𝑚) = ((𝐴𝐵) / 𝑘))
2726oveq2d 7291 . . . . . . . 8 (𝑚 = 𝑘 → (1 + ((𝐴𝐵) / 𝑚)) = (1 + ((𝐴𝐵) / 𝑘)))
28 eqid 2738 . . . . . . . 8 (𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚))) = (𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚)))
29 ovex 7308 . . . . . . . 8 (1 + ((𝐴𝐵) / 𝑘)) ∈ V
3027, 28, 29fvmpt 6875 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚)))‘𝑘) = (1 + ((𝐴𝐵) / 𝑘)))
31 eqid 2738 . . . . . . . . 9 (𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚)) = (𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚))
32 ovex 7308 . . . . . . . . 9 ((𝐴𝐵) / 𝑘) ∈ V
3326, 31, 32fvmpt 6875 . . . . . . . 8 (𝑘 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚))‘𝑘) = ((𝐴𝐵) / 𝑘))
3433oveq2d 7291 . . . . . . 7 (𝑘 ∈ ℕ → (1 + ((𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚))‘𝑘)) = (1 + ((𝐴𝐵) / 𝑘)))
3530, 34eqtr4d 2781 . . . . . 6 (𝑘 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚)))‘𝑘) = (1 + ((𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚))‘𝑘)))
3635adantl 482 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚)))‘𝑘) = (1 + ((𝑚 ∈ ℕ ↦ ((𝐴𝐵) / 𝑚))‘𝑘)))
3715, 16, 18, 19, 22, 25, 36climaddc2 15345 . . . 4 (𝜑 → (𝑚 ∈ ℕ ↦ (1 + ((𝐴𝐵) / 𝑚))) ⇝ (1 + 0))
3814, 37eqbrtrd 5096 . . 3 (𝜑 → (𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ (1 + 0))
39 nnssz 12340 . . . . . . 7 ℕ ⊆ ℤ
40 resmpt 5945 . . . . . . 7 (ℕ ⊆ ℤ → ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ ℕ) = (𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)))
4139, 40ax-mp 5 . . . . . 6 ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ ℕ) = (𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚))
4215reseq2i 5888 . . . . . 6 ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ ℕ) = ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ (ℤ‘1))
4341, 42eqtr3i 2768 . . . . 5 (𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) = ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ (ℤ‘1))
44 1p0e1 12097 . . . . 5 (1 + 0) = 1
4543, 44breq12i 5083 . . . 4 ((𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ (1 + 0) ↔ ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ (ℤ‘1)) ⇝ 1)
46 1z 12350 . . . . 5 1 ∈ ℤ
47 zex 12328 . . . . . 6 ℤ ∈ V
4847mptex 7099 . . . . 5 (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ∈ V
49 climres 15284 . . . . 5 ((1 ∈ ℤ ∧ (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ∈ V) → (((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ (ℤ‘1)) ⇝ 1 ↔ (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ 1))
5046, 48, 49mp2an 689 . . . 4 (((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ↾ (ℤ‘1)) ⇝ 1 ↔ (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ 1)
5145, 50bitri 274 . . 3 ((𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ (1 + 0) ↔ (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ 1)
5238, 51sylib 217 . 2 (𝜑 → (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ 1)
53 divcnvlin.1 . . 3 𝑍 = (ℤ𝑀)
54 divcnvlin.2 . . 3 (𝜑𝑀 ∈ ℤ)
55 divcnvlin.5 . . 3 (𝜑𝐹𝑉)
5648a1i 11 . . 3 (𝜑 → (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ∈ V)
57 eluzelz 12592 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
5857, 53eleq2s 2857 . . . . . . . 8 (𝑘𝑍𝑘 ∈ ℤ)
5958zcnd 12427 . . . . . . 7 (𝑘𝑍𝑘 ∈ ℂ)
6059adantl 482 . . . . . 6 ((𝜑𝑘𝑍) → 𝑘 ∈ ℂ)
614adantr 481 . . . . . . 7 ((𝜑𝑘𝑍) → 𝐵 ∈ ℤ)
6261zcnd 12427 . . . . . 6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
633adantr 481 . . . . . 6 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
6460, 62, 63ppncand 11372 . . . . 5 ((𝜑𝑘𝑍) → ((𝑘 + 𝐵) + (𝐴𝐵)) = (𝑘 + 𝐴))
6564oveq1d 7290 . . . 4 ((𝜑𝑘𝑍) → (((𝑘 + 𝐵) + (𝐴𝐵)) / (𝑘 + 𝐵)) = ((𝑘 + 𝐴) / (𝑘 + 𝐵)))
6658adantl 482 . . . . . 6 ((𝜑𝑘𝑍) → 𝑘 ∈ ℤ)
6766, 61zaddcld 12430 . . . . 5 ((𝜑𝑘𝑍) → (𝑘 + 𝐵) ∈ ℤ)
68 oveq1 7282 . . . . . . 7 (𝑚 = (𝑘 + 𝐵) → (𝑚 + (𝐴𝐵)) = ((𝑘 + 𝐵) + (𝐴𝐵)))
69 id 22 . . . . . . 7 (𝑚 = (𝑘 + 𝐵) → 𝑚 = (𝑘 + 𝐵))
7068, 69oveq12d 7293 . . . . . 6 (𝑚 = (𝑘 + 𝐵) → ((𝑚 + (𝐴𝐵)) / 𝑚) = (((𝑘 + 𝐵) + (𝐴𝐵)) / (𝑘 + 𝐵)))
71 eqid 2738 . . . . . 6 (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) = (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚))
72 ovex 7308 . . . . . 6 (((𝑘 + 𝐵) + (𝐴𝐵)) / (𝑘 + 𝐵)) ∈ V
7370, 71, 72fvmpt 6875 . . . . 5 ((𝑘 + 𝐵) ∈ ℤ → ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚))‘(𝑘 + 𝐵)) = (((𝑘 + 𝐵) + (𝐴𝐵)) / (𝑘 + 𝐵)))
7467, 73syl 17 . . . 4 ((𝜑𝑘𝑍) → ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚))‘(𝑘 + 𝐵)) = (((𝑘 + 𝐵) + (𝐴𝐵)) / (𝑘 + 𝐵)))
75 divcnvlin.6 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) = ((𝑘 + 𝐴) / (𝑘 + 𝐵)))
7665, 74, 753eqtr4d 2788 . . 3 ((𝜑𝑘𝑍) → ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚))‘(𝑘 + 𝐵)) = (𝐹𝑘))
7753, 54, 4, 55, 56, 76climshft2 15291 . 2 (𝜑 → (𝐹 ⇝ 1 ↔ (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴𝐵)) / 𝑚)) ⇝ 1))
7852, 77mpbird 256 1 (𝜑𝐹 ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  wss 3887   class class class wbr 5074  cmpt 5157  cres 5591  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874  cmin 11205   / cdiv 11632  cn 11973  cz 12319  cuz 12582  cli 15193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fl 13512  df-seq 13722  df-exp 13783  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198
This theorem is referenced by:  faclimlem2  33710  faclim2  33714
  Copyright terms: Public domain W3C validator