Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isvonmbl | Structured version Visualization version GIF version |
Description: The predicate "𝐴 is measurable w.r.t. the n-dimensional Lebesgue measure". A set is measurable if it splits every other set 𝑥 in a "nice" way, that is, if the measure of the pieces 𝑥 ∩ 𝐴 and 𝑥 ∖ 𝐴 sum up to the measure of 𝑥. Definition 114E of [Fremlin1] p. 25. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
isvonmbl.1 | ⊢ (𝜑 → 𝑋 ∈ Fin) |
Ref | Expression |
---|---|
isvonmbl | ⊢ (𝜑 → (𝐸 ∈ dom (voln‘𝑋) ↔ (𝐸 ⊆ (ℝ ↑m 𝑋) ∧ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isvonmbl.1 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
2 | 1 | dmvon 44034 | . . 3 ⊢ (𝜑 → dom (voln‘𝑋) = (CaraGen‘(voln*‘𝑋))) |
3 | 2 | eleq2d 2824 | . 2 ⊢ (𝜑 → (𝐸 ∈ dom (voln‘𝑋) ↔ 𝐸 ∈ (CaraGen‘(voln*‘𝑋)))) |
4 | 1 | ovnome 44001 | . . 3 ⊢ (𝜑 → (voln*‘𝑋) ∈ OutMeas) |
5 | eqid 2738 | . . 3 ⊢ (CaraGen‘(voln*‘𝑋)) = (CaraGen‘(voln*‘𝑋)) | |
6 | 4, 5 | caragenel 43923 | . 2 ⊢ (𝜑 → (𝐸 ∈ (CaraGen‘(voln*‘𝑋)) ↔ (𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) ∧ ∀𝑎 ∈ 𝒫 ∪ dom (voln*‘𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎)))) |
7 | elpwi 4539 | . . . . . . 7 ⊢ (𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) → 𝐸 ⊆ ∪ dom (voln*‘𝑋)) | |
8 | 7 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋)) → 𝐸 ⊆ ∪ dom (voln*‘𝑋)) |
9 | 1 | unidmovn 44041 | . . . . . . 7 ⊢ (𝜑 → ∪ dom (voln*‘𝑋) = (ℝ ↑m 𝑋)) |
10 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋)) → ∪ dom (voln*‘𝑋) = (ℝ ↑m 𝑋)) |
11 | 8, 10 | sseqtrd 3957 | . . . . 5 ⊢ ((𝜑 ∧ 𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋)) → 𝐸 ⊆ (ℝ ↑m 𝑋)) |
12 | 11 | ex 412 | . . . 4 ⊢ (𝜑 → (𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) → 𝐸 ⊆ (ℝ ↑m 𝑋))) |
13 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐸 ⊆ (ℝ ↑m 𝑋)) → 𝐸 ⊆ (ℝ ↑m 𝑋)) | |
14 | 9 | eqcomd 2744 | . . . . . . . 8 ⊢ (𝜑 → (ℝ ↑m 𝑋) = ∪ dom (voln*‘𝑋)) |
15 | 14 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐸 ⊆ (ℝ ↑m 𝑋)) → (ℝ ↑m 𝑋) = ∪ dom (voln*‘𝑋)) |
16 | 13, 15 | sseqtrd 3957 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐸 ⊆ (ℝ ↑m 𝑋)) → 𝐸 ⊆ ∪ dom (voln*‘𝑋)) |
17 | ovex 7288 | . . . . . . . . 9 ⊢ (ℝ ↑m 𝑋) ∈ V | |
18 | 17 | ssex 5240 | . . . . . . . 8 ⊢ (𝐸 ⊆ (ℝ ↑m 𝑋) → 𝐸 ∈ V) |
19 | elpwg 4533 | . . . . . . . 8 ⊢ (𝐸 ∈ V → (𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) ↔ 𝐸 ⊆ ∪ dom (voln*‘𝑋))) | |
20 | 18, 19 | syl 17 | . . . . . . 7 ⊢ (𝐸 ⊆ (ℝ ↑m 𝑋) → (𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) ↔ 𝐸 ⊆ ∪ dom (voln*‘𝑋))) |
21 | 20 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐸 ⊆ (ℝ ↑m 𝑋)) → (𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) ↔ 𝐸 ⊆ ∪ dom (voln*‘𝑋))) |
22 | 16, 21 | mpbird 256 | . . . . 5 ⊢ ((𝜑 ∧ 𝐸 ⊆ (ℝ ↑m 𝑋)) → 𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋)) |
23 | 22 | ex 412 | . . . 4 ⊢ (𝜑 → (𝐸 ⊆ (ℝ ↑m 𝑋) → 𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋))) |
24 | 12, 23 | impbid 211 | . . 3 ⊢ (𝜑 → (𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) ↔ 𝐸 ⊆ (ℝ ↑m 𝑋))) |
25 | 9 | pweqd 4549 | . . . 4 ⊢ (𝜑 → 𝒫 ∪ dom (voln*‘𝑋) = 𝒫 (ℝ ↑m 𝑋)) |
26 | raleq 3333 | . . . 4 ⊢ (𝒫 ∪ dom (voln*‘𝑋) = 𝒫 (ℝ ↑m 𝑋) → (∀𝑎 ∈ 𝒫 ∪ dom (voln*‘𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎) ↔ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎))) | |
27 | 25, 26 | syl 17 | . . 3 ⊢ (𝜑 → (∀𝑎 ∈ 𝒫 ∪ dom (voln*‘𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎) ↔ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎))) |
28 | 24, 27 | anbi12d 630 | . 2 ⊢ (𝜑 → ((𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) ∧ ∀𝑎 ∈ 𝒫 ∪ dom (voln*‘𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎)) ↔ (𝐸 ⊆ (ℝ ↑m 𝑋) ∧ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎)))) |
29 | 3, 6, 28 | 3bitrd 304 | 1 ⊢ (𝜑 → (𝐸 ∈ dom (voln‘𝑋) ↔ (𝐸 ⊆ (ℝ ↑m 𝑋) ∧ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ∖ cdif 3880 ∩ cin 3882 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 dom cdm 5580 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 Fincfn 8691 ℝcr 10801 +𝑒 cxad 12775 CaraGenccaragen 43919 voln*covoln 43964 volncvoln 43966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cc 10122 ax-ac2 10150 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-disj 5036 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-dju 9590 df-card 9628 df-acn 9631 df-ac 9803 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-rlim 15126 df-sum 15326 df-prod 15544 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-rest 17050 df-0g 17069 df-topgen 17071 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-subg 18667 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 df-drng 19908 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-cnfld 20511 df-top 21951 df-topon 21968 df-bases 22004 df-cmp 22446 df-ovol 24533 df-vol 24534 df-sumge0 43791 df-ome 43918 df-caragen 43920 df-ovoln 43965 df-voln 43967 |
This theorem is referenced by: vonvolmbl 44089 |
Copyright terms: Public domain | W3C validator |