Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carageniuncl Structured version   Visualization version   GIF version

Theorem carageniuncl 46521
Description: The Caratheodory's construction is closed under indexed countable union. Step (d) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
carageniuncl.o (𝜑𝑂 ∈ OutMeas)
carageniuncl.s 𝑆 = (CaraGen‘𝑂)
carageniuncl.3 (𝜑𝑀 ∈ ℤ)
carageniuncl.z 𝑍 = (ℤ𝑀)
carageniuncl.e (𝜑𝐸:𝑍𝑆)
Assertion
Ref Expression
carageniuncl (𝜑 𝑛𝑍 (𝐸𝑛) ∈ 𝑆)
Distinct variable groups:   𝑛,𝐸   𝑛,𝑀   𝑛,𝑂   𝑛,𝑍   𝜑,𝑛
Allowed substitution hint:   𝑆(𝑛)

Proof of Theorem carageniuncl
Dummy variables 𝑎 𝑖 𝑥 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 carageniuncl.o . 2 (𝜑𝑂 ∈ OutMeas)
2 eqid 2729 . 2 dom 𝑂 = dom 𝑂
3 carageniuncl.s . 2 𝑆 = (CaraGen‘𝑂)
4 carageniuncl.e . . . . . . . 8 (𝜑𝐸:𝑍𝑆)
54ffvelcdmda 7056 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐸𝑛) ∈ 𝑆)
6 elssuni 4901 . . . . . . 7 ((𝐸𝑛) ∈ 𝑆 → (𝐸𝑛) ⊆ 𝑆)
75, 6syl 17 . . . . . 6 ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ 𝑆)
81, 3caragenuni 46509 . . . . . . 7 (𝜑 𝑆 = dom 𝑂)
98adantr 480 . . . . . 6 ((𝜑𝑛𝑍) → 𝑆 = dom 𝑂)
107, 9sseqtrd 3983 . . . . 5 ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ dom 𝑂)
1110ralrimiva 3125 . . . 4 (𝜑 → ∀𝑛𝑍 (𝐸𝑛) ⊆ dom 𝑂)
12 iunss 5009 . . . 4 ( 𝑛𝑍 (𝐸𝑛) ⊆ dom 𝑂 ↔ ∀𝑛𝑍 (𝐸𝑛) ⊆ dom 𝑂)
1311, 12sylibr 234 . . 3 (𝜑 𝑛𝑍 (𝐸𝑛) ⊆ dom 𝑂)
14 carageniuncl.z . . . . . . 7 𝑍 = (ℤ𝑀)
1514fvexi 6872 . . . . . 6 𝑍 ∈ V
16 fvex 6871 . . . . . 6 (𝐸𝑛) ∈ V
1715, 16iunex 7947 . . . . 5 𝑛𝑍 (𝐸𝑛) ∈ V
1817a1i 11 . . . 4 (𝜑 𝑛𝑍 (𝐸𝑛) ∈ V)
19 elpwg 4566 . . . 4 ( 𝑛𝑍 (𝐸𝑛) ∈ V → ( 𝑛𝑍 (𝐸𝑛) ∈ 𝒫 dom 𝑂 𝑛𝑍 (𝐸𝑛) ⊆ dom 𝑂))
2018, 19syl 17 . . 3 (𝜑 → ( 𝑛𝑍 (𝐸𝑛) ∈ 𝒫 dom 𝑂 𝑛𝑍 (𝐸𝑛) ⊆ dom 𝑂))
2113, 20mpbird 257 . 2 (𝜑 𝑛𝑍 (𝐸𝑛) ∈ 𝒫 dom 𝑂)
22 iccssxr 13391 . . . . 5 (0[,]+∞) ⊆ ℝ*
231adantr 480 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑂 ∈ OutMeas)
24 elpwi 4570 . . . . . . . 8 (𝑎 ∈ 𝒫 dom 𝑂𝑎 dom 𝑂)
25 ssinss1 4209 . . . . . . . 8 (𝑎 dom 𝑂 → (𝑎 𝑛𝑍 (𝐸𝑛)) ⊆ dom 𝑂)
2624, 25syl 17 . . . . . . 7 (𝑎 ∈ 𝒫 dom 𝑂 → (𝑎 𝑛𝑍 (𝐸𝑛)) ⊆ dom 𝑂)
2726adantl 481 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎 𝑛𝑍 (𝐸𝑛)) ⊆ dom 𝑂)
2823, 2, 27omecl 46501 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) ∈ (0[,]+∞))
2922, 28sselid 3944 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) ∈ ℝ*)
3024adantl 481 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑎 dom 𝑂)
3130ssdifssd 4110 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎 𝑛𝑍 (𝐸𝑛)) ⊆ dom 𝑂)
3223, 2, 31omecl 46501 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) ∈ (0[,]+∞))
3322, 32sselid 3944 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) ∈ ℝ*)
3429, 33xaddcld 13261 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ∈ ℝ*)
3523, 2, 30omecl 46501 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂𝑎) ∈ (0[,]+∞))
3622, 35sselid 3944 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂𝑎) ∈ ℝ*)
37 pnfge 13090 . . . . . . 7 (((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ∈ ℝ* → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ +∞)
3834, 37syl 17 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ +∞)
3938adantr 480 . . . . 5 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) = +∞) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ +∞)
40 id 22 . . . . . . 7 ((𝑂𝑎) = +∞ → (𝑂𝑎) = +∞)
4140eqcomd 2735 . . . . . 6 ((𝑂𝑎) = +∞ → +∞ = (𝑂𝑎))
4241adantl 481 . . . . 5 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) = +∞) → +∞ = (𝑂𝑎))
4339, 42breqtrd 5133 . . . 4 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) = +∞) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ (𝑂𝑎))
44 simpl 482 . . . . 5 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → (𝜑𝑎 ∈ 𝒫 dom 𝑂))
45 rge0ssre 13417 . . . . . 6 (0[,)+∞) ⊆ ℝ
46 0xr 11221 . . . . . . . 8 0 ∈ ℝ*
4746a1i 11 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → 0 ∈ ℝ*)
48 pnfxr 11228 . . . . . . . 8 +∞ ∈ ℝ*
4948a1i 11 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → +∞ ∈ ℝ*)
5044, 35syl 17 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → (𝑂𝑎) ∈ (0[,]+∞))
5140necon3bi 2951 . . . . . . . 8 (¬ (𝑂𝑎) = +∞ → (𝑂𝑎) ≠ +∞)
5251adantl 481 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → (𝑂𝑎) ≠ +∞)
5347, 49, 50, 52eliccelicod 45528 . . . . . 6 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → (𝑂𝑎) ∈ (0[,)+∞))
5445, 53sselid 3944 . . . . 5 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → (𝑂𝑎) ∈ ℝ)
5523ad2antrr 726 . . . . . . . 8 ((((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑂 ∈ OutMeas)
5630ad2antrr 726 . . . . . . . 8 ((((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑎 dom 𝑂)
57 simpr 484 . . . . . . . . 9 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) → (𝑂𝑎) ∈ ℝ)
5857adantr 480 . . . . . . . 8 ((((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (𝑂𝑎) ∈ ℝ)
59 carageniuncl.3 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
6059ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑀 ∈ ℤ)
614ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐸:𝑍𝑆)
62 simpr 484 . . . . . . . 8 ((((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
63 eqid 2729 . . . . . . . 8 (𝑛𝑍 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖)) = (𝑛𝑍 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖))
64 fveq2 6858 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝐸𝑚) = (𝐸𝑛))
65 oveq2 7395 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑀..^𝑚) = (𝑀..^𝑛))
6665iuneq1d 4983 . . . . . . . . . 10 (𝑚 = 𝑛 𝑖 ∈ (𝑀..^𝑚)(𝐸𝑖) = 𝑖 ∈ (𝑀..^𝑛)(𝐸𝑖))
6764, 66difeq12d 4090 . . . . . . . . 9 (𝑚 = 𝑛 → ((𝐸𝑚) ∖ 𝑖 ∈ (𝑀..^𝑚)(𝐸𝑖)) = ((𝐸𝑛) ∖ 𝑖 ∈ (𝑀..^𝑛)(𝐸𝑖)))
6867cbvmptv 5211 . . . . . . . 8 (𝑚𝑍 ↦ ((𝐸𝑚) ∖ 𝑖 ∈ (𝑀..^𝑚)(𝐸𝑖))) = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑀..^𝑛)(𝐸𝑖)))
6955, 3, 2, 56, 58, 60, 14, 61, 62, 63, 68carageniuncllem2 46520 . . . . . . 7 ((((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝑎) + 𝑥))
7069ralrimiva 3125 . . . . . 6 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) → ∀𝑥 ∈ ℝ+ ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝑎) + 𝑥))
7134adantr 480 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ∈ ℝ*)
72 xralrple 13165 . . . . . . 7 ((((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ∈ ℝ* ∧ (𝑂𝑎) ∈ ℝ) → (((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ (𝑂𝑎) ↔ ∀𝑥 ∈ ℝ+ ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝑎) + 𝑥)))
7371, 57, 72syl2anc 584 . . . . . 6 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) → (((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ (𝑂𝑎) ↔ ∀𝑥 ∈ ℝ+ ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝑎) + 𝑥)))
7470, 73mpbird 257 . . . . 5 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ (𝑂𝑎))
7544, 54, 74syl2anc 584 . . . 4 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ (𝑂𝑎))
7643, 75pm2.61dan 812 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ (𝑂𝑎))
7723, 2, 30omelesplit 46516 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂𝑎) ≤ ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))))
7834, 36, 76, 77xrletrid 13115 . 2 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) = (𝑂𝑎))
791, 2, 3, 21, 78carageneld 46500 1 (𝜑 𝑛𝑍 (𝐸𝑛) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3447  cdif 3911  cin 3913  wss 3914  𝒫 cpw 4563   cuni 4871   ciun 4955   class class class wbr 5107  cmpt 5188  dom cdm 5638  wf 6507  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068   + caddc 11071  +∞cpnf 11205  *cxr 11207  cle 11209  cz 12529  cuz 12793  +crp 12951   +𝑒 cxad 13070  [,)cico 13308  [,]cicc 13309  ...cfz 13468  ..^cfzo 13615  OutMeascome 46487  CaraGenccaragen 46489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-ac2 10416  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-acn 9895  df-ac 10069  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xadd 13073  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-sumge0 46361  df-ome 46488  df-caragen 46490
This theorem is referenced by:  caragenunicl  46522
  Copyright terms: Public domain W3C validator