Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carageniuncl Structured version   Visualization version   GIF version

Theorem carageniuncl 43736
Description: The Caratheodory's construction is closed under indexed countable union. Step (d) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
carageniuncl.o (𝜑𝑂 ∈ OutMeas)
carageniuncl.s 𝑆 = (CaraGen‘𝑂)
carageniuncl.3 (𝜑𝑀 ∈ ℤ)
carageniuncl.z 𝑍 = (ℤ𝑀)
carageniuncl.e (𝜑𝐸:𝑍𝑆)
Assertion
Ref Expression
carageniuncl (𝜑 𝑛𝑍 (𝐸𝑛) ∈ 𝑆)
Distinct variable groups:   𝑛,𝐸   𝑛,𝑀   𝑛,𝑂   𝑛,𝑍   𝜑,𝑛
Allowed substitution hint:   𝑆(𝑛)

Proof of Theorem carageniuncl
Dummy variables 𝑎 𝑖 𝑥 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 carageniuncl.o . 2 (𝜑𝑂 ∈ OutMeas)
2 eqid 2737 . 2 dom 𝑂 = dom 𝑂
3 carageniuncl.s . 2 𝑆 = (CaraGen‘𝑂)
4 carageniuncl.e . . . . . . . 8 (𝜑𝐸:𝑍𝑆)
54ffvelrnda 6904 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐸𝑛) ∈ 𝑆)
6 elssuni 4851 . . . . . . 7 ((𝐸𝑛) ∈ 𝑆 → (𝐸𝑛) ⊆ 𝑆)
75, 6syl 17 . . . . . 6 ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ 𝑆)
81, 3caragenuni 43724 . . . . . . 7 (𝜑 𝑆 = dom 𝑂)
98adantr 484 . . . . . 6 ((𝜑𝑛𝑍) → 𝑆 = dom 𝑂)
107, 9sseqtrd 3941 . . . . 5 ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ dom 𝑂)
1110ralrimiva 3105 . . . 4 (𝜑 → ∀𝑛𝑍 (𝐸𝑛) ⊆ dom 𝑂)
12 iunss 4954 . . . 4 ( 𝑛𝑍 (𝐸𝑛) ⊆ dom 𝑂 ↔ ∀𝑛𝑍 (𝐸𝑛) ⊆ dom 𝑂)
1311, 12sylibr 237 . . 3 (𝜑 𝑛𝑍 (𝐸𝑛) ⊆ dom 𝑂)
14 carageniuncl.z . . . . . . 7 𝑍 = (ℤ𝑀)
1514fvexi 6731 . . . . . 6 𝑍 ∈ V
16 fvex 6730 . . . . . 6 (𝐸𝑛) ∈ V
1715, 16iunex 7741 . . . . 5 𝑛𝑍 (𝐸𝑛) ∈ V
1817a1i 11 . . . 4 (𝜑 𝑛𝑍 (𝐸𝑛) ∈ V)
19 elpwg 4516 . . . 4 ( 𝑛𝑍 (𝐸𝑛) ∈ V → ( 𝑛𝑍 (𝐸𝑛) ∈ 𝒫 dom 𝑂 𝑛𝑍 (𝐸𝑛) ⊆ dom 𝑂))
2018, 19syl 17 . . 3 (𝜑 → ( 𝑛𝑍 (𝐸𝑛) ∈ 𝒫 dom 𝑂 𝑛𝑍 (𝐸𝑛) ⊆ dom 𝑂))
2113, 20mpbird 260 . 2 (𝜑 𝑛𝑍 (𝐸𝑛) ∈ 𝒫 dom 𝑂)
22 iccssxr 13018 . . . . 5 (0[,]+∞) ⊆ ℝ*
231adantr 484 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑂 ∈ OutMeas)
24 elpwi 4522 . . . . . . . 8 (𝑎 ∈ 𝒫 dom 𝑂𝑎 dom 𝑂)
25 ssinss1 4152 . . . . . . . 8 (𝑎 dom 𝑂 → (𝑎 𝑛𝑍 (𝐸𝑛)) ⊆ dom 𝑂)
2624, 25syl 17 . . . . . . 7 (𝑎 ∈ 𝒫 dom 𝑂 → (𝑎 𝑛𝑍 (𝐸𝑛)) ⊆ dom 𝑂)
2726adantl 485 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎 𝑛𝑍 (𝐸𝑛)) ⊆ dom 𝑂)
2823, 2, 27omecl 43716 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) ∈ (0[,]+∞))
2922, 28sseldi 3899 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) ∈ ℝ*)
3024adantl 485 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑎 dom 𝑂)
3130ssdifssd 4057 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎 𝑛𝑍 (𝐸𝑛)) ⊆ dom 𝑂)
3223, 2, 31omecl 43716 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) ∈ (0[,]+∞))
3322, 32sseldi 3899 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) ∈ ℝ*)
3429, 33xaddcld 12891 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ∈ ℝ*)
3523, 2, 30omecl 43716 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂𝑎) ∈ (0[,]+∞))
3622, 35sseldi 3899 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂𝑎) ∈ ℝ*)
37 pnfge 12722 . . . . . . 7 (((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ∈ ℝ* → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ +∞)
3834, 37syl 17 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ +∞)
3938adantr 484 . . . . 5 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) = +∞) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ +∞)
40 id 22 . . . . . . 7 ((𝑂𝑎) = +∞ → (𝑂𝑎) = +∞)
4140eqcomd 2743 . . . . . 6 ((𝑂𝑎) = +∞ → +∞ = (𝑂𝑎))
4241adantl 485 . . . . 5 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) = +∞) → +∞ = (𝑂𝑎))
4339, 42breqtrd 5079 . . . 4 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) = +∞) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ (𝑂𝑎))
44 simpl 486 . . . . 5 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → (𝜑𝑎 ∈ 𝒫 dom 𝑂))
45 rge0ssre 13044 . . . . . 6 (0[,)+∞) ⊆ ℝ
46 0xr 10880 . . . . . . . 8 0 ∈ ℝ*
4746a1i 11 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → 0 ∈ ℝ*)
48 pnfxr 10887 . . . . . . . 8 +∞ ∈ ℝ*
4948a1i 11 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → +∞ ∈ ℝ*)
5044, 35syl 17 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → (𝑂𝑎) ∈ (0[,]+∞))
5140necon3bi 2967 . . . . . . . 8 (¬ (𝑂𝑎) = +∞ → (𝑂𝑎) ≠ +∞)
5251adantl 485 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → (𝑂𝑎) ≠ +∞)
5347, 49, 50, 52eliccelicod 42743 . . . . . 6 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → (𝑂𝑎) ∈ (0[,)+∞))
5445, 53sseldi 3899 . . . . 5 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → (𝑂𝑎) ∈ ℝ)
5523ad2antrr 726 . . . . . . . 8 ((((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑂 ∈ OutMeas)
5630ad2antrr 726 . . . . . . . 8 ((((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑎 dom 𝑂)
57 simpr 488 . . . . . . . . 9 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) → (𝑂𝑎) ∈ ℝ)
5857adantr 484 . . . . . . . 8 ((((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (𝑂𝑎) ∈ ℝ)
59 carageniuncl.3 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
6059ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑀 ∈ ℤ)
614ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐸:𝑍𝑆)
62 simpr 488 . . . . . . . 8 ((((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
63 eqid 2737 . . . . . . . 8 (𝑛𝑍 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖)) = (𝑛𝑍 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖))
64 fveq2 6717 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝐸𝑚) = (𝐸𝑛))
65 oveq2 7221 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑀..^𝑚) = (𝑀..^𝑛))
6665iuneq1d 4931 . . . . . . . . . 10 (𝑚 = 𝑛 𝑖 ∈ (𝑀..^𝑚)(𝐸𝑖) = 𝑖 ∈ (𝑀..^𝑛)(𝐸𝑖))
6764, 66difeq12d 4038 . . . . . . . . 9 (𝑚 = 𝑛 → ((𝐸𝑚) ∖ 𝑖 ∈ (𝑀..^𝑚)(𝐸𝑖)) = ((𝐸𝑛) ∖ 𝑖 ∈ (𝑀..^𝑛)(𝐸𝑖)))
6867cbvmptv 5158 . . . . . . . 8 (𝑚𝑍 ↦ ((𝐸𝑚) ∖ 𝑖 ∈ (𝑀..^𝑚)(𝐸𝑖))) = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑀..^𝑛)(𝐸𝑖)))
6955, 3, 2, 56, 58, 60, 14, 61, 62, 63, 68carageniuncllem2 43735 . . . . . . 7 ((((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝑎) + 𝑥))
7069ralrimiva 3105 . . . . . 6 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) → ∀𝑥 ∈ ℝ+ ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝑎) + 𝑥))
7134adantr 484 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ∈ ℝ*)
72 xralrple 12795 . . . . . . 7 ((((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ∈ ℝ* ∧ (𝑂𝑎) ∈ ℝ) → (((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ (𝑂𝑎) ↔ ∀𝑥 ∈ ℝ+ ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝑎) + 𝑥)))
7371, 57, 72syl2anc 587 . . . . . 6 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) → (((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ (𝑂𝑎) ↔ ∀𝑥 ∈ ℝ+ ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝑎) + 𝑥)))
7470, 73mpbird 260 . . . . 5 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ (𝑂𝑎))
7544, 54, 74syl2anc 587 . . . 4 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ (𝑂𝑎))
7643, 75pm2.61dan 813 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ (𝑂𝑎))
7723, 2, 30omelesplit 43731 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂𝑎) ≤ ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))))
7834, 36, 76, 77xrletrid 12745 . 2 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) = (𝑂𝑎))
791, 2, 3, 21, 78carageneld 43715 1 (𝜑 𝑛𝑍 (𝐸𝑛) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wne 2940  wral 3061  Vcvv 3408  cdif 3863  cin 3865  wss 3866  𝒫 cpw 4513   cuni 4819   ciun 4904   class class class wbr 5053  cmpt 5135  dom cdm 5551  wf 6376  cfv 6380  (class class class)co 7213  cr 10728  0cc0 10729   + caddc 10732  +∞cpnf 10864  *cxr 10866  cle 10868  cz 12176  cuz 12438  +crp 12586   +𝑒 cxad 12702  [,)cico 12937  [,]cicc 12938  ...cfz 13095  ..^cfzo 13238  OutMeascome 43702  CaraGenccaragen 43704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-ac2 10077  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-disj 5019  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-oadd 8206  df-omul 8207  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-acn 9558  df-ac 9730  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-q 12545  df-rp 12587  df-xadd 12705  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-sum 15250  df-sumge0 43576  df-ome 43703  df-caragen 43705
This theorem is referenced by:  caragenunicl  43737
  Copyright terms: Public domain W3C validator