| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isvonmbl | Structured version Visualization version GIF version | ||
| Description: The predicate "𝐴 is measurable w.r.t. the n-dimensional Lebesgue measure". A set is measurable if it splits every other set 𝑥 in a "nice" way, that is, if the measure of the pieces 𝑥 ∩ 𝐴 and 𝑥 ∖ 𝐴 sum up to the measure of 𝑥. Definition 114E of [Fremlin1] p. 25. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| isvonmbl.1 | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| Ref | Expression |
|---|---|
| isvonmbl | ⊢ (𝜑 → (𝐸 ∈ dom (voln‘𝑋) ↔ (𝐸 ⊆ (ℝ ↑m 𝑋) ∧ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isvonmbl.1 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 2 | 1 | dmvon 46588 | . . 3 ⊢ (𝜑 → dom (voln‘𝑋) = (CaraGen‘(voln*‘𝑋))) |
| 3 | 2 | eleq2d 2814 | . 2 ⊢ (𝜑 → (𝐸 ∈ dom (voln‘𝑋) ↔ 𝐸 ∈ (CaraGen‘(voln*‘𝑋)))) |
| 4 | 1 | ovnome 46555 | . . 3 ⊢ (𝜑 → (voln*‘𝑋) ∈ OutMeas) |
| 5 | eqid 2729 | . . 3 ⊢ (CaraGen‘(voln*‘𝑋)) = (CaraGen‘(voln*‘𝑋)) | |
| 6 | 4, 5 | caragenel 46477 | . 2 ⊢ (𝜑 → (𝐸 ∈ (CaraGen‘(voln*‘𝑋)) ↔ (𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) ∧ ∀𝑎 ∈ 𝒫 ∪ dom (voln*‘𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎)))) |
| 7 | elpwi 4560 | . . . . . . 7 ⊢ (𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) → 𝐸 ⊆ ∪ dom (voln*‘𝑋)) | |
| 8 | 7 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋)) → 𝐸 ⊆ ∪ dom (voln*‘𝑋)) |
| 9 | 1 | unidmovn 46595 | . . . . . . 7 ⊢ (𝜑 → ∪ dom (voln*‘𝑋) = (ℝ ↑m 𝑋)) |
| 10 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋)) → ∪ dom (voln*‘𝑋) = (ℝ ↑m 𝑋)) |
| 11 | 8, 10 | sseqtrd 3974 | . . . . 5 ⊢ ((𝜑 ∧ 𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋)) → 𝐸 ⊆ (ℝ ↑m 𝑋)) |
| 12 | 11 | ex 412 | . . . 4 ⊢ (𝜑 → (𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) → 𝐸 ⊆ (ℝ ↑m 𝑋))) |
| 13 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐸 ⊆ (ℝ ↑m 𝑋)) → 𝐸 ⊆ (ℝ ↑m 𝑋)) | |
| 14 | 9 | eqcomd 2735 | . . . . . . . 8 ⊢ (𝜑 → (ℝ ↑m 𝑋) = ∪ dom (voln*‘𝑋)) |
| 15 | 14 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐸 ⊆ (ℝ ↑m 𝑋)) → (ℝ ↑m 𝑋) = ∪ dom (voln*‘𝑋)) |
| 16 | 13, 15 | sseqtrd 3974 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐸 ⊆ (ℝ ↑m 𝑋)) → 𝐸 ⊆ ∪ dom (voln*‘𝑋)) |
| 17 | ovex 7386 | . . . . . . . . 9 ⊢ (ℝ ↑m 𝑋) ∈ V | |
| 18 | 17 | ssex 5263 | . . . . . . . 8 ⊢ (𝐸 ⊆ (ℝ ↑m 𝑋) → 𝐸 ∈ V) |
| 19 | elpwg 4556 | . . . . . . . 8 ⊢ (𝐸 ∈ V → (𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) ↔ 𝐸 ⊆ ∪ dom (voln*‘𝑋))) | |
| 20 | 18, 19 | syl 17 | . . . . . . 7 ⊢ (𝐸 ⊆ (ℝ ↑m 𝑋) → (𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) ↔ 𝐸 ⊆ ∪ dom (voln*‘𝑋))) |
| 21 | 20 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐸 ⊆ (ℝ ↑m 𝑋)) → (𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) ↔ 𝐸 ⊆ ∪ dom (voln*‘𝑋))) |
| 22 | 16, 21 | mpbird 257 | . . . . 5 ⊢ ((𝜑 ∧ 𝐸 ⊆ (ℝ ↑m 𝑋)) → 𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋)) |
| 23 | 22 | ex 412 | . . . 4 ⊢ (𝜑 → (𝐸 ⊆ (ℝ ↑m 𝑋) → 𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋))) |
| 24 | 12, 23 | impbid 212 | . . 3 ⊢ (𝜑 → (𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) ↔ 𝐸 ⊆ (ℝ ↑m 𝑋))) |
| 25 | 9 | pweqd 4570 | . . . 4 ⊢ (𝜑 → 𝒫 ∪ dom (voln*‘𝑋) = 𝒫 (ℝ ↑m 𝑋)) |
| 26 | raleq 3287 | . . . 4 ⊢ (𝒫 ∪ dom (voln*‘𝑋) = 𝒫 (ℝ ↑m 𝑋) → (∀𝑎 ∈ 𝒫 ∪ dom (voln*‘𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎) ↔ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎))) | |
| 27 | 25, 26 | syl 17 | . . 3 ⊢ (𝜑 → (∀𝑎 ∈ 𝒫 ∪ dom (voln*‘𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎) ↔ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎))) |
| 28 | 24, 27 | anbi12d 632 | . 2 ⊢ (𝜑 → ((𝐸 ∈ 𝒫 ∪ dom (voln*‘𝑋) ∧ ∀𝑎 ∈ 𝒫 ∪ dom (voln*‘𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎)) ↔ (𝐸 ⊆ (ℝ ↑m 𝑋) ∧ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎)))) |
| 29 | 3, 6, 28 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝐸 ∈ dom (voln‘𝑋) ↔ (𝐸 ⊆ (ℝ ↑m 𝑋) ∧ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3438 ∖ cdif 3902 ∩ cin 3904 ⊆ wss 3905 𝒫 cpw 4553 ∪ cuni 4861 dom cdm 5623 ‘cfv 6486 (class class class)co 7353 ↑m cmap 8760 Fincfn 8879 ℝcr 11027 +𝑒 cxad 13030 CaraGenccaragen 46473 voln*covoln 46518 volncvoln 46520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cc 10348 ax-ac2 10376 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-disj 5063 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-dju 9816 df-card 9854 df-acn 9857 df-ac 10029 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-ioo 13270 df-ico 13272 df-icc 13273 df-fz 13429 df-fzo 13576 df-fl 13714 df-seq 13927 df-exp 13987 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-clim 15413 df-rlim 15414 df-sum 15612 df-prod 15829 df-rest 17344 df-topgen 17365 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-top 22797 df-topon 22814 df-bases 22849 df-cmp 23290 df-ovol 25381 df-vol 25382 df-sumge0 46345 df-ome 46472 df-caragen 46474 df-ovoln 46519 df-voln 46521 |
| This theorem is referenced by: vonvolmbl 46643 |
| Copyright terms: Public domain | W3C validator |