Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cpcoll2d Structured version   Visualization version   GIF version

Theorem cpcoll2d 41766
Description: cpcolld 41765 with an extra existential quantifier. (Contributed by Rohan Ridenour, 12-Aug-2023.)
Hypotheses
Ref Expression
cpcoll2d.1 (𝜑𝑥𝐴)
cpcoll2d.2 (𝜑 → ∃𝑦 𝑥𝐹𝑦)
Assertion
Ref Expression
cpcoll2d (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦)
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem cpcoll2d
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 cpcoll2d.2 . . 3 (𝜑 → ∃𝑦 𝑥𝐹𝑦)
2 breq2 5074 . . . 4 (𝑎 = 𝑦 → (𝑥𝐹𝑎𝑥𝐹𝑦))
32cbvexvw 2041 . . 3 (∃𝑎 𝑥𝐹𝑎 ↔ ∃𝑦 𝑥𝐹𝑦)
41, 3sylibr 233 . 2 (𝜑 → ∃𝑎 𝑥𝐹𝑎)
5 cpcoll2d.1 . . . . 5 (𝜑𝑥𝐴)
65adantr 480 . . . 4 ((𝜑𝑥𝐹𝑎) → 𝑥𝐴)
7 simpr 484 . . . 4 ((𝜑𝑥𝐹𝑎) → 𝑥𝐹𝑎)
86, 7cpcolld 41765 . . 3 ((𝜑𝑥𝐹𝑎) → ∃𝑎 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑎)
92cbvrexvw 3373 . . 3 (∃𝑎 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑎 ↔ ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦)
108, 9sylib 217 . 2 ((𝜑𝑥𝐹𝑎) → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦)
114, 10exlimddv 1939 1 (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1783  wcel 2108  wrex 3064   class class class wbr 5070   Coll ccoll 41757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-r1 9453  df-rank 9454  df-scott 41743  df-coll 41758
This theorem is referenced by:  grumnudlem  41792
  Copyright terms: Public domain W3C validator