Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isvonmbl Structured version   Visualization version   GIF version

Theorem isvonmbl 42919
Description: The predicate "𝐴 is measurable w.r.t. the n-dimensional Lebesgue measure". A set is measurable if it splits every other set 𝑥 in a "nice" way, that is, if the measure of the pieces 𝑥𝐴 and 𝑥𝐴 sum up to the measure of 𝑥. Definition 114E of [Fremlin1] p. 25. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypothesis
Ref Expression
isvonmbl.1 (𝜑𝑋 ∈ Fin)
Assertion
Ref Expression
isvonmbl (𝜑 → (𝐸 ∈ dom (voln‘𝑋) ↔ (𝐸 ⊆ (ℝ ↑m 𝑋) ∧ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎𝐸))) = ((voln*‘𝑋)‘𝑎))))
Distinct variable groups:   𝐸,𝑎   𝑋,𝑎
Allowed substitution hint:   𝜑(𝑎)

Proof of Theorem isvonmbl
StepHypRef Expression
1 isvonmbl.1 . . . 4 (𝜑𝑋 ∈ Fin)
21dmvon 42887 . . 3 (𝜑 → dom (voln‘𝑋) = (CaraGen‘(voln*‘𝑋)))
32eleq2d 2898 . 2 (𝜑 → (𝐸 ∈ dom (voln‘𝑋) ↔ 𝐸 ∈ (CaraGen‘(voln*‘𝑋))))
41ovnome 42854 . . 3 (𝜑 → (voln*‘𝑋) ∈ OutMeas)
5 eqid 2821 . . 3 (CaraGen‘(voln*‘𝑋)) = (CaraGen‘(voln*‘𝑋))
64, 5caragenel 42776 . 2 (𝜑 → (𝐸 ∈ (CaraGen‘(voln*‘𝑋)) ↔ (𝐸 ∈ 𝒫 dom (voln*‘𝑋) ∧ ∀𝑎 ∈ 𝒫 dom (voln*‘𝑋)(((voln*‘𝑋)‘(𝑎𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎𝐸))) = ((voln*‘𝑋)‘𝑎))))
7 elpwi 4547 . . . . . . 7 (𝐸 ∈ 𝒫 dom (voln*‘𝑋) → 𝐸 dom (voln*‘𝑋))
87adantl 484 . . . . . 6 ((𝜑𝐸 ∈ 𝒫 dom (voln*‘𝑋)) → 𝐸 dom (voln*‘𝑋))
91unidmovn 42894 . . . . . . 7 (𝜑 dom (voln*‘𝑋) = (ℝ ↑m 𝑋))
109adantr 483 . . . . . 6 ((𝜑𝐸 ∈ 𝒫 dom (voln*‘𝑋)) → dom (voln*‘𝑋) = (ℝ ↑m 𝑋))
118, 10sseqtrd 4006 . . . . 5 ((𝜑𝐸 ∈ 𝒫 dom (voln*‘𝑋)) → 𝐸 ⊆ (ℝ ↑m 𝑋))
1211ex 415 . . . 4 (𝜑 → (𝐸 ∈ 𝒫 dom (voln*‘𝑋) → 𝐸 ⊆ (ℝ ↑m 𝑋)))
13 simpr 487 . . . . . . 7 ((𝜑𝐸 ⊆ (ℝ ↑m 𝑋)) → 𝐸 ⊆ (ℝ ↑m 𝑋))
149eqcomd 2827 . . . . . . . 8 (𝜑 → (ℝ ↑m 𝑋) = dom (voln*‘𝑋))
1514adantr 483 . . . . . . 7 ((𝜑𝐸 ⊆ (ℝ ↑m 𝑋)) → (ℝ ↑m 𝑋) = dom (voln*‘𝑋))
1613, 15sseqtrd 4006 . . . . . 6 ((𝜑𝐸 ⊆ (ℝ ↑m 𝑋)) → 𝐸 dom (voln*‘𝑋))
17 ovex 7188 . . . . . . . . 9 (ℝ ↑m 𝑋) ∈ V
1817ssex 5224 . . . . . . . 8 (𝐸 ⊆ (ℝ ↑m 𝑋) → 𝐸 ∈ V)
19 elpwg 4541 . . . . . . . 8 (𝐸 ∈ V → (𝐸 ∈ 𝒫 dom (voln*‘𝑋) ↔ 𝐸 dom (voln*‘𝑋)))
2018, 19syl 17 . . . . . . 7 (𝐸 ⊆ (ℝ ↑m 𝑋) → (𝐸 ∈ 𝒫 dom (voln*‘𝑋) ↔ 𝐸 dom (voln*‘𝑋)))
2120adantl 484 . . . . . 6 ((𝜑𝐸 ⊆ (ℝ ↑m 𝑋)) → (𝐸 ∈ 𝒫 dom (voln*‘𝑋) ↔ 𝐸 dom (voln*‘𝑋)))
2216, 21mpbird 259 . . . . 5 ((𝜑𝐸 ⊆ (ℝ ↑m 𝑋)) → 𝐸 ∈ 𝒫 dom (voln*‘𝑋))
2322ex 415 . . . 4 (𝜑 → (𝐸 ⊆ (ℝ ↑m 𝑋) → 𝐸 ∈ 𝒫 dom (voln*‘𝑋)))
2412, 23impbid 214 . . 3 (𝜑 → (𝐸 ∈ 𝒫 dom (voln*‘𝑋) ↔ 𝐸 ⊆ (ℝ ↑m 𝑋)))
259pweqd 4557 . . . 4 (𝜑 → 𝒫 dom (voln*‘𝑋) = 𝒫 (ℝ ↑m 𝑋))
26 raleq 3405 . . . 4 (𝒫 dom (voln*‘𝑋) = 𝒫 (ℝ ↑m 𝑋) → (∀𝑎 ∈ 𝒫 dom (voln*‘𝑋)(((voln*‘𝑋)‘(𝑎𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎𝐸))) = ((voln*‘𝑋)‘𝑎) ↔ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎𝐸))) = ((voln*‘𝑋)‘𝑎)))
2725, 26syl 17 . . 3 (𝜑 → (∀𝑎 ∈ 𝒫 dom (voln*‘𝑋)(((voln*‘𝑋)‘(𝑎𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎𝐸))) = ((voln*‘𝑋)‘𝑎) ↔ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎𝐸))) = ((voln*‘𝑋)‘𝑎)))
2824, 27anbi12d 632 . 2 (𝜑 → ((𝐸 ∈ 𝒫 dom (voln*‘𝑋) ∧ ∀𝑎 ∈ 𝒫 dom (voln*‘𝑋)(((voln*‘𝑋)‘(𝑎𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎𝐸))) = ((voln*‘𝑋)‘𝑎)) ↔ (𝐸 ⊆ (ℝ ↑m 𝑋) ∧ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎𝐸))) = ((voln*‘𝑋)‘𝑎))))
293, 6, 283bitrd 307 1 (𝜑 → (𝐸 ∈ dom (voln‘𝑋) ↔ (𝐸 ⊆ (ℝ ↑m 𝑋) ∧ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎𝐸))) = ((voln*‘𝑋)‘𝑎))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  Vcvv 3494  cdif 3932  cin 3934  wss 3935  𝒫 cpw 4538   cuni 4837  dom cdm 5554  cfv 6354  (class class class)co 7155  m cmap 8405  Fincfn 8508  cr 10535   +𝑒 cxad 12504  CaraGenccaragen 42772  voln*covoln 42817  volncvoln 42819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cc 9856  ax-ac2 9884  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615  ax-mulf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-disj 5031  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-tpos 7891  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fi 8874  df-sup 8905  df-inf 8906  df-oi 8973  df-dju 9329  df-card 9367  df-acn 9370  df-ac 9541  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-ioo 12741  df-ico 12743  df-icc 12744  df-fz 12892  df-fzo 13033  df-fl 13161  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844  df-rlim 14845  df-sum 15042  df-prod 15259  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-starv 16579  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-rest 16695  df-0g 16714  df-topgen 16716  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-grp 18105  df-minusg 18106  df-subg 18275  df-cmn 18907  df-abl 18908  df-mgp 19239  df-ur 19251  df-ring 19298  df-cring 19299  df-oppr 19372  df-dvdsr 19390  df-unit 19391  df-invr 19421  df-dvr 19432  df-drng 19503  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539  df-mopn 20540  df-cnfld 20545  df-top 21501  df-topon 21518  df-bases 21553  df-cmp 21994  df-ovol 24064  df-vol 24065  df-sumge0 42644  df-ome 42771  df-caragen 42773  df-ovoln 42818  df-voln 42820
This theorem is referenced by:  vonvolmbl  42942
  Copyright terms: Public domain W3C validator