Step | Hyp | Ref
| Expression |
1 | | nncn 11911 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℂ) |
2 | 1 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℂ) |
3 | | divcnvlin.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ ℂ) |
4 | | divcnvlin.4 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ ℤ) |
5 | 4 | zcnd 12356 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ ℂ) |
6 | 3, 5 | subcld 11262 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
7 | 6 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐴 − 𝐵) ∈ ℂ) |
8 | | nnne0 11937 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ → 𝑚 ≠ 0) |
9 | 8 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ≠ 0) |
10 | 2, 7, 2, 9 | divdird 11719 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑚 + (𝐴 − 𝐵)) / 𝑚) = ((𝑚 / 𝑚) + ((𝐴 − 𝐵) / 𝑚))) |
11 | 2, 9 | dividd 11679 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑚 / 𝑚) = 1) |
12 | 11 | oveq1d 7270 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑚 / 𝑚) + ((𝐴 − 𝐵) / 𝑚)) = (1 + ((𝐴 − 𝐵) / 𝑚))) |
13 | 10, 12 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑚 + (𝐴 − 𝐵)) / 𝑚) = (1 + ((𝐴 − 𝐵) / 𝑚))) |
14 | 13 | mpteq2dva 5170 |
. . . 4
⊢ (𝜑 → (𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴 − 𝐵)) / 𝑚)) = (𝑚 ∈ ℕ ↦ (1 + ((𝐴 − 𝐵) / 𝑚)))) |
15 | | nnuz 12550 |
. . . . 5
⊢ ℕ =
(ℤ≥‘1) |
16 | | 1zzd 12281 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℤ) |
17 | | divcnv 15493 |
. . . . . 6
⊢ ((𝐴 − 𝐵) ∈ ℂ → (𝑚 ∈ ℕ ↦ ((𝐴 − 𝐵) / 𝑚)) ⇝ 0) |
18 | 6, 17 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐴 − 𝐵) / 𝑚)) ⇝ 0) |
19 | | 1cnd 10901 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℂ) |
20 | | nnex 11909 |
. . . . . . 7
⊢ ℕ
∈ V |
21 | 20 | mptex 7081 |
. . . . . 6
⊢ (𝑚 ∈ ℕ ↦ (1 +
((𝐴 − 𝐵) / 𝑚))) ∈ V |
22 | 21 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝑚 ∈ ℕ ↦ (1 + ((𝐴 − 𝐵) / 𝑚))) ∈ V) |
23 | 7, 2, 9 | divcld 11681 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝐴 − 𝐵) / 𝑚) ∈ ℂ) |
24 | 23 | fmpttd 6971 |
. . . . . 6
⊢ (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐴 − 𝐵) / 𝑚)):ℕ⟶ℂ) |
25 | 24 | ffvelrnda 6943 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐴 − 𝐵) / 𝑚))‘𝑘) ∈ ℂ) |
26 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑚 = 𝑘 → ((𝐴 − 𝐵) / 𝑚) = ((𝐴 − 𝐵) / 𝑘)) |
27 | 26 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝑚 = 𝑘 → (1 + ((𝐴 − 𝐵) / 𝑚)) = (1 + ((𝐴 − 𝐵) / 𝑘))) |
28 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ ↦ (1 +
((𝐴 − 𝐵) / 𝑚))) = (𝑚 ∈ ℕ ↦ (1 + ((𝐴 − 𝐵) / 𝑚))) |
29 | | ovex 7288 |
. . . . . . . 8
⊢ (1 +
((𝐴 − 𝐵) / 𝑘)) ∈ V |
30 | 27, 28, 29 | fvmpt 6857 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (1 +
((𝐴 − 𝐵) / 𝑚)))‘𝑘) = (1 + ((𝐴 − 𝐵) / 𝑘))) |
31 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ ↦ ((𝐴 − 𝐵) / 𝑚)) = (𝑚 ∈ ℕ ↦ ((𝐴 − 𝐵) / 𝑚)) |
32 | | ovex 7288 |
. . . . . . . . 9
⊢ ((𝐴 − 𝐵) / 𝑘) ∈ V |
33 | 26, 31, 32 | fvmpt 6857 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((𝐴 − 𝐵) / 𝑚))‘𝑘) = ((𝐴 − 𝐵) / 𝑘)) |
34 | 33 | oveq2d 7271 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → (1 +
((𝑚 ∈ ℕ ↦
((𝐴 − 𝐵) / 𝑚))‘𝑘)) = (1 + ((𝐴 − 𝐵) / 𝑘))) |
35 | 30, 34 | eqtr4d 2781 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (1 +
((𝐴 − 𝐵) / 𝑚)))‘𝑘) = (1 + ((𝑚 ∈ ℕ ↦ ((𝐴 − 𝐵) / 𝑚))‘𝑘))) |
36 | 35 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (1 + ((𝐴 − 𝐵) / 𝑚)))‘𝑘) = (1 + ((𝑚 ∈ ℕ ↦ ((𝐴 − 𝐵) / 𝑚))‘𝑘))) |
37 | 15, 16, 18, 19, 22, 25, 36 | climaddc2 15273 |
. . . 4
⊢ (𝜑 → (𝑚 ∈ ℕ ↦ (1 + ((𝐴 − 𝐵) / 𝑚))) ⇝ (1 + 0)) |
38 | 14, 37 | eqbrtrd 5092 |
. . 3
⊢ (𝜑 → (𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴 − 𝐵)) / 𝑚)) ⇝ (1 + 0)) |
39 | | nnssz 12270 |
. . . . . . 7
⊢ ℕ
⊆ ℤ |
40 | | resmpt 5934 |
. . . . . . 7
⊢ (ℕ
⊆ ℤ → ((𝑚
∈ ℤ ↦ ((𝑚
+ (𝐴 − 𝐵)) / 𝑚)) ↾ ℕ) = (𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴 − 𝐵)) / 𝑚))) |
41 | 39, 40 | ax-mp 5 |
. . . . . 6
⊢ ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴 − 𝐵)) / 𝑚)) ↾ ℕ) = (𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴 − 𝐵)) / 𝑚)) |
42 | 15 | reseq2i 5877 |
. . . . . 6
⊢ ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴 − 𝐵)) / 𝑚)) ↾ ℕ) = ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴 − 𝐵)) / 𝑚)) ↾
(ℤ≥‘1)) |
43 | 41, 42 | eqtr3i 2768 |
. . . . 5
⊢ (𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴 − 𝐵)) / 𝑚)) = ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴 − 𝐵)) / 𝑚)) ↾
(ℤ≥‘1)) |
44 | | 1p0e1 12027 |
. . . . 5
⊢ (1 + 0) =
1 |
45 | 43, 44 | breq12i 5079 |
. . . 4
⊢ ((𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴 − 𝐵)) / 𝑚)) ⇝ (1 + 0) ↔ ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴 − 𝐵)) / 𝑚)) ↾ (ℤ≥‘1))
⇝ 1) |
46 | | 1z 12280 |
. . . . 5
⊢ 1 ∈
ℤ |
47 | | zex 12258 |
. . . . . 6
⊢ ℤ
∈ V |
48 | 47 | mptex 7081 |
. . . . 5
⊢ (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴 − 𝐵)) / 𝑚)) ∈ V |
49 | | climres 15212 |
. . . . 5
⊢ ((1
∈ ℤ ∧ (𝑚
∈ ℤ ↦ ((𝑚
+ (𝐴 − 𝐵)) / 𝑚)) ∈ V) → (((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴 − 𝐵)) / 𝑚)) ↾ (ℤ≥‘1))
⇝ 1 ↔ (𝑚 ∈
ℤ ↦ ((𝑚 +
(𝐴 − 𝐵)) / 𝑚)) ⇝ 1)) |
50 | 46, 48, 49 | mp2an 688 |
. . . 4
⊢ (((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴 − 𝐵)) / 𝑚)) ↾ (ℤ≥‘1))
⇝ 1 ↔ (𝑚 ∈
ℤ ↦ ((𝑚 +
(𝐴 − 𝐵)) / 𝑚)) ⇝ 1) |
51 | 45, 50 | bitri 274 |
. . 3
⊢ ((𝑚 ∈ ℕ ↦ ((𝑚 + (𝐴 − 𝐵)) / 𝑚)) ⇝ (1 + 0) ↔ (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴 − 𝐵)) / 𝑚)) ⇝ 1) |
52 | 38, 51 | sylib 217 |
. 2
⊢ (𝜑 → (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴 − 𝐵)) / 𝑚)) ⇝ 1) |
53 | | divcnvlin.1 |
. . 3
⊢ 𝑍 =
(ℤ≥‘𝑀) |
54 | | divcnvlin.2 |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℤ) |
55 | | divcnvlin.5 |
. . 3
⊢ (𝜑 → 𝐹 ∈ 𝑉) |
56 | 48 | a1i 11 |
. . 3
⊢ (𝜑 → (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴 − 𝐵)) / 𝑚)) ∈ V) |
57 | | eluzelz 12521 |
. . . . . . . . 9
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑘 ∈ ℤ) |
58 | 57, 53 | eleq2s 2857 |
. . . . . . . 8
⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ) |
59 | 58 | zcnd 12356 |
. . . . . . 7
⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℂ) |
60 | 59 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ ℂ) |
61 | 4 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℤ) |
62 | 61 | zcnd 12356 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) |
63 | 3 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
64 | 60, 62, 63 | ppncand 11302 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 + 𝐵) + (𝐴 − 𝐵)) = (𝑘 + 𝐴)) |
65 | 64 | oveq1d 7270 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (((𝑘 + 𝐵) + (𝐴 − 𝐵)) / (𝑘 + 𝐵)) = ((𝑘 + 𝐴) / (𝑘 + 𝐵))) |
66 | 58 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ ℤ) |
67 | 66, 61 | zaddcld 12359 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑘 + 𝐵) ∈ ℤ) |
68 | | oveq1 7262 |
. . . . . . 7
⊢ (𝑚 = (𝑘 + 𝐵) → (𝑚 + (𝐴 − 𝐵)) = ((𝑘 + 𝐵) + (𝐴 − 𝐵))) |
69 | | id 22 |
. . . . . . 7
⊢ (𝑚 = (𝑘 + 𝐵) → 𝑚 = (𝑘 + 𝐵)) |
70 | 68, 69 | oveq12d 7273 |
. . . . . 6
⊢ (𝑚 = (𝑘 + 𝐵) → ((𝑚 + (𝐴 − 𝐵)) / 𝑚) = (((𝑘 + 𝐵) + (𝐴 − 𝐵)) / (𝑘 + 𝐵))) |
71 | | eqid 2738 |
. . . . . 6
⊢ (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴 − 𝐵)) / 𝑚)) = (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴 − 𝐵)) / 𝑚)) |
72 | | ovex 7288 |
. . . . . 6
⊢ (((𝑘 + 𝐵) + (𝐴 − 𝐵)) / (𝑘 + 𝐵)) ∈ V |
73 | 70, 71, 72 | fvmpt 6857 |
. . . . 5
⊢ ((𝑘 + 𝐵) ∈ ℤ → ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴 − 𝐵)) / 𝑚))‘(𝑘 + 𝐵)) = (((𝑘 + 𝐵) + (𝐴 − 𝐵)) / (𝑘 + 𝐵))) |
74 | 67, 73 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴 − 𝐵)) / 𝑚))‘(𝑘 + 𝐵)) = (((𝑘 + 𝐵) + (𝐴 − 𝐵)) / (𝑘 + 𝐵))) |
75 | | divcnvlin.6 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = ((𝑘 + 𝐴) / (𝑘 + 𝐵))) |
76 | 65, 74, 75 | 3eqtr4d 2788 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴 − 𝐵)) / 𝑚))‘(𝑘 + 𝐵)) = (𝐹‘𝑘)) |
77 | 53, 54, 4, 55, 56, 76 | climshft2 15219 |
. 2
⊢ (𝜑 → (𝐹 ⇝ 1 ↔ (𝑚 ∈ ℤ ↦ ((𝑚 + (𝐴 − 𝐵)) / 𝑚)) ⇝ 1)) |
78 | 52, 77 | mpbird 256 |
1
⊢ (𝜑 → 𝐹 ⇝ 1) |