MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdw Structured version   Visualization version   GIF version

Theorem dprdw 19123
Description: The property of being a finitely supported function in the family 𝑆. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.)
Hypotheses
Ref Expression
dprdff.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
dprdff.1 (𝜑𝐺dom DProd 𝑆)
dprdff.2 (𝜑 → dom 𝑆 = 𝐼)
Assertion
Ref Expression
dprdw (𝜑 → (𝐹𝑊 ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥) ∧ 𝐹 finSupp 0 )))
Distinct variable groups:   𝑥,,𝐹   𝑥,𝐺   ,𝑖,𝐼,𝑥   0 ,   𝜑,𝑥   𝑆,,𝑖,𝑥
Allowed substitution hints:   𝜑(,𝑖)   𝐹(𝑖)   𝐺(,𝑖)   𝑊(𝑥,,𝑖)   0 (𝑥,𝑖)

Proof of Theorem dprdw
StepHypRef Expression
1 elex 3487 . . . . 5 (𝐹X𝑖𝐼 (𝑆𝑖) → 𝐹 ∈ V)
21a1i 11 . . . 4 (𝜑 → (𝐹X𝑖𝐼 (𝑆𝑖) → 𝐹 ∈ V))
3 dprdff.1 . . . . . . 7 (𝜑𝐺dom DProd 𝑆)
4 dprdff.2 . . . . . . 7 (𝜑 → dom 𝑆 = 𝐼)
53, 4dprddomcld 19114 . . . . . 6 (𝜑𝐼 ∈ V)
6 fnex 6962 . . . . . . 7 ((𝐹 Fn 𝐼𝐼 ∈ V) → 𝐹 ∈ V)
76expcom 417 . . . . . 6 (𝐼 ∈ V → (𝐹 Fn 𝐼𝐹 ∈ V))
85, 7syl 17 . . . . 5 (𝜑 → (𝐹 Fn 𝐼𝐹 ∈ V))
98adantrd 495 . . . 4 (𝜑 → ((𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥)) → 𝐹 ∈ V))
10 fveq2 6652 . . . . . . . . 9 (𝑖 = 𝑥 → (𝑆𝑖) = (𝑆𝑥))
1110cbvixpv 8466 . . . . . . . 8 X𝑖𝐼 (𝑆𝑖) = X𝑥𝐼 (𝑆𝑥)
1211eleq2i 2905 . . . . . . 7 (𝐹X𝑖𝐼 (𝑆𝑖) ↔ 𝐹X𝑥𝐼 (𝑆𝑥))
13 elixp2 8452 . . . . . . 7 (𝐹X𝑥𝐼 (𝑆𝑥) ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥)))
14 3anass 1092 . . . . . . 7 ((𝐹 ∈ V ∧ 𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥)) ↔ (𝐹 ∈ V ∧ (𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥))))
1512, 13, 143bitri 300 . . . . . 6 (𝐹X𝑖𝐼 (𝑆𝑖) ↔ (𝐹 ∈ V ∧ (𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥))))
1615baib 539 . . . . 5 (𝐹 ∈ V → (𝐹X𝑖𝐼 (𝑆𝑖) ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥))))
1716a1i 11 . . . 4 (𝜑 → (𝐹 ∈ V → (𝐹X𝑖𝐼 (𝑆𝑖) ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥)))))
182, 9, 17pm5.21ndd 384 . . 3 (𝜑 → (𝐹X𝑖𝐼 (𝑆𝑖) ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥))))
1918anbi1d 632 . 2 (𝜑 → ((𝐹X𝑖𝐼 (𝑆𝑖) ∧ 𝐹 finSupp 0 ) ↔ ((𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥)) ∧ 𝐹 finSupp 0 )))
20 breq1 5045 . . 3 ( = 𝐹 → ( finSupp 0𝐹 finSupp 0 ))
21 dprdff.w . . 3 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
2220, 21elrab2 3658 . 2 (𝐹𝑊 ↔ (𝐹X𝑖𝐼 (𝑆𝑖) ∧ 𝐹 finSupp 0 ))
23 df-3an 1086 . 2 ((𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥) ∧ 𝐹 finSupp 0 ) ↔ ((𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥)) ∧ 𝐹 finSupp 0 ))
2419, 22, 233bitr4g 317 1 (𝜑 → (𝐹𝑊 ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥) ∧ 𝐹 finSupp 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2114  wral 3130  {crab 3134  Vcvv 3469   class class class wbr 5042  dom cdm 5532   Fn wfn 6329  cfv 6334  Xcixp 8448   finSupp cfsupp 8821   DProd cdprd 19106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pr 5307  ax-un 7446
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-oprab 7144  df-mpo 7145  df-ixp 8449  df-dprd 19108
This theorem is referenced by:  dprdff  19125  dprdfcl  19126  dprdffsupp  19127  dprdsubg  19137
  Copyright terms: Public domain W3C validator