![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isvonmbl | Structured version Visualization version GIF version |
Description: The predicate "𝐴 is measurable w.r.t. the n-dimensional Lebesgue measure". A set is measurable if it splits every other set 𝑥 in a "nice" way, that is, if the measure of the pieces 𝑥 ∩ 𝐴 and 𝑥 ∖ 𝐴 sum up to the measure of 𝑥. Definition 114E of [Fremlin1] p. 25. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
isvonmbl.1 | ⊢ (𝜑 → 𝑋 ∈ Fin) |
Ref | Expression |
---|---|
isvonmbl | ⊢ (𝜑 → (𝐸 ∈ dom (voln‘𝑋) ↔ (𝐸 ⊆ (ℝ ↑m 𝑋) ∧ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isvonmbl.1 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
2 | 1 | dmvon 46527 | . . 3 ⊢ (𝜑 → dom (voln‘𝑋) = (CaraGen‘(voln*‘𝑋))) |
3 | 2 | eleq2d 2830 | . 2 ⊢ (𝜑 → (𝐸 ∈ dom (voln‘𝑋) ↔ 𝐸 ∈ (CaraGen‘(voln*‘𝑋)))) |
4 | 1 | ovnome 46494 | . . 3 ⊢ (𝜑 → (voln*‘𝑋) ∈ OutMeas) |
5 | eqid 2740 | . . 3 ⊢ (CaraGen‘(voln*‘𝑋)) = (CaraGen‘(voln*‘𝑋)) | |
6 | 4, 5 | caragenel 46416 | . 2 ⊢ (𝜑 → (𝐸 ∈ (CaraGen‘(voln*‘𝑋)) ↔ (𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) ∧ ∀𝑎 ∈ 𝒫 ∪ dom (voln*‘𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎)))) |
7 | elpwi 4629 | . . . . . . 7 ⊢ (𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) → 𝐸 ⊆ ∪ dom (voln*‘𝑋)) | |
8 | 7 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋)) → 𝐸 ⊆ ∪ dom (voln*‘𝑋)) |
9 | 1 | unidmovn 46534 | . . . . . . 7 ⊢ (𝜑 → ∪ dom (voln*‘𝑋) = (ℝ ↑m 𝑋)) |
10 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋)) → ∪ dom (voln*‘𝑋) = (ℝ ↑m 𝑋)) |
11 | 8, 10 | sseqtrd 4049 | . . . . 5 ⊢ ((𝜑 ∧ 𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋)) → 𝐸 ⊆ (ℝ ↑m 𝑋)) |
12 | 11 | ex 412 | . . . 4 ⊢ (𝜑 → (𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) → 𝐸 ⊆ (ℝ ↑m 𝑋))) |
13 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐸 ⊆ (ℝ ↑m 𝑋)) → 𝐸 ⊆ (ℝ ↑m 𝑋)) | |
14 | 9 | eqcomd 2746 | . . . . . . . 8 ⊢ (𝜑 → (ℝ ↑m 𝑋) = ∪ dom (voln*‘𝑋)) |
15 | 14 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐸 ⊆ (ℝ ↑m 𝑋)) → (ℝ ↑m 𝑋) = ∪ dom (voln*‘𝑋)) |
16 | 13, 15 | sseqtrd 4049 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐸 ⊆ (ℝ ↑m 𝑋)) → 𝐸 ⊆ ∪ dom (voln*‘𝑋)) |
17 | ovex 7481 | . . . . . . . . 9 ⊢ (ℝ ↑m 𝑋) ∈ V | |
18 | 17 | ssex 5339 | . . . . . . . 8 ⊢ (𝐸 ⊆ (ℝ ↑m 𝑋) → 𝐸 ∈ V) |
19 | elpwg 4625 | . . . . . . . 8 ⊢ (𝐸 ∈ V → (𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) ↔ 𝐸 ⊆ ∪ dom (voln*‘𝑋))) | |
20 | 18, 19 | syl 17 | . . . . . . 7 ⊢ (𝐸 ⊆ (ℝ ↑m 𝑋) → (𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) ↔ 𝐸 ⊆ ∪ dom (voln*‘𝑋))) |
21 | 20 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐸 ⊆ (ℝ ↑m 𝑋)) → (𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) ↔ 𝐸 ⊆ ∪ dom (voln*‘𝑋))) |
22 | 16, 21 | mpbird 257 | . . . . 5 ⊢ ((𝜑 ∧ 𝐸 ⊆ (ℝ ↑m 𝑋)) → 𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋)) |
23 | 22 | ex 412 | . . . 4 ⊢ (𝜑 → (𝐸 ⊆ (ℝ ↑m 𝑋) → 𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋))) |
24 | 12, 23 | impbid 212 | . . 3 ⊢ (𝜑 → (𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) ↔ 𝐸 ⊆ (ℝ ↑m 𝑋))) |
25 | 9 | pweqd 4639 | . . . 4 ⊢ (𝜑 → 𝒫 ∪ dom (voln*‘𝑋) = 𝒫 (ℝ ↑m 𝑋)) |
26 | raleq 3331 | . . . 4 ⊢ (𝒫 ∪ dom (voln*‘𝑋) = 𝒫 (ℝ ↑m 𝑋) → (∀𝑎 ∈ 𝒫 ∪ dom (voln*‘𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎) ↔ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎))) | |
27 | 25, 26 | syl 17 | . . 3 ⊢ (𝜑 → (∀𝑎 ∈ 𝒫 ∪ dom (voln*‘𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎) ↔ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎))) |
28 | 24, 27 | anbi12d 631 | . 2 ⊢ (𝜑 → ((𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) ∧ ∀𝑎 ∈ 𝒫 ∪ dom (voln*‘𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎)) ↔ (𝐸 ⊆ (ℝ ↑m 𝑋) ∧ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎)))) |
29 | 3, 6, 28 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝐸 ∈ dom (voln‘𝑋) ↔ (𝐸 ⊆ (ℝ ↑m 𝑋) ∧ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ∖ cdif 3973 ∩ cin 3975 ⊆ wss 3976 𝒫 cpw 4622 ∪ cuni 4931 dom cdm 5700 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 Fincfn 9003 ℝcr 11183 +𝑒 cxad 13173 CaraGenccaragen 46412 voln*covoln 46457 volncvoln 46459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cc 10504 ax-ac2 10532 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-disj 5134 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-dju 9970 df-card 10008 df-acn 10011 df-ac 10185 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-rlim 15535 df-sum 15735 df-prod 15952 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-rest 17482 df-0g 17501 df-topgen 17503 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-subg 19163 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-dvr 20427 df-drng 20753 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-cnfld 21388 df-top 22921 df-topon 22938 df-bases 22974 df-cmp 23416 df-ovol 25518 df-vol 25519 df-sumge0 46284 df-ome 46411 df-caragen 46413 df-ovoln 46458 df-voln 46460 |
This theorem is referenced by: vonvolmbl 46582 |
Copyright terms: Public domain | W3C validator |