Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isvonmbl Structured version   Visualization version   GIF version

Theorem isvonmbl 46636
Description: The predicate "𝐴 is measurable w.r.t. the n-dimensional Lebesgue measure". A set is measurable if it splits every other set 𝑥 in a "nice" way, that is, if the measure of the pieces 𝑥𝐴 and 𝑥𝐴 sum up to the measure of 𝑥. Definition 114E of [Fremlin1] p. 25. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypothesis
Ref Expression
isvonmbl.1 (𝜑𝑋 ∈ Fin)
Assertion
Ref Expression
isvonmbl (𝜑 → (𝐸 ∈ dom (voln‘𝑋) ↔ (𝐸 ⊆ (ℝ ↑m 𝑋) ∧ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎𝐸))) = ((voln*‘𝑋)‘𝑎))))
Distinct variable groups:   𝐸,𝑎   𝑋,𝑎
Allowed substitution hint:   𝜑(𝑎)

Proof of Theorem isvonmbl
StepHypRef Expression
1 isvonmbl.1 . . . 4 (𝜑𝑋 ∈ Fin)
21dmvon 46604 . . 3 (𝜑 → dom (voln‘𝑋) = (CaraGen‘(voln*‘𝑋)))
32eleq2d 2814 . 2 (𝜑 → (𝐸 ∈ dom (voln‘𝑋) ↔ 𝐸 ∈ (CaraGen‘(voln*‘𝑋))))
41ovnome 46571 . . 3 (𝜑 → (voln*‘𝑋) ∈ OutMeas)
5 eqid 2729 . . 3 (CaraGen‘(voln*‘𝑋)) = (CaraGen‘(voln*‘𝑋))
64, 5caragenel 46493 . 2 (𝜑 → (𝐸 ∈ (CaraGen‘(voln*‘𝑋)) ↔ (𝐸 ∈ 𝒫 dom (voln*‘𝑋) ∧ ∀𝑎 ∈ 𝒫 dom (voln*‘𝑋)(((voln*‘𝑋)‘(𝑎𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎𝐸))) = ((voln*‘𝑋)‘𝑎))))
7 elpwi 4570 . . . . . . 7 (𝐸 ∈ 𝒫 dom (voln*‘𝑋) → 𝐸 dom (voln*‘𝑋))
87adantl 481 . . . . . 6 ((𝜑𝐸 ∈ 𝒫 dom (voln*‘𝑋)) → 𝐸 dom (voln*‘𝑋))
91unidmovn 46611 . . . . . . 7 (𝜑 dom (voln*‘𝑋) = (ℝ ↑m 𝑋))
109adantr 480 . . . . . 6 ((𝜑𝐸 ∈ 𝒫 dom (voln*‘𝑋)) → dom (voln*‘𝑋) = (ℝ ↑m 𝑋))
118, 10sseqtrd 3983 . . . . 5 ((𝜑𝐸 ∈ 𝒫 dom (voln*‘𝑋)) → 𝐸 ⊆ (ℝ ↑m 𝑋))
1211ex 412 . . . 4 (𝜑 → (𝐸 ∈ 𝒫 dom (voln*‘𝑋) → 𝐸 ⊆ (ℝ ↑m 𝑋)))
13 simpr 484 . . . . . . 7 ((𝜑𝐸 ⊆ (ℝ ↑m 𝑋)) → 𝐸 ⊆ (ℝ ↑m 𝑋))
149eqcomd 2735 . . . . . . . 8 (𝜑 → (ℝ ↑m 𝑋) = dom (voln*‘𝑋))
1514adantr 480 . . . . . . 7 ((𝜑𝐸 ⊆ (ℝ ↑m 𝑋)) → (ℝ ↑m 𝑋) = dom (voln*‘𝑋))
1613, 15sseqtrd 3983 . . . . . 6 ((𝜑𝐸 ⊆ (ℝ ↑m 𝑋)) → 𝐸 dom (voln*‘𝑋))
17 ovex 7420 . . . . . . . . 9 (ℝ ↑m 𝑋) ∈ V
1817ssex 5276 . . . . . . . 8 (𝐸 ⊆ (ℝ ↑m 𝑋) → 𝐸 ∈ V)
19 elpwg 4566 . . . . . . . 8 (𝐸 ∈ V → (𝐸 ∈ 𝒫 dom (voln*‘𝑋) ↔ 𝐸 dom (voln*‘𝑋)))
2018, 19syl 17 . . . . . . 7 (𝐸 ⊆ (ℝ ↑m 𝑋) → (𝐸 ∈ 𝒫 dom (voln*‘𝑋) ↔ 𝐸 dom (voln*‘𝑋)))
2120adantl 481 . . . . . 6 ((𝜑𝐸 ⊆ (ℝ ↑m 𝑋)) → (𝐸 ∈ 𝒫 dom (voln*‘𝑋) ↔ 𝐸 dom (voln*‘𝑋)))
2216, 21mpbird 257 . . . . 5 ((𝜑𝐸 ⊆ (ℝ ↑m 𝑋)) → 𝐸 ∈ 𝒫 dom (voln*‘𝑋))
2322ex 412 . . . 4 (𝜑 → (𝐸 ⊆ (ℝ ↑m 𝑋) → 𝐸 ∈ 𝒫 dom (voln*‘𝑋)))
2412, 23impbid 212 . . 3 (𝜑 → (𝐸 ∈ 𝒫 dom (voln*‘𝑋) ↔ 𝐸 ⊆ (ℝ ↑m 𝑋)))
259pweqd 4580 . . . 4 (𝜑 → 𝒫 dom (voln*‘𝑋) = 𝒫 (ℝ ↑m 𝑋))
26 raleq 3296 . . . 4 (𝒫 dom (voln*‘𝑋) = 𝒫 (ℝ ↑m 𝑋) → (∀𝑎 ∈ 𝒫 dom (voln*‘𝑋)(((voln*‘𝑋)‘(𝑎𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎𝐸))) = ((voln*‘𝑋)‘𝑎) ↔ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎𝐸))) = ((voln*‘𝑋)‘𝑎)))
2725, 26syl 17 . . 3 (𝜑 → (∀𝑎 ∈ 𝒫 dom (voln*‘𝑋)(((voln*‘𝑋)‘(𝑎𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎𝐸))) = ((voln*‘𝑋)‘𝑎) ↔ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎𝐸))) = ((voln*‘𝑋)‘𝑎)))
2824, 27anbi12d 632 . 2 (𝜑 → ((𝐸 ∈ 𝒫 dom (voln*‘𝑋) ∧ ∀𝑎 ∈ 𝒫 dom (voln*‘𝑋)(((voln*‘𝑋)‘(𝑎𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎𝐸))) = ((voln*‘𝑋)‘𝑎)) ↔ (𝐸 ⊆ (ℝ ↑m 𝑋) ∧ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎𝐸))) = ((voln*‘𝑋)‘𝑎))))
293, 6, 283bitrd 305 1 (𝜑 → (𝐸 ∈ dom (voln‘𝑋) ↔ (𝐸 ⊆ (ℝ ↑m 𝑋) ∧ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎𝐸))) = ((voln*‘𝑋)‘𝑎))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  cdif 3911  cin 3913  wss 3914  𝒫 cpw 4563   cuni 4871  dom cdm 5638  cfv 6511  (class class class)co 7387  m cmap 8799  Fincfn 8918  cr 11067   +𝑒 cxad 13070  CaraGenccaragen 46489  voln*covoln 46534  volncvoln 46536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-ac2 10416  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-acn 9895  df-ac 10069  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-prod 15870  df-rest 17385  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-bases 22833  df-cmp 23274  df-ovol 25365  df-vol 25366  df-sumge0 46361  df-ome 46488  df-caragen 46490  df-ovoln 46535  df-voln 46537
This theorem is referenced by:  vonvolmbl  46659
  Copyright terms: Public domain W3C validator