![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dprdw | Structured version Visualization version GIF version |
Description: The property of being a finitely supported function in the family 𝑆. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
Ref | Expression |
---|---|
dprdff.w | ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
dprdff.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
dprdff.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
Ref | Expression |
---|---|
dprdw | ⊢ (𝜑 → (𝐹 ∈ 𝑊 ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥) ∧ 𝐹 finSupp 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3499 | . . . . 5 ⊢ (𝐹 ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) → 𝐹 ∈ V) | |
2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) → 𝐹 ∈ V)) |
3 | dprdff.1 | . . . . . . 7 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
4 | dprdff.2 | . . . . . . 7 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
5 | 3, 4 | dprddomcld 20036 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ V) |
6 | fnex 7237 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐼 ∧ 𝐼 ∈ V) → 𝐹 ∈ V) | |
7 | 6 | expcom 413 | . . . . . 6 ⊢ (𝐼 ∈ V → (𝐹 Fn 𝐼 → 𝐹 ∈ V)) |
8 | 5, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐹 Fn 𝐼 → 𝐹 ∈ V)) |
9 | 8 | adantrd 491 | . . . 4 ⊢ (𝜑 → ((𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥)) → 𝐹 ∈ V)) |
10 | fveq2 6907 | . . . . . . . . 9 ⊢ (𝑖 = 𝑥 → (𝑆‘𝑖) = (𝑆‘𝑥)) | |
11 | 10 | cbvixpv 8954 | . . . . . . . 8 ⊢ X𝑖 ∈ 𝐼 (𝑆‘𝑖) = X𝑥 ∈ 𝐼 (𝑆‘𝑥) |
12 | 11 | eleq2i 2831 | . . . . . . 7 ⊢ (𝐹 ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ↔ 𝐹 ∈ X𝑥 ∈ 𝐼 (𝑆‘𝑥)) |
13 | elixp2 8940 | . . . . . . 7 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐼 (𝑆‘𝑥) ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥))) | |
14 | 3anass 1094 | . . . . . . 7 ⊢ ((𝐹 ∈ V ∧ 𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥)) ↔ (𝐹 ∈ V ∧ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥)))) | |
15 | 12, 13, 14 | 3bitri 297 | . . . . . 6 ⊢ (𝐹 ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ↔ (𝐹 ∈ V ∧ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥)))) |
16 | 15 | baib 535 | . . . . 5 ⊢ (𝐹 ∈ V → (𝐹 ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥)))) |
17 | 16 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ V → (𝐹 ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥))))) |
18 | 2, 9, 17 | pm5.21ndd 379 | . . 3 ⊢ (𝜑 → (𝐹 ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥)))) |
19 | 18 | anbi1d 631 | . 2 ⊢ (𝜑 → ((𝐹 ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∧ 𝐹 finSupp 0 ) ↔ ((𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥)) ∧ 𝐹 finSupp 0 ))) |
20 | breq1 5151 | . . 3 ⊢ (ℎ = 𝐹 → (ℎ finSupp 0 ↔ 𝐹 finSupp 0 )) | |
21 | dprdff.w | . . 3 ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } | |
22 | 20, 21 | elrab2 3698 | . 2 ⊢ (𝐹 ∈ 𝑊 ↔ (𝐹 ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∧ 𝐹 finSupp 0 )) |
23 | df-3an 1088 | . 2 ⊢ ((𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥) ∧ 𝐹 finSupp 0 ) ↔ ((𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥)) ∧ 𝐹 finSupp 0 )) | |
24 | 19, 22, 23 | 3bitr4g 314 | 1 ⊢ (𝜑 → (𝐹 ∈ 𝑊 ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥) ∧ 𝐹 finSupp 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 {crab 3433 Vcvv 3478 class class class wbr 5148 dom cdm 5689 Fn wfn 6558 ‘cfv 6563 Xcixp 8936 finSupp cfsupp 9399 DProd cdprd 20028 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-oprab 7435 df-mpo 7436 df-ixp 8937 df-dprd 20030 |
This theorem is referenced by: dprdff 20047 dprdfcl 20048 dprdffsupp 20049 dprdsubg 20059 |
Copyright terms: Public domain | W3C validator |