Step | Hyp | Ref
| Expression |
1 | | carageniuncl.o |
. 2
⊢ (𝜑 → 𝑂 ∈ OutMeas) |
2 | | eqid 2737 |
. 2
⊢ ∪ dom 𝑂 = ∪ dom 𝑂 |
3 | | carageniuncl.s |
. 2
⊢ 𝑆 = (CaraGen‘𝑂) |
4 | | carageniuncl.e |
. . . . . . . 8
⊢ (𝜑 → 𝐸:𝑍⟶𝑆) |
5 | 4 | ffvelrnda 6904 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ∈ 𝑆) |
6 | | elssuni 4851 |
. . . . . . 7
⊢ ((𝐸‘𝑛) ∈ 𝑆 → (𝐸‘𝑛) ⊆ ∪ 𝑆) |
7 | 5, 6 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ ∪ 𝑆) |
8 | 1, 3 | caragenuni 43724 |
. . . . . . 7
⊢ (𝜑 → ∪ 𝑆 =
∪ dom 𝑂) |
9 | 8 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ∪ 𝑆 = ∪
dom 𝑂) |
10 | 7, 9 | sseqtrd 3941 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ ∪ dom
𝑂) |
11 | 10 | ralrimiva 3105 |
. . . 4
⊢ (𝜑 → ∀𝑛 ∈ 𝑍 (𝐸‘𝑛) ⊆ ∪ dom
𝑂) |
12 | | iunss 4954 |
. . . 4
⊢ (∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛) ⊆ ∪ dom
𝑂 ↔ ∀𝑛 ∈ 𝑍 (𝐸‘𝑛) ⊆ ∪ dom
𝑂) |
13 | 11, 12 | sylibr 237 |
. . 3
⊢ (𝜑 → ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛) ⊆ ∪ dom
𝑂) |
14 | | carageniuncl.z |
. . . . . . 7
⊢ 𝑍 =
(ℤ≥‘𝑀) |
15 | 14 | fvexi 6731 |
. . . . . 6
⊢ 𝑍 ∈ V |
16 | | fvex 6730 |
. . . . . 6
⊢ (𝐸‘𝑛) ∈ V |
17 | 15, 16 | iunex 7741 |
. . . . 5
⊢ ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛) ∈ V |
18 | 17 | a1i 11 |
. . . 4
⊢ (𝜑 → ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛) ∈ V) |
19 | | elpwg 4516 |
. . . 4
⊢ (∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛) ∈ V → (∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛) ∈ 𝒫 ∪ dom 𝑂 ↔ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛) ⊆ ∪ dom
𝑂)) |
20 | 18, 19 | syl 17 |
. . 3
⊢ (𝜑 → (∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛) ∈ 𝒫 ∪ dom 𝑂 ↔ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛) ⊆ ∪ dom
𝑂)) |
21 | 13, 20 | mpbird 260 |
. 2
⊢ (𝜑 → ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛) ∈ 𝒫 ∪ dom 𝑂) |
22 | | iccssxr 13018 |
. . . . 5
⊢
(0[,]+∞) ⊆ ℝ* |
23 | 1 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → 𝑂 ∈ OutMeas) |
24 | | elpwi 4522 |
. . . . . . . 8
⊢ (𝑎 ∈ 𝒫 ∪ dom 𝑂 → 𝑎 ⊆ ∪ dom
𝑂) |
25 | | ssinss1 4152 |
. . . . . . . 8
⊢ (𝑎 ⊆ ∪ dom 𝑂 → (𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) ⊆ ∪ dom
𝑂) |
26 | 24, 25 | syl 17 |
. . . . . . 7
⊢ (𝑎 ∈ 𝒫 ∪ dom 𝑂 → (𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) ⊆ ∪ dom
𝑂) |
27 | 26 | adantl 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) ⊆ ∪ dom
𝑂) |
28 | 23, 2, 27 | omecl 43716 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑂‘(𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) ∈ (0[,]+∞)) |
29 | 22, 28 | sseldi 3899 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑂‘(𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) ∈
ℝ*) |
30 | 24 | adantl 485 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → 𝑎 ⊆ ∪ dom
𝑂) |
31 | 30 | ssdifssd 4057 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) ⊆ ∪ dom
𝑂) |
32 | 23, 2, 31 | omecl 43716 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) ∈ (0[,]+∞)) |
33 | 22, 32 | sseldi 3899 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) ∈
ℝ*) |
34 | 29, 33 | xaddcld 12891 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → ((𝑂‘(𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ∈
ℝ*) |
35 | 23, 2, 30 | omecl 43716 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑂‘𝑎) ∈ (0[,]+∞)) |
36 | 22, 35 | sseldi 3899 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑂‘𝑎) ∈
ℝ*) |
37 | | pnfge 12722 |
. . . . . . 7
⊢ (((𝑂‘(𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ∈ ℝ* →
((𝑂‘(𝑎 ∩ ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ≤ +∞) |
38 | 34, 37 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → ((𝑂‘(𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ≤ +∞) |
39 | 38 | adantr 484 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ (𝑂‘𝑎) = +∞) → ((𝑂‘(𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ≤ +∞) |
40 | | id 22 |
. . . . . . 7
⊢ ((𝑂‘𝑎) = +∞ → (𝑂‘𝑎) = +∞) |
41 | 40 | eqcomd 2743 |
. . . . . 6
⊢ ((𝑂‘𝑎) = +∞ → +∞ = (𝑂‘𝑎)) |
42 | 41 | adantl 485 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ (𝑂‘𝑎) = +∞) → +∞ = (𝑂‘𝑎)) |
43 | 39, 42 | breqtrd 5079 |
. . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ (𝑂‘𝑎) = +∞) → ((𝑂‘(𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ≤ (𝑂‘𝑎)) |
44 | | simpl 486 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ ¬ (𝑂‘𝑎) = +∞) → (𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂)) |
45 | | rge0ssre 13044 |
. . . . . 6
⊢
(0[,)+∞) ⊆ ℝ |
46 | | 0xr 10880 |
. . . . . . . 8
⊢ 0 ∈
ℝ* |
47 | 46 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ ¬ (𝑂‘𝑎) = +∞) → 0 ∈
ℝ*) |
48 | | pnfxr 10887 |
. . . . . . . 8
⊢ +∞
∈ ℝ* |
49 | 48 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ ¬ (𝑂‘𝑎) = +∞) → +∞ ∈
ℝ*) |
50 | 44, 35 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ ¬ (𝑂‘𝑎) = +∞) → (𝑂‘𝑎) ∈ (0[,]+∞)) |
51 | 40 | necon3bi 2967 |
. . . . . . . 8
⊢ (¬
(𝑂‘𝑎) = +∞ → (𝑂‘𝑎) ≠ +∞) |
52 | 51 | adantl 485 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ ¬ (𝑂‘𝑎) = +∞) → (𝑂‘𝑎) ≠ +∞) |
53 | 47, 49, 50, 52 | eliccelicod 42743 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ ¬ (𝑂‘𝑎) = +∞) → (𝑂‘𝑎) ∈ (0[,)+∞)) |
54 | 45, 53 | sseldi 3899 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ ¬ (𝑂‘𝑎) = +∞) → (𝑂‘𝑎) ∈ ℝ) |
55 | 23 | ad2antrr 726 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ (𝑂‘𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑂 ∈
OutMeas) |
56 | 30 | ad2antrr 726 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ (𝑂‘𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑎 ⊆ ∪ dom 𝑂) |
57 | | simpr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ (𝑂‘𝑎) ∈ ℝ) → (𝑂‘𝑎) ∈ ℝ) |
58 | 57 | adantr 484 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ (𝑂‘𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (𝑂‘𝑎) ∈ ℝ) |
59 | | carageniuncl.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℤ) |
60 | 59 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ (𝑂‘𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑀 ∈
ℤ) |
61 | 4 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ (𝑂‘𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐸:𝑍⟶𝑆) |
62 | | simpr 488 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ (𝑂‘𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℝ+) |
63 | | eqid 2737 |
. . . . . . . 8
⊢ (𝑛 ∈ 𝑍 ↦ ∪
𝑖 ∈ (𝑀...𝑛)(𝐸‘𝑖)) = (𝑛 ∈ 𝑍 ↦ ∪
𝑖 ∈ (𝑀...𝑛)(𝐸‘𝑖)) |
64 | | fveq2 6717 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑛 → (𝐸‘𝑚) = (𝐸‘𝑛)) |
65 | | oveq2 7221 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑛 → (𝑀..^𝑚) = (𝑀..^𝑛)) |
66 | 65 | iuneq1d 4931 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑛 → ∪
𝑖 ∈ (𝑀..^𝑚)(𝐸‘𝑖) = ∪ 𝑖 ∈ (𝑀..^𝑛)(𝐸‘𝑖)) |
67 | 64, 66 | difeq12d 4038 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → ((𝐸‘𝑚) ∖ ∪
𝑖 ∈ (𝑀..^𝑚)(𝐸‘𝑖)) = ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑀..^𝑛)(𝐸‘𝑖))) |
68 | 67 | cbvmptv 5158 |
. . . . . . . 8
⊢ (𝑚 ∈ 𝑍 ↦ ((𝐸‘𝑚) ∖ ∪
𝑖 ∈ (𝑀..^𝑚)(𝐸‘𝑖))) = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑀..^𝑛)(𝐸‘𝑖))) |
69 | 55, 3, 2, 56, 58, 60, 14, 61, 62, 63, 68 | carageniuncllem2 43735 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ (𝑂‘𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → ((𝑂‘(𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ≤ ((𝑂‘𝑎) + 𝑥)) |
70 | 69 | ralrimiva 3105 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ (𝑂‘𝑎) ∈ ℝ) → ∀𝑥 ∈ ℝ+
((𝑂‘(𝑎 ∩ ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ≤ ((𝑂‘𝑎) + 𝑥)) |
71 | 34 | adantr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ (𝑂‘𝑎) ∈ ℝ) → ((𝑂‘(𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ∈
ℝ*) |
72 | | xralrple 12795 |
. . . . . . 7
⊢ ((((𝑂‘(𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ∈ ℝ* ∧ (𝑂‘𝑎) ∈ ℝ) → (((𝑂‘(𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ≤ (𝑂‘𝑎) ↔ ∀𝑥 ∈ ℝ+ ((𝑂‘(𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ≤ ((𝑂‘𝑎) + 𝑥))) |
73 | 71, 57, 72 | syl2anc 587 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ (𝑂‘𝑎) ∈ ℝ) → (((𝑂‘(𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ≤ (𝑂‘𝑎) ↔ ∀𝑥 ∈ ℝ+ ((𝑂‘(𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ≤ ((𝑂‘𝑎) + 𝑥))) |
74 | 70, 73 | mpbird 260 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ (𝑂‘𝑎) ∈ ℝ) → ((𝑂‘(𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ≤ (𝑂‘𝑎)) |
75 | 44, 54, 74 | syl2anc 587 |
. . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) ∧ ¬ (𝑂‘𝑎) = +∞) → ((𝑂‘(𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ≤ (𝑂‘𝑎)) |
76 | 43, 75 | pm2.61dan 813 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → ((𝑂‘(𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ≤ (𝑂‘𝑎)) |
77 | 23, 2, 30 | omelesplit 43731 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑂‘𝑎) ≤ ((𝑂‘(𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))))) |
78 | 34, 36, 76, 77 | xrletrid 12745 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → ((𝑂‘(𝑎 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝑎 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) = (𝑂‘𝑎)) |
79 | 1, 2, 3, 21, 78 | carageneld 43715 |
1
⊢ (𝜑 → ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛) ∈ 𝑆) |