Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cpcoll2d Structured version   Visualization version   GIF version

Theorem cpcoll2d 42631
Description: cpcolld 42630 with an extra existential quantifier. (Contributed by Rohan Ridenour, 12-Aug-2023.)
Hypotheses
Ref Expression
cpcoll2d.1 (𝜑𝑥𝐴)
cpcoll2d.2 (𝜑 → ∃𝑦 𝑥𝐹𝑦)
Assertion
Ref Expression
cpcoll2d (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦)
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem cpcoll2d
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 cpcoll2d.2 . . 3 (𝜑 → ∃𝑦 𝑥𝐹𝑦)
2 breq2 5113 . . . 4 (𝑎 = 𝑦 → (𝑥𝐹𝑎𝑥𝐹𝑦))
32cbvexvw 2041 . . 3 (∃𝑎 𝑥𝐹𝑎 ↔ ∃𝑦 𝑥𝐹𝑦)
41, 3sylibr 233 . 2 (𝜑 → ∃𝑎 𝑥𝐹𝑎)
5 cpcoll2d.1 . . . . 5 (𝜑𝑥𝐴)
65adantr 482 . . . 4 ((𝜑𝑥𝐹𝑎) → 𝑥𝐴)
7 simpr 486 . . . 4 ((𝜑𝑥𝐹𝑎) → 𝑥𝐹𝑎)
86, 7cpcolld 42630 . . 3 ((𝜑𝑥𝐹𝑎) → ∃𝑎 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑎)
92cbvrexvw 3225 . . 3 (∃𝑎 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑎 ↔ ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦)
108, 9sylib 217 . 2 ((𝜑𝑥𝐹𝑎) → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦)
114, 10exlimddv 1939 1 (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wex 1782  wcel 2107  wrex 3070   class class class wbr 5109   Coll ccoll 42622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-int 4912  df-iun 4960  df-iin 4961  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-ov 7364  df-om 7807  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-r1 9708  df-rank 9709  df-scott 42608  df-coll 42623
This theorem is referenced by:  grumnudlem  42657
  Copyright terms: Public domain W3C validator