| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cpcoll2d | Structured version Visualization version GIF version | ||
| Description: cpcolld 44291 with an extra existential quantifier. (Contributed by Rohan Ridenour, 12-Aug-2023.) |
| Ref | Expression |
|---|---|
| cpcoll2d.1 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
| cpcoll2d.2 | ⊢ (𝜑 → ∃𝑦 𝑥𝐹𝑦) |
| Ref | Expression |
|---|---|
| cpcoll2d | ⊢ (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cpcoll2d.2 | . . 3 ⊢ (𝜑 → ∃𝑦 𝑥𝐹𝑦) | |
| 2 | breq2 5090 | . . . 4 ⊢ (𝑎 = 𝑦 → (𝑥𝐹𝑎 ↔ 𝑥𝐹𝑦)) | |
| 3 | 2 | cbvexvw 2038 | . . 3 ⊢ (∃𝑎 𝑥𝐹𝑎 ↔ ∃𝑦 𝑥𝐹𝑦) |
| 4 | 1, 3 | sylibr 234 | . 2 ⊢ (𝜑 → ∃𝑎 𝑥𝐹𝑎) |
| 5 | cpcoll2d.1 | . . . . 5 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥𝐹𝑎) → 𝑥 ∈ 𝐴) |
| 7 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥𝐹𝑎) → 𝑥𝐹𝑎) | |
| 8 | 6, 7 | cpcolld 44291 | . . 3 ⊢ ((𝜑 ∧ 𝑥𝐹𝑎) → ∃𝑎 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑎) |
| 9 | 2 | cbvrexvw 3211 | . . 3 ⊢ (∃𝑎 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑎 ↔ ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦) |
| 10 | 8, 9 | sylib 218 | . 2 ⊢ ((𝜑 ∧ 𝑥𝐹𝑎) → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦) |
| 11 | 4, 10 | exlimddv 1936 | 1 ⊢ (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1780 ∈ wcel 2111 ∃wrex 3056 class class class wbr 5086 Coll ccoll 44283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-r1 9652 df-rank 9653 df-scott 44269 df-coll 44284 |
| This theorem is referenced by: grumnudlem 44318 |
| Copyright terms: Public domain | W3C validator |