Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cpcoll2d Structured version   Visualization version   GIF version

Theorem cpcoll2d 44248
Description: cpcolld 44247 with an extra existential quantifier. (Contributed by Rohan Ridenour, 12-Aug-2023.)
Hypotheses
Ref Expression
cpcoll2d.1 (𝜑𝑥𝐴)
cpcoll2d.2 (𝜑 → ∃𝑦 𝑥𝐹𝑦)
Assertion
Ref Expression
cpcoll2d (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦)
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem cpcoll2d
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 cpcoll2d.2 . . 3 (𝜑 → ∃𝑦 𝑥𝐹𝑦)
2 breq2 5111 . . . 4 (𝑎 = 𝑦 → (𝑥𝐹𝑎𝑥𝐹𝑦))
32cbvexvw 2037 . . 3 (∃𝑎 𝑥𝐹𝑎 ↔ ∃𝑦 𝑥𝐹𝑦)
41, 3sylibr 234 . 2 (𝜑 → ∃𝑎 𝑥𝐹𝑎)
5 cpcoll2d.1 . . . . 5 (𝜑𝑥𝐴)
65adantr 480 . . . 4 ((𝜑𝑥𝐹𝑎) → 𝑥𝐴)
7 simpr 484 . . . 4 ((𝜑𝑥𝐹𝑎) → 𝑥𝐹𝑎)
86, 7cpcolld 44247 . . 3 ((𝜑𝑥𝐹𝑎) → ∃𝑎 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑎)
92cbvrexvw 3216 . . 3 (∃𝑎 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑎 ↔ ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦)
108, 9sylib 218 . 2 ((𝜑𝑥𝐹𝑎) → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦)
114, 10exlimddv 1935 1 (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wcel 2109  wrex 3053   class class class wbr 5107   Coll ccoll 44239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-r1 9717  df-rank 9718  df-scott 44225  df-coll 44240
This theorem is referenced by:  grumnudlem  44274
  Copyright terms: Public domain W3C validator