| Step | Hyp | Ref
| Expression |
| 1 | | carageniuncl.o |
. 2
⊢ (𝜑 → 𝑂 ∈ OutMeas) |
| 2 | | eqid 2736 |
. 2
⊢ ∪ dom 𝑂 = ∪ dom 𝑂 |
| 3 | | carageniuncl.s |
. 2
⊢ 𝑆 = (CaraGen‘𝑂) |
| 4 | | carageniuncl.e |
. . . . . . . 8
⊢ (𝜑 → 𝐸:𝑍⟶𝑆) |
| 5 | 4 | ffvelcdmda 7103 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ∈ 𝑆) |
| 6 | | elssuni 4936 |
. . . . . . 7
⊢ ((𝐸‘𝑛) ∈ 𝑆 → (𝐸‘𝑛) ⊆ ∪ 𝑆) |
| 7 | 5, 6 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ ∪ 𝑆) |
| 8 | 1, 3 | caragenuni 46531 |
. . . . . . 7
⊢ (𝜑 → ∪ 𝑆 =
∪ dom 𝑂) |
| 9 | 8 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ∪ 𝑆 = ∪
dom 𝑂) |
| 10 | 7, 9 | sseqtrd 4019 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ ∪ dom
𝑂) |
| 11 | 10 | ralrimiva 3145 |
. . . 4
⊢ (𝜑 → ∀𝑛 ∈ 𝑍 (𝐸‘𝑛) ⊆ ∪ dom
𝑂) |
| 12 | | iunss 5044 |
. . . 4
⊢ (∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛) ⊆ ∪ dom
𝑂 ↔ ∀𝑛 ∈ 𝑍 (𝐸‘𝑛) ⊆ ∪ dom
𝑂) |
| 13 | 11, 12 | sylibr 234 |
. . 3
⊢ (𝜑 → ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛) ⊆ ∪ dom
𝑂) |
| 14 | | carageniuncl.z |
. . . . . . 7
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 15 | 14 | fvexi 6919 |
. . . . . 6
⊢ 𝑍 ∈ V |
| 16 | | fvex 6918 |
. . . . . 6
⊢ (𝐸‘𝑛) ∈ V |
| 17 | 15, 16 | iunex 7994 |
. . . . 5
⊢ ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛) ∈ V |
| 18 | 17 | a1i 11 |
. . . 4
⊢ (𝜑 → ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛) ∈ V) |
| 19 | | elpwg 4602 |
. . . 4
⊢ (∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛) ∈ V → (∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛) ∈ 𝒫 ∪ dom 𝑂 ↔ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛) ⊆ ∪ dom
𝑂)) |
| 20 | 18, 19 | syl 17 |
. . 3
⊢ (𝜑 → (∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛) ∈ 𝒫 ∪ dom 𝑂 ↔ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛) ⊆ ∪ dom
𝑂)) |
| 21 | 13, 20 | mpbird 257 |
. 2
⊢ (𝜑 → ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛) ∈ 𝒫 ∪ dom 𝑂) |
| 22 | | iccssxr 13471 |
. . . . 5
⊢
(0[,]+∞) ⊆ ℝ* |
| 23 | 1 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → 𝑂 ∈ OutMeas) |
| 24 | | elpwi 4606 |
. . . . . . . 8
⊢ (𝑎 ∈ 𝒫 ∪ dom 𝑂 → 𝑎 ⊆ ∪ dom
𝑂) |
| 25 | | ssinss1 4245 |
. . . . . . . 8
⊢ (𝑎 ⊆ ∪ dom 𝑂 → (𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) ⊆ ∪ dom
𝑂) |
| 26 | 24, 25 | syl 17 |
. . . . . . 7
⊢ (𝑎 ∈ 𝒫 ∪ dom 𝑂 → (𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) ⊆ ∪ dom
𝑂) |
| 27 | 26 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) ⊆ ∪ dom
𝑂) |
| 28 | 23, 2, 27 | omecl 46523 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑂‘(𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) ∈ (0[,]+∞)) |
| 29 | 22, 28 | sselid 3980 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑂‘(𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) ∈
ℝ*) |
| 30 | 24 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → 𝑎 ⊆ ∪ dom
𝑂) |
| 31 | 30 | ssdifssd 4146 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) ⊆ ∪ dom
𝑂) |
| 32 | 23, 2, 31 | omecl 46523 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) ∈ (0[,]+∞)) |
| 33 | 22, 32 | sselid 3980 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) ∈
ℝ*) |
| 34 | 29, 33 | xaddcld 13344 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → ((𝑂‘(𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ∈
ℝ*) |
| 35 | 23, 2, 30 | omecl 46523 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑂‘𝑎) ∈ (0[,]+∞)) |
| 36 | 22, 35 | sselid 3980 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑂‘𝑎) ∈
ℝ*) |
| 37 | | pnfge 13173 |
. . . . . . 7
⊢ (((𝑂‘(𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ∈ ℝ* →
((𝑂‘(𝑎 ∩ ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ≤ +∞) |
| 38 | 34, 37 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → ((𝑂‘(𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ≤ +∞) |
| 39 | 38 | adantr 480 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ (𝑂‘𝑎) = +∞) → ((𝑂‘(𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ≤ +∞) |
| 40 | | id 22 |
. . . . . . 7
⊢ ((𝑂‘𝑎) = +∞ → (𝑂‘𝑎) = +∞) |
| 41 | 40 | eqcomd 2742 |
. . . . . 6
⊢ ((𝑂‘𝑎) = +∞ → +∞ = (𝑂‘𝑎)) |
| 42 | 41 | adantl 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ (𝑂‘𝑎) = +∞) → +∞ = (𝑂‘𝑎)) |
| 43 | 39, 42 | breqtrd 5168 |
. . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ (𝑂‘𝑎) = +∞) → ((𝑂‘(𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ≤ (𝑂‘𝑎)) |
| 44 | | simpl 482 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ ¬ (𝑂‘𝑎) = +∞) → (𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂)) |
| 45 | | rge0ssre 13497 |
. . . . . 6
⊢
(0[,)+∞) ⊆ ℝ |
| 46 | | 0xr 11309 |
. . . . . . . 8
⊢ 0 ∈
ℝ* |
| 47 | 46 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ ¬ (𝑂‘𝑎) = +∞) → 0 ∈
ℝ*) |
| 48 | | pnfxr 11316 |
. . . . . . . 8
⊢ +∞
∈ ℝ* |
| 49 | 48 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ ¬ (𝑂‘𝑎) = +∞) → +∞ ∈
ℝ*) |
| 50 | 44, 35 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ ¬ (𝑂‘𝑎) = +∞) → (𝑂‘𝑎) ∈ (0[,]+∞)) |
| 51 | 40 | necon3bi 2966 |
. . . . . . . 8
⊢ (¬
(𝑂‘𝑎) = +∞ → (𝑂‘𝑎) ≠ +∞) |
| 52 | 51 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ ¬ (𝑂‘𝑎) = +∞) → (𝑂‘𝑎) ≠ +∞) |
| 53 | 47, 49, 50, 52 | eliccelicod 45548 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ ¬ (𝑂‘𝑎) = +∞) → (𝑂‘𝑎) ∈ (0[,)+∞)) |
| 54 | 45, 53 | sselid 3980 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ ¬ (𝑂‘𝑎) = +∞) → (𝑂‘𝑎) ∈ ℝ) |
| 55 | 23 | ad2antrr 726 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ (𝑂‘𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑂 ∈
OutMeas) |
| 56 | 30 | ad2antrr 726 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ (𝑂‘𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑎 ⊆ ∪ dom 𝑂) |
| 57 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ (𝑂‘𝑎) ∈ ℝ) → (𝑂‘𝑎) ∈ ℝ) |
| 58 | 57 | adantr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ (𝑂‘𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (𝑂‘𝑎) ∈ ℝ) |
| 59 | | carageniuncl.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 60 | 59 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ (𝑂‘𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑀 ∈
ℤ) |
| 61 | 4 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ (𝑂‘𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐸:𝑍⟶𝑆) |
| 62 | | simpr 484 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ (𝑂‘𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℝ+) |
| 63 | | eqid 2736 |
. . . . . . . 8
⊢ (𝑛 ∈ 𝑍 ↦ ∪
𝑖 ∈ (𝑀...𝑛)(𝐸‘𝑖)) = (𝑛 ∈ 𝑍 ↦ ∪
𝑖 ∈ (𝑀...𝑛)(𝐸‘𝑖)) |
| 64 | | fveq2 6905 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑛 → (𝐸‘𝑚) = (𝐸‘𝑛)) |
| 65 | | oveq2 7440 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑛 → (𝑀..^𝑚) = (𝑀..^𝑛)) |
| 66 | 65 | iuneq1d 5018 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑛 → ∪
𝑖 ∈ (𝑀..^𝑚)(𝐸‘𝑖) = ∪ 𝑖 ∈ (𝑀..^𝑛)(𝐸‘𝑖)) |
| 67 | 64, 66 | difeq12d 4126 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → ((𝐸‘𝑚) ∖ ∪
𝑖 ∈ (𝑀..^𝑚)(𝐸‘𝑖)) = ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑀..^𝑛)(𝐸‘𝑖))) |
| 68 | 67 | cbvmptv 5254 |
. . . . . . . 8
⊢ (𝑚 ∈ 𝑍 ↦ ((𝐸‘𝑚) ∖ ∪
𝑖 ∈ (𝑀..^𝑚)(𝐸‘𝑖))) = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑀..^𝑛)(𝐸‘𝑖))) |
| 69 | 55, 3, 2, 56, 58, 60, 14, 61, 62, 63, 68 | carageniuncllem2 46542 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ (𝑂‘𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → ((𝑂‘(𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ≤ ((𝑂‘𝑎) + 𝑥)) |
| 70 | 69 | ralrimiva 3145 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ (𝑂‘𝑎) ∈ ℝ) → ∀𝑥 ∈ ℝ+
((𝑂‘(𝑎 ∩ ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ≤ ((𝑂‘𝑎) + 𝑥)) |
| 71 | 34 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ (𝑂‘𝑎) ∈ ℝ) → ((𝑂‘(𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ∈
ℝ*) |
| 72 | | xralrple 13248 |
. . . . . . 7
⊢ ((((𝑂‘(𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ∈ ℝ* ∧ (𝑂‘𝑎) ∈ ℝ) → (((𝑂‘(𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ≤ (𝑂‘𝑎) ↔ ∀𝑥 ∈ ℝ+ ((𝑂‘(𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ≤ ((𝑂‘𝑎) + 𝑥))) |
| 73 | 71, 57, 72 | syl2anc 584 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ (𝑂‘𝑎) ∈ ℝ) → (((𝑂‘(𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ≤ (𝑂‘𝑎) ↔ ∀𝑥 ∈ ℝ+ ((𝑂‘(𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ≤ ((𝑂‘𝑎) + 𝑥))) |
| 74 | 70, 73 | mpbird 257 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ (𝑂‘𝑎) ∈ ℝ) → ((𝑂‘(𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ≤ (𝑂‘𝑎)) |
| 75 | 44, 54, 74 | syl2anc 584 |
. . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ ¬ (𝑂‘𝑎) = +∞) → ((𝑂‘(𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ≤ (𝑂‘𝑎)) |
| 76 | 43, 75 | pm2.61dan 812 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → ((𝑂‘(𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ≤ (𝑂‘𝑎)) |
| 77 | 23, 2, 30 | omelesplit 46538 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑂‘𝑎) ≤ ((𝑂‘(𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))))) |
| 78 | 34, 36, 76, 77 | xrletrid 13198 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → ((𝑂‘(𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) = (𝑂‘𝑎)) |
| 79 | 1, 2, 3, 21, 78 | carageneld 46522 |
1
⊢ (𝜑 → ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛) ∈ 𝑆) |