Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenel2d Structured version   Visualization version   GIF version

Theorem caragenel2d 46629
Description: Membership in the Caratheodory's construction. Similar to carageneld 46599, but here "less than or equal to" is used, instead of equality. This is Remark 113D of [Fremlin1] p. 21. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
caragenel2d.o (𝜑𝑂 ∈ OutMeas)
caragenel2d.x 𝑋 = dom 𝑂
caragenel2d.s 𝑆 = (CaraGen‘𝑂)
caragenel2d.e (𝜑𝐸 ∈ 𝒫 𝑋)
caragenel2d.a ((𝜑𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) ≤ (𝑂𝑎))
Assertion
Ref Expression
caragenel2d (𝜑𝐸𝑆)
Distinct variable groups:   𝐸,𝑎   𝑂,𝑎   𝜑,𝑎
Allowed substitution hints:   𝑆(𝑎)   𝑋(𝑎)

Proof of Theorem caragenel2d
StepHypRef Expression
1 caragenel2d.o . 2 (𝜑𝑂 ∈ OutMeas)
2 caragenel2d.x . 2 𝑋 = dom 𝑂
3 caragenel2d.s . 2 𝑆 = (CaraGen‘𝑂)
4 caragenel2d.e . 2 (𝜑𝐸 ∈ 𝒫 𝑋)
51adantr 480 . . . . 5 ((𝜑𝑎 ∈ 𝒫 𝑋) → 𝑂 ∈ OutMeas)
6 inss1 4184 . . . . . . 7 (𝑎𝐸) ⊆ 𝑎
7 elpwi 4554 . . . . . . 7 (𝑎 ∈ 𝒫 𝑋𝑎𝑋)
86, 7sstrid 3941 . . . . . 6 (𝑎 ∈ 𝒫 𝑋 → (𝑎𝐸) ⊆ 𝑋)
98adantl 481 . . . . 5 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑎𝐸) ⊆ 𝑋)
105, 2, 9omexrcl 46604 . . . 4 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂‘(𝑎𝐸)) ∈ ℝ*)
117ssdifssd 4094 . . . . . 6 (𝑎 ∈ 𝒫 𝑋 → (𝑎𝐸) ⊆ 𝑋)
1211adantl 481 . . . . 5 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑎𝐸) ⊆ 𝑋)
135, 2, 12omexrcl 46604 . . . 4 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂‘(𝑎𝐸)) ∈ ℝ*)
14 xaddcl 13138 . . . 4 (((𝑂‘(𝑎𝐸)) ∈ ℝ* ∧ (𝑂‘(𝑎𝐸)) ∈ ℝ*) → ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) ∈ ℝ*)
1510, 13, 14syl2anc 584 . . 3 ((𝜑𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) ∈ ℝ*)
167adantl 481 . . . 4 ((𝜑𝑎 ∈ 𝒫 𝑋) → 𝑎𝑋)
175, 2, 16omexrcl 46604 . . 3 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂𝑎) ∈ ℝ*)
18 caragenel2d.a . . 3 ((𝜑𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) ≤ (𝑂𝑎))
195, 2, 16omelesplit 46615 . . 3 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂𝑎) ≤ ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))))
2015, 17, 18, 19xrletrid 13054 . 2 ((𝜑𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))
211, 2, 3, 4, 20carageneld 46599 1 (𝜑𝐸𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cdif 3894  cin 3896  wss 3897  𝒫 cpw 4547   cuni 4856   class class class wbr 5089  dom cdm 5614  cfv 6481  (class class class)co 7346  *cxr 11145  cle 11147   +𝑒 cxad 13009  OutMeascome 46586  CaraGenccaragen 46588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-xadd 13012  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-sumge0 46460  df-ome 46587  df-caragen 46589
This theorem is referenced by:  caragencmpl  46632  hspmbl  46726
  Copyright terms: Public domain W3C validator