Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carageniuncl Structured version   Visualization version   GIF version

Theorem carageniuncl 45010
Description: The Caratheodory's construction is closed under indexed countable union. Step (d) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
carageniuncl.o (𝜑𝑂 ∈ OutMeas)
carageniuncl.s 𝑆 = (CaraGen‘𝑂)
carageniuncl.3 (𝜑𝑀 ∈ ℤ)
carageniuncl.z 𝑍 = (ℤ𝑀)
carageniuncl.e (𝜑𝐸:𝑍𝑆)
Assertion
Ref Expression
carageniuncl (𝜑 𝑛𝑍 (𝐸𝑛) ∈ 𝑆)
Distinct variable groups:   𝑛,𝐸   𝑛,𝑀   𝑛,𝑂   𝑛,𝑍   𝜑,𝑛
Allowed substitution hint:   𝑆(𝑛)

Proof of Theorem carageniuncl
Dummy variables 𝑎 𝑖 𝑥 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 carageniuncl.o . 2 (𝜑𝑂 ∈ OutMeas)
2 eqid 2731 . 2 dom 𝑂 = dom 𝑂
3 carageniuncl.s . 2 𝑆 = (CaraGen‘𝑂)
4 carageniuncl.e . . . . . . . 8 (𝜑𝐸:𝑍𝑆)
54ffvelcdmda 7071 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐸𝑛) ∈ 𝑆)
6 elssuni 4934 . . . . . . 7 ((𝐸𝑛) ∈ 𝑆 → (𝐸𝑛) ⊆ 𝑆)
75, 6syl 17 . . . . . 6 ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ 𝑆)
81, 3caragenuni 44998 . . . . . . 7 (𝜑 𝑆 = dom 𝑂)
98adantr 481 . . . . . 6 ((𝜑𝑛𝑍) → 𝑆 = dom 𝑂)
107, 9sseqtrd 4018 . . . . 5 ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ dom 𝑂)
1110ralrimiva 3145 . . . 4 (𝜑 → ∀𝑛𝑍 (𝐸𝑛) ⊆ dom 𝑂)
12 iunss 5041 . . . 4 ( 𝑛𝑍 (𝐸𝑛) ⊆ dom 𝑂 ↔ ∀𝑛𝑍 (𝐸𝑛) ⊆ dom 𝑂)
1311, 12sylibr 233 . . 3 (𝜑 𝑛𝑍 (𝐸𝑛) ⊆ dom 𝑂)
14 carageniuncl.z . . . . . . 7 𝑍 = (ℤ𝑀)
1514fvexi 6892 . . . . . 6 𝑍 ∈ V
16 fvex 6891 . . . . . 6 (𝐸𝑛) ∈ V
1715, 16iunex 7937 . . . . 5 𝑛𝑍 (𝐸𝑛) ∈ V
1817a1i 11 . . . 4 (𝜑 𝑛𝑍 (𝐸𝑛) ∈ V)
19 elpwg 4599 . . . 4 ( 𝑛𝑍 (𝐸𝑛) ∈ V → ( 𝑛𝑍 (𝐸𝑛) ∈ 𝒫 dom 𝑂 𝑛𝑍 (𝐸𝑛) ⊆ dom 𝑂))
2018, 19syl 17 . . 3 (𝜑 → ( 𝑛𝑍 (𝐸𝑛) ∈ 𝒫 dom 𝑂 𝑛𝑍 (𝐸𝑛) ⊆ dom 𝑂))
2113, 20mpbird 256 . 2 (𝜑 𝑛𝑍 (𝐸𝑛) ∈ 𝒫 dom 𝑂)
22 iccssxr 13389 . . . . 5 (0[,]+∞) ⊆ ℝ*
231adantr 481 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑂 ∈ OutMeas)
24 elpwi 4603 . . . . . . . 8 (𝑎 ∈ 𝒫 dom 𝑂𝑎 dom 𝑂)
25 ssinss1 4233 . . . . . . . 8 (𝑎 dom 𝑂 → (𝑎 𝑛𝑍 (𝐸𝑛)) ⊆ dom 𝑂)
2624, 25syl 17 . . . . . . 7 (𝑎 ∈ 𝒫 dom 𝑂 → (𝑎 𝑛𝑍 (𝐸𝑛)) ⊆ dom 𝑂)
2726adantl 482 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎 𝑛𝑍 (𝐸𝑛)) ⊆ dom 𝑂)
2823, 2, 27omecl 44990 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) ∈ (0[,]+∞))
2922, 28sselid 3976 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) ∈ ℝ*)
3024adantl 482 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑎 dom 𝑂)
3130ssdifssd 4138 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎 𝑛𝑍 (𝐸𝑛)) ⊆ dom 𝑂)
3223, 2, 31omecl 44990 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) ∈ (0[,]+∞))
3322, 32sselid 3976 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) ∈ ℝ*)
3429, 33xaddcld 13262 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ∈ ℝ*)
3523, 2, 30omecl 44990 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂𝑎) ∈ (0[,]+∞))
3622, 35sselid 3976 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂𝑎) ∈ ℝ*)
37 pnfge 13092 . . . . . . 7 (((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ∈ ℝ* → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ +∞)
3834, 37syl 17 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ +∞)
3938adantr 481 . . . . 5 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) = +∞) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ +∞)
40 id 22 . . . . . . 7 ((𝑂𝑎) = +∞ → (𝑂𝑎) = +∞)
4140eqcomd 2737 . . . . . 6 ((𝑂𝑎) = +∞ → +∞ = (𝑂𝑎))
4241adantl 482 . . . . 5 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) = +∞) → +∞ = (𝑂𝑎))
4339, 42breqtrd 5167 . . . 4 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) = +∞) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ (𝑂𝑎))
44 simpl 483 . . . . 5 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → (𝜑𝑎 ∈ 𝒫 dom 𝑂))
45 rge0ssre 13415 . . . . . 6 (0[,)+∞) ⊆ ℝ
46 0xr 11243 . . . . . . . 8 0 ∈ ℝ*
4746a1i 11 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → 0 ∈ ℝ*)
48 pnfxr 11250 . . . . . . . 8 +∞ ∈ ℝ*
4948a1i 11 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → +∞ ∈ ℝ*)
5044, 35syl 17 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → (𝑂𝑎) ∈ (0[,]+∞))
5140necon3bi 2966 . . . . . . . 8 (¬ (𝑂𝑎) = +∞ → (𝑂𝑎) ≠ +∞)
5251adantl 482 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → (𝑂𝑎) ≠ +∞)
5347, 49, 50, 52eliccelicod 44014 . . . . . 6 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → (𝑂𝑎) ∈ (0[,)+∞))
5445, 53sselid 3976 . . . . 5 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → (𝑂𝑎) ∈ ℝ)
5523ad2antrr 724 . . . . . . . 8 ((((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑂 ∈ OutMeas)
5630ad2antrr 724 . . . . . . . 8 ((((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑎 dom 𝑂)
57 simpr 485 . . . . . . . . 9 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) → (𝑂𝑎) ∈ ℝ)
5857adantr 481 . . . . . . . 8 ((((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (𝑂𝑎) ∈ ℝ)
59 carageniuncl.3 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
6059ad3antrrr 728 . . . . . . . 8 ((((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑀 ∈ ℤ)
614ad3antrrr 728 . . . . . . . 8 ((((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐸:𝑍𝑆)
62 simpr 485 . . . . . . . 8 ((((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
63 eqid 2731 . . . . . . . 8 (𝑛𝑍 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖)) = (𝑛𝑍 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖))
64 fveq2 6878 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝐸𝑚) = (𝐸𝑛))
65 oveq2 7401 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑀..^𝑚) = (𝑀..^𝑛))
6665iuneq1d 5017 . . . . . . . . . 10 (𝑚 = 𝑛 𝑖 ∈ (𝑀..^𝑚)(𝐸𝑖) = 𝑖 ∈ (𝑀..^𝑛)(𝐸𝑖))
6764, 66difeq12d 4119 . . . . . . . . 9 (𝑚 = 𝑛 → ((𝐸𝑚) ∖ 𝑖 ∈ (𝑀..^𝑚)(𝐸𝑖)) = ((𝐸𝑛) ∖ 𝑖 ∈ (𝑀..^𝑛)(𝐸𝑖)))
6867cbvmptv 5254 . . . . . . . 8 (𝑚𝑍 ↦ ((𝐸𝑚) ∖ 𝑖 ∈ (𝑀..^𝑚)(𝐸𝑖))) = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑀..^𝑛)(𝐸𝑖)))
6955, 3, 2, 56, 58, 60, 14, 61, 62, 63, 68carageniuncllem2 45009 . . . . . . 7 ((((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝑎) + 𝑥))
7069ralrimiva 3145 . . . . . 6 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) → ∀𝑥 ∈ ℝ+ ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝑎) + 𝑥))
7134adantr 481 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ∈ ℝ*)
72 xralrple 13166 . . . . . . 7 ((((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ∈ ℝ* ∧ (𝑂𝑎) ∈ ℝ) → (((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ (𝑂𝑎) ↔ ∀𝑥 ∈ ℝ+ ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝑎) + 𝑥)))
7371, 57, 72syl2anc 584 . . . . . 6 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) → (((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ (𝑂𝑎) ↔ ∀𝑥 ∈ ℝ+ ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝑎) + 𝑥)))
7470, 73mpbird 256 . . . . 5 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ (𝑂𝑎))
7544, 54, 74syl2anc 584 . . . 4 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ (𝑂𝑎))
7643, 75pm2.61dan 811 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ (𝑂𝑎))
7723, 2, 30omelesplit 45005 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂𝑎) ≤ ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))))
7834, 36, 76, 77xrletrid 13116 . 2 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) = (𝑂𝑎))
791, 2, 3, 21, 78carageneld 44989 1 (𝜑 𝑛𝑍 (𝐸𝑛) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2939  wral 3060  Vcvv 3473  cdif 3941  cin 3943  wss 3944  𝒫 cpw 4596   cuni 4901   ciun 4990   class class class wbr 5141  cmpt 5224  dom cdm 5669  wf 6528  cfv 6532  (class class class)co 7393  cr 11091  0cc0 11092   + caddc 11095  +∞cpnf 11227  *cxr 11229  cle 11231  cz 12540  cuz 12804  +crp 12956   +𝑒 cxad 13072  [,)cico 13308  [,]cicc 13309  ...cfz 13466  ..^cfzo 13609  OutMeascome 44976  CaraGenccaragen 44978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-inf2 9618  ax-ac2 10440  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-pre-sup 11170
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-disj 5107  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-isom 6541  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-oadd 8452  df-omul 8453  df-er 8686  df-map 8805  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-sup 9419  df-inf 9420  df-oi 9487  df-card 9916  df-acn 9919  df-ac 10093  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-div 11854  df-nn 12195  df-2 12257  df-3 12258  df-n0 12455  df-z 12541  df-uz 12805  df-q 12915  df-rp 12957  df-xadd 13075  df-ico 13312  df-icc 13313  df-fz 13467  df-fzo 13610  df-seq 13949  df-exp 14010  df-hash 14273  df-cj 15028  df-re 15029  df-im 15030  df-sqrt 15164  df-abs 15165  df-clim 15414  df-sum 15615  df-sumge0 44850  df-ome 44977  df-caragen 44979
This theorem is referenced by:  caragenunicl  45011
  Copyright terms: Public domain W3C validator