| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isvonmbl | Structured version Visualization version GIF version | ||
| Description: The predicate "𝐴 is measurable w.r.t. the n-dimensional Lebesgue measure". A set is measurable if it splits every other set 𝑥 in a "nice" way, that is, if the measure of the pieces 𝑥 ∩ 𝐴 and 𝑥 ∖ 𝐴 sum up to the measure of 𝑥. Definition 114E of [Fremlin1] p. 25. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| isvonmbl.1 | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| Ref | Expression |
|---|---|
| isvonmbl | ⊢ (𝜑 → (𝐸 ∈ dom (voln‘𝑋) ↔ (𝐸 ⊆ (ℝ ↑m 𝑋) ∧ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isvonmbl.1 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 2 | 1 | dmvon 46728 | . . 3 ⊢ (𝜑 → dom (voln‘𝑋) = (CaraGen‘(voln*‘𝑋))) |
| 3 | 2 | eleq2d 2819 | . 2 ⊢ (𝜑 → (𝐸 ∈ dom (voln‘𝑋) ↔ 𝐸 ∈ (CaraGen‘(voln*‘𝑋)))) |
| 4 | 1 | ovnome 46695 | . . 3 ⊢ (𝜑 → (voln*‘𝑋) ∈ OutMeas) |
| 5 | eqid 2733 | . . 3 ⊢ (CaraGen‘(voln*‘𝑋)) = (CaraGen‘(voln*‘𝑋)) | |
| 6 | 4, 5 | caragenel 46617 | . 2 ⊢ (𝜑 → (𝐸 ∈ (CaraGen‘(voln*‘𝑋)) ↔ (𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) ∧ ∀𝑎 ∈ 𝒫 ∪ dom (voln*‘𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎)))) |
| 7 | elpwi 4556 | . . . . . . 7 ⊢ (𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) → 𝐸 ⊆ ∪ dom (voln*‘𝑋)) | |
| 8 | 7 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋)) → 𝐸 ⊆ ∪ dom (voln*‘𝑋)) |
| 9 | 1 | unidmovn 46735 | . . . . . . 7 ⊢ (𝜑 → ∪ dom (voln*‘𝑋) = (ℝ ↑m 𝑋)) |
| 10 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋)) → ∪ dom (voln*‘𝑋) = (ℝ ↑m 𝑋)) |
| 11 | 8, 10 | sseqtrd 3967 | . . . . 5 ⊢ ((𝜑 ∧ 𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋)) → 𝐸 ⊆ (ℝ ↑m 𝑋)) |
| 12 | 11 | ex 412 | . . . 4 ⊢ (𝜑 → (𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) → 𝐸 ⊆ (ℝ ↑m 𝑋))) |
| 13 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐸 ⊆ (ℝ ↑m 𝑋)) → 𝐸 ⊆ (ℝ ↑m 𝑋)) | |
| 14 | 9 | eqcomd 2739 | . . . . . . . 8 ⊢ (𝜑 → (ℝ ↑m 𝑋) = ∪ dom (voln*‘𝑋)) |
| 15 | 14 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐸 ⊆ (ℝ ↑m 𝑋)) → (ℝ ↑m 𝑋) = ∪ dom (voln*‘𝑋)) |
| 16 | 13, 15 | sseqtrd 3967 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐸 ⊆ (ℝ ↑m 𝑋)) → 𝐸 ⊆ ∪ dom (voln*‘𝑋)) |
| 17 | ovex 7385 | . . . . . . . . 9 ⊢ (ℝ ↑m 𝑋) ∈ V | |
| 18 | 17 | ssex 5261 | . . . . . . . 8 ⊢ (𝐸 ⊆ (ℝ ↑m 𝑋) → 𝐸 ∈ V) |
| 19 | elpwg 4552 | . . . . . . . 8 ⊢ (𝐸 ∈ V → (𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) ↔ 𝐸 ⊆ ∪ dom (voln*‘𝑋))) | |
| 20 | 18, 19 | syl 17 | . . . . . . 7 ⊢ (𝐸 ⊆ (ℝ ↑m 𝑋) → (𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) ↔ 𝐸 ⊆ ∪ dom (voln*‘𝑋))) |
| 21 | 20 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐸 ⊆ (ℝ ↑m 𝑋)) → (𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) ↔ 𝐸 ⊆ ∪ dom (voln*‘𝑋))) |
| 22 | 16, 21 | mpbird 257 | . . . . 5 ⊢ ((𝜑 ∧ 𝐸 ⊆ (ℝ ↑m 𝑋)) → 𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋)) |
| 23 | 22 | ex 412 | . . . 4 ⊢ (𝜑 → (𝐸 ⊆ (ℝ ↑m 𝑋) → 𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋))) |
| 24 | 12, 23 | impbid 212 | . . 3 ⊢ (𝜑 → (𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) ↔ 𝐸 ⊆ (ℝ ↑m 𝑋))) |
| 25 | 9 | pweqd 4566 | . . . 4 ⊢ (𝜑 → 𝒫 ∪ dom (voln*‘𝑋) = 𝒫 (ℝ ↑m 𝑋)) |
| 26 | raleq 3290 | . . . 4 ⊢ (𝒫 ∪ dom (voln*‘𝑋) = 𝒫 (ℝ ↑m 𝑋) → (∀𝑎 ∈ 𝒫 ∪ dom (voln*‘𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎) ↔ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎))) | |
| 27 | 25, 26 | syl 17 | . . 3 ⊢ (𝜑 → (∀𝑎 ∈ 𝒫 ∪ dom (voln*‘𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎) ↔ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎))) |
| 28 | 24, 27 | anbi12d 632 | . 2 ⊢ (𝜑 → ((𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) ∧ ∀𝑎 ∈ 𝒫 ∪ dom (voln*‘𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎)) ↔ (𝐸 ⊆ (ℝ ↑m 𝑋) ∧ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎)))) |
| 29 | 3, 6, 28 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝐸 ∈ dom (voln‘𝑋) ↔ (𝐸 ⊆ (ℝ ↑m 𝑋) ∧ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 ∖ cdif 3895 ∩ cin 3897 ⊆ wss 3898 𝒫 cpw 4549 ∪ cuni 4858 dom cdm 5619 ‘cfv 6486 (class class class)co 7352 ↑m cmap 8756 Fincfn 8875 ℝcr 11012 +𝑒 cxad 13011 CaraGenccaragen 46613 voln*covoln 46658 volncvoln 46660 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cc 10333 ax-ac2 10361 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-disj 5061 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fi 9302 df-sup 9333 df-inf 9334 df-oi 9403 df-dju 9801 df-card 9839 df-acn 9842 df-ac 10014 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-z 12476 df-uz 12739 df-q 12849 df-rp 12893 df-xneg 13013 df-xadd 13014 df-xmul 13015 df-ioo 13251 df-ico 13253 df-icc 13254 df-fz 13410 df-fzo 13557 df-fl 13698 df-seq 13911 df-exp 13971 df-hash 14240 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-clim 15397 df-rlim 15398 df-sum 15596 df-prod 15813 df-rest 17328 df-topgen 17349 df-psmet 21285 df-xmet 21286 df-met 21287 df-bl 21288 df-mopn 21289 df-top 22810 df-topon 22827 df-bases 22862 df-cmp 23303 df-ovol 25393 df-vol 25394 df-sumge0 46485 df-ome 46612 df-caragen 46614 df-ovoln 46659 df-voln 46661 |
| This theorem is referenced by: vonvolmbl 46783 |
| Copyright terms: Public domain | W3C validator |