Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenel2d Structured version   Visualization version   GIF version

Theorem caragenel2d 44847
Description: Membership in the Caratheodory's construction. Similar to carageneld 44817, but here "less then or equal to" is used, instead of equality. This is Remark 113D of [Fremlin1] p. 21. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
caragenel2d.o (πœ‘ β†’ 𝑂 ∈ OutMeas)
caragenel2d.x 𝑋 = βˆͺ dom 𝑂
caragenel2d.s 𝑆 = (CaraGenβ€˜π‘‚)
caragenel2d.e (πœ‘ β†’ 𝐸 ∈ 𝒫 𝑋)
caragenel2d.a ((πœ‘ ∧ π‘Ž ∈ 𝒫 𝑋) β†’ ((π‘‚β€˜(π‘Ž ∩ 𝐸)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝐸))) ≀ (π‘‚β€˜π‘Ž))
Assertion
Ref Expression
caragenel2d (πœ‘ β†’ 𝐸 ∈ 𝑆)
Distinct variable groups:   𝐸,π‘Ž   𝑂,π‘Ž   πœ‘,π‘Ž
Allowed substitution hints:   𝑆(π‘Ž)   𝑋(π‘Ž)

Proof of Theorem caragenel2d
StepHypRef Expression
1 caragenel2d.o . 2 (πœ‘ β†’ 𝑂 ∈ OutMeas)
2 caragenel2d.x . 2 𝑋 = βˆͺ dom 𝑂
3 caragenel2d.s . 2 𝑆 = (CaraGenβ€˜π‘‚)
4 caragenel2d.e . 2 (πœ‘ β†’ 𝐸 ∈ 𝒫 𝑋)
51adantr 482 . . . . 5 ((πœ‘ ∧ π‘Ž ∈ 𝒫 𝑋) β†’ 𝑂 ∈ OutMeas)
6 inss1 4193 . . . . . . 7 (π‘Ž ∩ 𝐸) βŠ† π‘Ž
7 elpwi 4572 . . . . . . 7 (π‘Ž ∈ 𝒫 𝑋 β†’ π‘Ž βŠ† 𝑋)
86, 7sstrid 3960 . . . . . 6 (π‘Ž ∈ 𝒫 𝑋 β†’ (π‘Ž ∩ 𝐸) βŠ† 𝑋)
98adantl 483 . . . . 5 ((πœ‘ ∧ π‘Ž ∈ 𝒫 𝑋) β†’ (π‘Ž ∩ 𝐸) βŠ† 𝑋)
105, 2, 9omexrcl 44822 . . . 4 ((πœ‘ ∧ π‘Ž ∈ 𝒫 𝑋) β†’ (π‘‚β€˜(π‘Ž ∩ 𝐸)) ∈ ℝ*)
117ssdifssd 4107 . . . . . 6 (π‘Ž ∈ 𝒫 𝑋 β†’ (π‘Ž βˆ– 𝐸) βŠ† 𝑋)
1211adantl 483 . . . . 5 ((πœ‘ ∧ π‘Ž ∈ 𝒫 𝑋) β†’ (π‘Ž βˆ– 𝐸) βŠ† 𝑋)
135, 2, 12omexrcl 44822 . . . 4 ((πœ‘ ∧ π‘Ž ∈ 𝒫 𝑋) β†’ (π‘‚β€˜(π‘Ž βˆ– 𝐸)) ∈ ℝ*)
14 xaddcl 13165 . . . 4 (((π‘‚β€˜(π‘Ž ∩ 𝐸)) ∈ ℝ* ∧ (π‘‚β€˜(π‘Ž βˆ– 𝐸)) ∈ ℝ*) β†’ ((π‘‚β€˜(π‘Ž ∩ 𝐸)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝐸))) ∈ ℝ*)
1510, 13, 14syl2anc 585 . . 3 ((πœ‘ ∧ π‘Ž ∈ 𝒫 𝑋) β†’ ((π‘‚β€˜(π‘Ž ∩ 𝐸)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝐸))) ∈ ℝ*)
167adantl 483 . . . 4 ((πœ‘ ∧ π‘Ž ∈ 𝒫 𝑋) β†’ π‘Ž βŠ† 𝑋)
175, 2, 16omexrcl 44822 . . 3 ((πœ‘ ∧ π‘Ž ∈ 𝒫 𝑋) β†’ (π‘‚β€˜π‘Ž) ∈ ℝ*)
18 caragenel2d.a . . 3 ((πœ‘ ∧ π‘Ž ∈ 𝒫 𝑋) β†’ ((π‘‚β€˜(π‘Ž ∩ 𝐸)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝐸))) ≀ (π‘‚β€˜π‘Ž))
195, 2, 16omelesplit 44833 . . 3 ((πœ‘ ∧ π‘Ž ∈ 𝒫 𝑋) β†’ (π‘‚β€˜π‘Ž) ≀ ((π‘‚β€˜(π‘Ž ∩ 𝐸)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝐸))))
2015, 17, 18, 19xrletrid 13081 . 2 ((πœ‘ ∧ π‘Ž ∈ 𝒫 𝑋) β†’ ((π‘‚β€˜(π‘Ž ∩ 𝐸)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝐸))) = (π‘‚β€˜π‘Ž))
211, 2, 3, 4, 20carageneld 44817 1 (πœ‘ β†’ 𝐸 ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107   βˆ– cdif 3912   ∩ cin 3914   βŠ† wss 3915  π’« cpw 4565  βˆͺ cuni 4870   class class class wbr 5110  dom cdm 5638  β€˜cfv 6501  (class class class)co 7362  β„*cxr 11195   ≀ cle 11197   +𝑒 cxad 13038  OutMeascome 44804  CaraGenccaragen 44806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9584  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-sup 9385  df-oi 9453  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-n0 12421  df-z 12507  df-uz 12771  df-rp 12923  df-xadd 13041  df-ico 13277  df-icc 13278  df-fz 13432  df-fzo 13575  df-seq 13914  df-exp 13975  df-hash 14238  df-cj 14991  df-re 14992  df-im 14993  df-sqrt 15127  df-abs 15128  df-clim 15377  df-sum 15578  df-sumge0 44678  df-ome 44805  df-caragen 44807
This theorem is referenced by:  caragencmpl  44850  hspmbl  44944
  Copyright terms: Public domain W3C validator