Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenel2d Structured version   Visualization version   GIF version

Theorem caragenel2d 46523
Description: Membership in the Caratheodory's construction. Similar to carageneld 46493, but here "less than or equal to" is used, instead of equality. This is Remark 113D of [Fremlin1] p. 21. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
caragenel2d.o (𝜑𝑂 ∈ OutMeas)
caragenel2d.x 𝑋 = dom 𝑂
caragenel2d.s 𝑆 = (CaraGen‘𝑂)
caragenel2d.e (𝜑𝐸 ∈ 𝒫 𝑋)
caragenel2d.a ((𝜑𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) ≤ (𝑂𝑎))
Assertion
Ref Expression
caragenel2d (𝜑𝐸𝑆)
Distinct variable groups:   𝐸,𝑎   𝑂,𝑎   𝜑,𝑎
Allowed substitution hints:   𝑆(𝑎)   𝑋(𝑎)

Proof of Theorem caragenel2d
StepHypRef Expression
1 caragenel2d.o . 2 (𝜑𝑂 ∈ OutMeas)
2 caragenel2d.x . 2 𝑋 = dom 𝑂
3 caragenel2d.s . 2 𝑆 = (CaraGen‘𝑂)
4 caragenel2d.e . 2 (𝜑𝐸 ∈ 𝒫 𝑋)
51adantr 480 . . . . 5 ((𝜑𝑎 ∈ 𝒫 𝑋) → 𝑂 ∈ OutMeas)
6 inss1 4188 . . . . . . 7 (𝑎𝐸) ⊆ 𝑎
7 elpwi 4558 . . . . . . 7 (𝑎 ∈ 𝒫 𝑋𝑎𝑋)
86, 7sstrid 3947 . . . . . 6 (𝑎 ∈ 𝒫 𝑋 → (𝑎𝐸) ⊆ 𝑋)
98adantl 481 . . . . 5 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑎𝐸) ⊆ 𝑋)
105, 2, 9omexrcl 46498 . . . 4 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂‘(𝑎𝐸)) ∈ ℝ*)
117ssdifssd 4098 . . . . . 6 (𝑎 ∈ 𝒫 𝑋 → (𝑎𝐸) ⊆ 𝑋)
1211adantl 481 . . . . 5 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑎𝐸) ⊆ 𝑋)
135, 2, 12omexrcl 46498 . . . 4 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂‘(𝑎𝐸)) ∈ ℝ*)
14 xaddcl 13141 . . . 4 (((𝑂‘(𝑎𝐸)) ∈ ℝ* ∧ (𝑂‘(𝑎𝐸)) ∈ ℝ*) → ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) ∈ ℝ*)
1510, 13, 14syl2anc 584 . . 3 ((𝜑𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) ∈ ℝ*)
167adantl 481 . . . 4 ((𝜑𝑎 ∈ 𝒫 𝑋) → 𝑎𝑋)
175, 2, 16omexrcl 46498 . . 3 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂𝑎) ∈ ℝ*)
18 caragenel2d.a . . 3 ((𝜑𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) ≤ (𝑂𝑎))
195, 2, 16omelesplit 46509 . . 3 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂𝑎) ≤ ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))))
2015, 17, 18, 19xrletrid 13057 . 2 ((𝜑𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))
211, 2, 3, 4, 20carageneld 46493 1 (𝜑𝐸𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cdif 3900  cin 3902  wss 3903  𝒫 cpw 4551   cuni 4858   class class class wbr 5092  dom cdm 5619  cfv 6482  (class class class)co 7349  *cxr 11148  cle 11150   +𝑒 cxad 13012  OutMeascome 46480  CaraGenccaragen 46482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-xadd 13015  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-sumge0 46354  df-ome 46481  df-caragen 46483
This theorem is referenced by:  caragencmpl  46526  hspmbl  46620
  Copyright terms: Public domain W3C validator