Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isvonmbl Structured version   Visualization version   GIF version

Theorem isvonmbl 46667
Description: The predicate "𝐴 is measurable w.r.t. the n-dimensional Lebesgue measure". A set is measurable if it splits every other set 𝑥 in a "nice" way, that is, if the measure of the pieces 𝑥𝐴 and 𝑥𝐴 sum up to the measure of 𝑥. Definition 114E of [Fremlin1] p. 25. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypothesis
Ref Expression
isvonmbl.1 (𝜑𝑋 ∈ Fin)
Assertion
Ref Expression
isvonmbl (𝜑 → (𝐸 ∈ dom (voln‘𝑋) ↔ (𝐸 ⊆ (ℝ ↑m 𝑋) ∧ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎𝐸))) = ((voln*‘𝑋)‘𝑎))))
Distinct variable groups:   𝐸,𝑎   𝑋,𝑎
Allowed substitution hint:   𝜑(𝑎)

Proof of Theorem isvonmbl
StepHypRef Expression
1 isvonmbl.1 . . . 4 (𝜑𝑋 ∈ Fin)
21dmvon 46635 . . 3 (𝜑 → dom (voln‘𝑋) = (CaraGen‘(voln*‘𝑋)))
32eleq2d 2820 . 2 (𝜑 → (𝐸 ∈ dom (voln‘𝑋) ↔ 𝐸 ∈ (CaraGen‘(voln*‘𝑋))))
41ovnome 46602 . . 3 (𝜑 → (voln*‘𝑋) ∈ OutMeas)
5 eqid 2735 . . 3 (CaraGen‘(voln*‘𝑋)) = (CaraGen‘(voln*‘𝑋))
64, 5caragenel 46524 . 2 (𝜑 → (𝐸 ∈ (CaraGen‘(voln*‘𝑋)) ↔ (𝐸 ∈ 𝒫 dom (voln*‘𝑋) ∧ ∀𝑎 ∈ 𝒫 dom (voln*‘𝑋)(((voln*‘𝑋)‘(𝑎𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎𝐸))) = ((voln*‘𝑋)‘𝑎))))
7 elpwi 4582 . . . . . . 7 (𝐸 ∈ 𝒫 dom (voln*‘𝑋) → 𝐸 dom (voln*‘𝑋))
87adantl 481 . . . . . 6 ((𝜑𝐸 ∈ 𝒫 dom (voln*‘𝑋)) → 𝐸 dom (voln*‘𝑋))
91unidmovn 46642 . . . . . . 7 (𝜑 dom (voln*‘𝑋) = (ℝ ↑m 𝑋))
109adantr 480 . . . . . 6 ((𝜑𝐸 ∈ 𝒫 dom (voln*‘𝑋)) → dom (voln*‘𝑋) = (ℝ ↑m 𝑋))
118, 10sseqtrd 3995 . . . . 5 ((𝜑𝐸 ∈ 𝒫 dom (voln*‘𝑋)) → 𝐸 ⊆ (ℝ ↑m 𝑋))
1211ex 412 . . . 4 (𝜑 → (𝐸 ∈ 𝒫 dom (voln*‘𝑋) → 𝐸 ⊆ (ℝ ↑m 𝑋)))
13 simpr 484 . . . . . . 7 ((𝜑𝐸 ⊆ (ℝ ↑m 𝑋)) → 𝐸 ⊆ (ℝ ↑m 𝑋))
149eqcomd 2741 . . . . . . . 8 (𝜑 → (ℝ ↑m 𝑋) = dom (voln*‘𝑋))
1514adantr 480 . . . . . . 7 ((𝜑𝐸 ⊆ (ℝ ↑m 𝑋)) → (ℝ ↑m 𝑋) = dom (voln*‘𝑋))
1613, 15sseqtrd 3995 . . . . . 6 ((𝜑𝐸 ⊆ (ℝ ↑m 𝑋)) → 𝐸 dom (voln*‘𝑋))
17 ovex 7438 . . . . . . . . 9 (ℝ ↑m 𝑋) ∈ V
1817ssex 5291 . . . . . . . 8 (𝐸 ⊆ (ℝ ↑m 𝑋) → 𝐸 ∈ V)
19 elpwg 4578 . . . . . . . 8 (𝐸 ∈ V → (𝐸 ∈ 𝒫 dom (voln*‘𝑋) ↔ 𝐸 dom (voln*‘𝑋)))
2018, 19syl 17 . . . . . . 7 (𝐸 ⊆ (ℝ ↑m 𝑋) → (𝐸 ∈ 𝒫 dom (voln*‘𝑋) ↔ 𝐸 dom (voln*‘𝑋)))
2120adantl 481 . . . . . 6 ((𝜑𝐸 ⊆ (ℝ ↑m 𝑋)) → (𝐸 ∈ 𝒫 dom (voln*‘𝑋) ↔ 𝐸 dom (voln*‘𝑋)))
2216, 21mpbird 257 . . . . 5 ((𝜑𝐸 ⊆ (ℝ ↑m 𝑋)) → 𝐸 ∈ 𝒫 dom (voln*‘𝑋))
2322ex 412 . . . 4 (𝜑 → (𝐸 ⊆ (ℝ ↑m 𝑋) → 𝐸 ∈ 𝒫 dom (voln*‘𝑋)))
2412, 23impbid 212 . . 3 (𝜑 → (𝐸 ∈ 𝒫 dom (voln*‘𝑋) ↔ 𝐸 ⊆ (ℝ ↑m 𝑋)))
259pweqd 4592 . . . 4 (𝜑 → 𝒫 dom (voln*‘𝑋) = 𝒫 (ℝ ↑m 𝑋))
26 raleq 3302 . . . 4 (𝒫 dom (voln*‘𝑋) = 𝒫 (ℝ ↑m 𝑋) → (∀𝑎 ∈ 𝒫 dom (voln*‘𝑋)(((voln*‘𝑋)‘(𝑎𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎𝐸))) = ((voln*‘𝑋)‘𝑎) ↔ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎𝐸))) = ((voln*‘𝑋)‘𝑎)))
2725, 26syl 17 . . 3 (𝜑 → (∀𝑎 ∈ 𝒫 dom (voln*‘𝑋)(((voln*‘𝑋)‘(𝑎𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎𝐸))) = ((voln*‘𝑋)‘𝑎) ↔ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎𝐸))) = ((voln*‘𝑋)‘𝑎)))
2824, 27anbi12d 632 . 2 (𝜑 → ((𝐸 ∈ 𝒫 dom (voln*‘𝑋) ∧ ∀𝑎 ∈ 𝒫 dom (voln*‘𝑋)(((voln*‘𝑋)‘(𝑎𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎𝐸))) = ((voln*‘𝑋)‘𝑎)) ↔ (𝐸 ⊆ (ℝ ↑m 𝑋) ∧ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎𝐸))) = ((voln*‘𝑋)‘𝑎))))
293, 6, 283bitrd 305 1 (𝜑 → (𝐸 ∈ dom (voln‘𝑋) ↔ (𝐸 ⊆ (ℝ ↑m 𝑋) ∧ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎𝐸))) = ((voln*‘𝑋)‘𝑎))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  cdif 3923  cin 3925  wss 3926  𝒫 cpw 4575   cuni 4883  dom cdm 5654  cfv 6531  (class class class)co 7405  m cmap 8840  Fincfn 8959  cr 11128   +𝑒 cxad 13126  CaraGenccaragen 46520  voln*covoln 46565  volncvoln 46567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cc 10449  ax-ac2 10477  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-acn 9956  df-ac 10130  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-rlim 15505  df-sum 15703  df-prod 15920  df-rest 17436  df-topgen 17457  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-top 22832  df-topon 22849  df-bases 22884  df-cmp 23325  df-ovol 25417  df-vol 25418  df-sumge0 46392  df-ome 46519  df-caragen 46521  df-ovoln 46566  df-voln 46568
This theorem is referenced by:  vonvolmbl  46690
  Copyright terms: Public domain W3C validator