Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carageniuncl Structured version   Visualization version   GIF version

Theorem carageniuncl 42237
Description: The Caratheodory's construction is closed under indexed countable union. Step (d) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
carageniuncl.o (𝜑𝑂 ∈ OutMeas)
carageniuncl.s 𝑆 = (CaraGen‘𝑂)
carageniuncl.3 (𝜑𝑀 ∈ ℤ)
carageniuncl.z 𝑍 = (ℤ𝑀)
carageniuncl.e (𝜑𝐸:𝑍𝑆)
Assertion
Ref Expression
carageniuncl (𝜑 𝑛𝑍 (𝐸𝑛) ∈ 𝑆)
Distinct variable groups:   𝑛,𝐸   𝑛,𝑀   𝑛,𝑂   𝑛,𝑍   𝜑,𝑛
Allowed substitution hint:   𝑆(𝑛)

Proof of Theorem carageniuncl
Dummy variables 𝑎 𝑖 𝑥 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 carageniuncl.o . 2 (𝜑𝑂 ∈ OutMeas)
2 eqid 2778 . 2 dom 𝑂 = dom 𝑂
3 carageniuncl.s . 2 𝑆 = (CaraGen‘𝑂)
4 carageniuncl.e . . . . . . . 8 (𝜑𝐸:𝑍𝑆)
54ffvelrnda 6678 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐸𝑛) ∈ 𝑆)
6 elssuni 4742 . . . . . . 7 ((𝐸𝑛) ∈ 𝑆 → (𝐸𝑛) ⊆ 𝑆)
75, 6syl 17 . . . . . 6 ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ 𝑆)
81, 3caragenuni 42225 . . . . . . 7 (𝜑 𝑆 = dom 𝑂)
98adantr 473 . . . . . 6 ((𝜑𝑛𝑍) → 𝑆 = dom 𝑂)
107, 9sseqtrd 3899 . . . . 5 ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ dom 𝑂)
1110ralrimiva 3132 . . . 4 (𝜑 → ∀𝑛𝑍 (𝐸𝑛) ⊆ dom 𝑂)
12 iunss 4836 . . . 4 ( 𝑛𝑍 (𝐸𝑛) ⊆ dom 𝑂 ↔ ∀𝑛𝑍 (𝐸𝑛) ⊆ dom 𝑂)
1311, 12sylibr 226 . . 3 (𝜑 𝑛𝑍 (𝐸𝑛) ⊆ dom 𝑂)
14 carageniuncl.z . . . . . . 7 𝑍 = (ℤ𝑀)
1514fvexi 6515 . . . . . 6 𝑍 ∈ V
16 fvex 6514 . . . . . 6 (𝐸𝑛) ∈ V
1715, 16iunex 7483 . . . . 5 𝑛𝑍 (𝐸𝑛) ∈ V
1817a1i 11 . . . 4 (𝜑 𝑛𝑍 (𝐸𝑛) ∈ V)
19 elpwg 4431 . . . 4 ( 𝑛𝑍 (𝐸𝑛) ∈ V → ( 𝑛𝑍 (𝐸𝑛) ∈ 𝒫 dom 𝑂 𝑛𝑍 (𝐸𝑛) ⊆ dom 𝑂))
2018, 19syl 17 . . 3 (𝜑 → ( 𝑛𝑍 (𝐸𝑛) ∈ 𝒫 dom 𝑂 𝑛𝑍 (𝐸𝑛) ⊆ dom 𝑂))
2113, 20mpbird 249 . 2 (𝜑 𝑛𝑍 (𝐸𝑛) ∈ 𝒫 dom 𝑂)
22 iccssxr 12638 . . . . 5 (0[,]+∞) ⊆ ℝ*
231adantr 473 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑂 ∈ OutMeas)
24 elpwi 4433 . . . . . . . 8 (𝑎 ∈ 𝒫 dom 𝑂𝑎 dom 𝑂)
25 ssinss1 4103 . . . . . . . 8 (𝑎 dom 𝑂 → (𝑎 𝑛𝑍 (𝐸𝑛)) ⊆ dom 𝑂)
2624, 25syl 17 . . . . . . 7 (𝑎 ∈ 𝒫 dom 𝑂 → (𝑎 𝑛𝑍 (𝐸𝑛)) ⊆ dom 𝑂)
2726adantl 474 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎 𝑛𝑍 (𝐸𝑛)) ⊆ dom 𝑂)
2823, 2, 27omecl 42217 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) ∈ (0[,]+∞))
2922, 28sseldi 3858 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) ∈ ℝ*)
3024adantl 474 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑎 dom 𝑂)
3130ssdifssd 4011 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎 𝑛𝑍 (𝐸𝑛)) ⊆ dom 𝑂)
3223, 2, 31omecl 42217 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) ∈ (0[,]+∞))
3322, 32sseldi 3858 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) ∈ ℝ*)
3429, 33xaddcld 12513 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ∈ ℝ*)
3523, 2, 30omecl 42217 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂𝑎) ∈ (0[,]+∞))
3622, 35sseldi 3858 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂𝑎) ∈ ℝ*)
37 pnfge 12345 . . . . . . 7 (((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ∈ ℝ* → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ +∞)
3834, 37syl 17 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ +∞)
3938adantr 473 . . . . 5 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) = +∞) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ +∞)
40 id 22 . . . . . . 7 ((𝑂𝑎) = +∞ → (𝑂𝑎) = +∞)
4140eqcomd 2784 . . . . . 6 ((𝑂𝑎) = +∞ → +∞ = (𝑂𝑎))
4241adantl 474 . . . . 5 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) = +∞) → +∞ = (𝑂𝑎))
4339, 42breqtrd 4956 . . . 4 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) = +∞) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ (𝑂𝑎))
44 simpl 475 . . . . 5 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → (𝜑𝑎 ∈ 𝒫 dom 𝑂))
45 rge0ssre 12663 . . . . . 6 (0[,)+∞) ⊆ ℝ
46 0xr 10489 . . . . . . . 8 0 ∈ ℝ*
4746a1i 11 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → 0 ∈ ℝ*)
48 pnfxr 10496 . . . . . . . 8 +∞ ∈ ℝ*
4948a1i 11 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → +∞ ∈ ℝ*)
5044, 35syl 17 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → (𝑂𝑎) ∈ (0[,]+∞))
5140necon3bi 2993 . . . . . . . 8 (¬ (𝑂𝑎) = +∞ → (𝑂𝑎) ≠ +∞)
5251adantl 474 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → (𝑂𝑎) ≠ +∞)
5347, 49, 50, 52eliccelicod 41238 . . . . . 6 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → (𝑂𝑎) ∈ (0[,)+∞))
5445, 53sseldi 3858 . . . . 5 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → (𝑂𝑎) ∈ ℝ)
5523ad2antrr 713 . . . . . . . 8 ((((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑂 ∈ OutMeas)
5630ad2antrr 713 . . . . . . . 8 ((((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑎 dom 𝑂)
57 simpr 477 . . . . . . . . 9 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) → (𝑂𝑎) ∈ ℝ)
5857adantr 473 . . . . . . . 8 ((((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (𝑂𝑎) ∈ ℝ)
59 carageniuncl.3 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
6059ad3antrrr 717 . . . . . . . 8 ((((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑀 ∈ ℤ)
614ad3antrrr 717 . . . . . . . 8 ((((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐸:𝑍𝑆)
62 simpr 477 . . . . . . . 8 ((((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
63 eqid 2778 . . . . . . . 8 (𝑛𝑍 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖)) = (𝑛𝑍 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖))
64 fveq2 6501 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝐸𝑚) = (𝐸𝑛))
65 oveq2 6986 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑀..^𝑚) = (𝑀..^𝑛))
6665iuneq1d 4819 . . . . . . . . . 10 (𝑚 = 𝑛 𝑖 ∈ (𝑀..^𝑚)(𝐸𝑖) = 𝑖 ∈ (𝑀..^𝑛)(𝐸𝑖))
6764, 66difeq12d 3992 . . . . . . . . 9 (𝑚 = 𝑛 → ((𝐸𝑚) ∖ 𝑖 ∈ (𝑀..^𝑚)(𝐸𝑖)) = ((𝐸𝑛) ∖ 𝑖 ∈ (𝑀..^𝑛)(𝐸𝑖)))
6867cbvmptv 5029 . . . . . . . 8 (𝑚𝑍 ↦ ((𝐸𝑚) ∖ 𝑖 ∈ (𝑀..^𝑚)(𝐸𝑖))) = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑀..^𝑛)(𝐸𝑖)))
6955, 3, 2, 56, 58, 60, 14, 61, 62, 63, 68carageniuncllem2 42236 . . . . . . 7 ((((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝑎) + 𝑥))
7069ralrimiva 3132 . . . . . 6 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) → ∀𝑥 ∈ ℝ+ ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝑎) + 𝑥))
7134adantr 473 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ∈ ℝ*)
72 xralrple 12418 . . . . . . 7 ((((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ∈ ℝ* ∧ (𝑂𝑎) ∈ ℝ) → (((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ (𝑂𝑎) ↔ ∀𝑥 ∈ ℝ+ ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝑎) + 𝑥)))
7371, 57, 72syl2anc 576 . . . . . 6 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) → (((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ (𝑂𝑎) ↔ ∀𝑥 ∈ ℝ+ ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝑎) + 𝑥)))
7470, 73mpbird 249 . . . . 5 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ (𝑂𝑎))
7544, 54, 74syl2anc 576 . . . 4 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ (𝑂𝑎))
7643, 75pm2.61dan 800 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ (𝑂𝑎))
7723, 2, 30omelesplit 42232 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂𝑎) ≤ ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))))
7834, 36, 76, 77xrletrid 12368 . 2 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) = (𝑂𝑎))
791, 2, 3, 21, 78carageneld 42216 1 (𝜑 𝑛𝑍 (𝐸𝑛) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387   = wceq 1507  wcel 2050  wne 2967  wral 3088  Vcvv 3415  cdif 3828  cin 3830  wss 3831  𝒫 cpw 4423   cuni 4713   ciun 4793   class class class wbr 4930  cmpt 5009  dom cdm 5408  wf 6186  cfv 6190  (class class class)co 6978  cr 10336  0cc0 10337   + caddc 10340  +∞cpnf 10473  *cxr 10475  cle 10477  cz 11796  cuz 12061  +crp 12207   +𝑒 cxad 12325  [,)cico 12559  [,]cicc 12560  ...cfz 12711  ..^cfzo 12852  OutMeascome 42203  CaraGenccaragen 42205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-inf2 8900  ax-ac2 9685  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414  ax-pre-sup 10415
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-int 4751  df-iun 4795  df-disj 4899  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-se 5368  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-isom 6199  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-om 7399  df-1st 7503  df-2nd 7504  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-1o 7907  df-oadd 7911  df-omul 7912  df-er 8091  df-map 8210  df-en 8309  df-dom 8310  df-sdom 8311  df-fin 8312  df-sup 8703  df-inf 8704  df-oi 8771  df-card 9164  df-acn 9167  df-ac 9338  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-div 11101  df-nn 11442  df-2 11506  df-3 11507  df-n0 11711  df-z 11797  df-uz 12062  df-q 12166  df-rp 12208  df-xadd 12328  df-ico 12563  df-icc 12564  df-fz 12712  df-fzo 12853  df-seq 13188  df-exp 13248  df-hash 13509  df-cj 14322  df-re 14323  df-im 14324  df-sqrt 14458  df-abs 14459  df-clim 14709  df-sum 14907  df-sumge0 42077  df-ome 42204  df-caragen 42206
This theorem is referenced by:  caragenunicl  42238
  Copyright terms: Public domain W3C validator