| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isvonmbl | Structured version Visualization version GIF version | ||
| Description: The predicate "𝐴 is measurable w.r.t. the n-dimensional Lebesgue measure". A set is measurable if it splits every other set 𝑥 in a "nice" way, that is, if the measure of the pieces 𝑥 ∩ 𝐴 and 𝑥 ∖ 𝐴 sum up to the measure of 𝑥. Definition 114E of [Fremlin1] p. 25. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| isvonmbl.1 | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| Ref | Expression |
|---|---|
| isvonmbl | ⊢ (𝜑 → (𝐸 ∈ dom (voln‘𝑋) ↔ (𝐸 ⊆ (ℝ ↑m 𝑋) ∧ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isvonmbl.1 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 2 | 1 | dmvon 46635 | . . 3 ⊢ (𝜑 → dom (voln‘𝑋) = (CaraGen‘(voln*‘𝑋))) |
| 3 | 2 | eleq2d 2820 | . 2 ⊢ (𝜑 → (𝐸 ∈ dom (voln‘𝑋) ↔ 𝐸 ∈ (CaraGen‘(voln*‘𝑋)))) |
| 4 | 1 | ovnome 46602 | . . 3 ⊢ (𝜑 → (voln*‘𝑋) ∈ OutMeas) |
| 5 | eqid 2735 | . . 3 ⊢ (CaraGen‘(voln*‘𝑋)) = (CaraGen‘(voln*‘𝑋)) | |
| 6 | 4, 5 | caragenel 46524 | . 2 ⊢ (𝜑 → (𝐸 ∈ (CaraGen‘(voln*‘𝑋)) ↔ (𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) ∧ ∀𝑎 ∈ 𝒫 ∪ dom (voln*‘𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎)))) |
| 7 | elpwi 4582 | . . . . . . 7 ⊢ (𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) → 𝐸 ⊆ ∪ dom (voln*‘𝑋)) | |
| 8 | 7 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋)) → 𝐸 ⊆ ∪ dom (voln*‘𝑋)) |
| 9 | 1 | unidmovn 46642 | . . . . . . 7 ⊢ (𝜑 → ∪ dom (voln*‘𝑋) = (ℝ ↑m 𝑋)) |
| 10 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋)) → ∪ dom (voln*‘𝑋) = (ℝ ↑m 𝑋)) |
| 11 | 8, 10 | sseqtrd 3995 | . . . . 5 ⊢ ((𝜑 ∧ 𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋)) → 𝐸 ⊆ (ℝ ↑m 𝑋)) |
| 12 | 11 | ex 412 | . . . 4 ⊢ (𝜑 → (𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) → 𝐸 ⊆ (ℝ ↑m 𝑋))) |
| 13 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐸 ⊆ (ℝ ↑m 𝑋)) → 𝐸 ⊆ (ℝ ↑m 𝑋)) | |
| 14 | 9 | eqcomd 2741 | . . . . . . . 8 ⊢ (𝜑 → (ℝ ↑m 𝑋) = ∪ dom (voln*‘𝑋)) |
| 15 | 14 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐸 ⊆ (ℝ ↑m 𝑋)) → (ℝ ↑m 𝑋) = ∪ dom (voln*‘𝑋)) |
| 16 | 13, 15 | sseqtrd 3995 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐸 ⊆ (ℝ ↑m 𝑋)) → 𝐸 ⊆ ∪ dom (voln*‘𝑋)) |
| 17 | ovex 7438 | . . . . . . . . 9 ⊢ (ℝ ↑m 𝑋) ∈ V | |
| 18 | 17 | ssex 5291 | . . . . . . . 8 ⊢ (𝐸 ⊆ (ℝ ↑m 𝑋) → 𝐸 ∈ V) |
| 19 | elpwg 4578 | . . . . . . . 8 ⊢ (𝐸 ∈ V → (𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) ↔ 𝐸 ⊆ ∪ dom (voln*‘𝑋))) | |
| 20 | 18, 19 | syl 17 | . . . . . . 7 ⊢ (𝐸 ⊆ (ℝ ↑m 𝑋) → (𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) ↔ 𝐸 ⊆ ∪ dom (voln*‘𝑋))) |
| 21 | 20 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐸 ⊆ (ℝ ↑m 𝑋)) → (𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) ↔ 𝐸 ⊆ ∪ dom (voln*‘𝑋))) |
| 22 | 16, 21 | mpbird 257 | . . . . 5 ⊢ ((𝜑 ∧ 𝐸 ⊆ (ℝ ↑m 𝑋)) → 𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋)) |
| 23 | 22 | ex 412 | . . . 4 ⊢ (𝜑 → (𝐸 ⊆ (ℝ ↑m 𝑋) → 𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋))) |
| 24 | 12, 23 | impbid 212 | . . 3 ⊢ (𝜑 → (𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) ↔ 𝐸 ⊆ (ℝ ↑m 𝑋))) |
| 25 | 9 | pweqd 4592 | . . . 4 ⊢ (𝜑 → 𝒫 ∪ dom (voln*‘𝑋) = 𝒫 (ℝ ↑m 𝑋)) |
| 26 | raleq 3302 | . . . 4 ⊢ (𝒫 ∪ dom (voln*‘𝑋) = 𝒫 (ℝ ↑m 𝑋) → (∀𝑎 ∈ 𝒫 ∪ dom (voln*‘𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎) ↔ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎))) | |
| 27 | 25, 26 | syl 17 | . . 3 ⊢ (𝜑 → (∀𝑎 ∈ 𝒫 ∪ dom (voln*‘𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎) ↔ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎))) |
| 28 | 24, 27 | anbi12d 632 | . 2 ⊢ (𝜑 → ((𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) ∧ ∀𝑎 ∈ 𝒫 ∪ dom (voln*‘𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎)) ↔ (𝐸 ⊆ (ℝ ↑m 𝑋) ∧ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎)))) |
| 29 | 3, 6, 28 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝐸 ∈ dom (voln‘𝑋) ↔ (𝐸 ⊆ (ℝ ↑m 𝑋) ∧ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 ∖ cdif 3923 ∩ cin 3925 ⊆ wss 3926 𝒫 cpw 4575 ∪ cuni 4883 dom cdm 5654 ‘cfv 6531 (class class class)co 7405 ↑m cmap 8840 Fincfn 8959 ℝcr 11128 +𝑒 cxad 13126 CaraGenccaragen 46520 voln*covoln 46565 volncvoln 46567 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cc 10449 ax-ac2 10477 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-disj 5087 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-pm 8843 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fi 9423 df-sup 9454 df-inf 9455 df-oi 9524 df-dju 9915 df-card 9953 df-acn 9956 df-ac 10130 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-ioo 13366 df-ico 13368 df-icc 13369 df-fz 13525 df-fzo 13672 df-fl 13809 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-rlim 15505 df-sum 15703 df-prod 15920 df-rest 17436 df-topgen 17457 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-top 22832 df-topon 22849 df-bases 22884 df-cmp 23325 df-ovol 25417 df-vol 25418 df-sumge0 46392 df-ome 46519 df-caragen 46521 df-ovoln 46566 df-voln 46568 |
| This theorem is referenced by: vonvolmbl 46690 |
| Copyright terms: Public domain | W3C validator |