| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cpcoll2d | Structured version Visualization version GIF version | ||
| Description: cpcolld 44415 with an extra existential quantifier. (Contributed by Rohan Ridenour, 12-Aug-2023.) |
| Ref | Expression |
|---|---|
| cpcoll2d.1 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
| cpcoll2d.2 | ⊢ (𝜑 → ∃𝑦 𝑥𝐹𝑦) |
| Ref | Expression |
|---|---|
| cpcoll2d | ⊢ (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cpcoll2d.2 | . . 3 ⊢ (𝜑 → ∃𝑦 𝑥𝐹𝑦) | |
| 2 | breq2 5099 | . . . 4 ⊢ (𝑎 = 𝑦 → (𝑥𝐹𝑎 ↔ 𝑥𝐹𝑦)) | |
| 3 | 2 | cbvexvw 2038 | . . 3 ⊢ (∃𝑎 𝑥𝐹𝑎 ↔ ∃𝑦 𝑥𝐹𝑦) |
| 4 | 1, 3 | sylibr 234 | . 2 ⊢ (𝜑 → ∃𝑎 𝑥𝐹𝑎) |
| 5 | cpcoll2d.1 | . . . . 5 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥𝐹𝑎) → 𝑥 ∈ 𝐴) |
| 7 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥𝐹𝑎) → 𝑥𝐹𝑎) | |
| 8 | 6, 7 | cpcolld 44415 | . . 3 ⊢ ((𝜑 ∧ 𝑥𝐹𝑎) → ∃𝑎 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑎) |
| 9 | 2 | cbvrexvw 3212 | . . 3 ⊢ (∃𝑎 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑎 ↔ ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦) |
| 10 | 8, 9 | sylib 218 | . 2 ⊢ ((𝜑 ∧ 𝑥𝐹𝑎) → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦) |
| 11 | 4, 10 | exlimddv 1936 | 1 ⊢ (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1780 ∈ wcel 2113 ∃wrex 3057 class class class wbr 5095 Coll ccoll 44407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-r1 9668 df-rank 9669 df-scott 44393 df-coll 44408 |
| This theorem is referenced by: grumnudlem 44442 |
| Copyright terms: Public domain | W3C validator |