Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dprdw | Structured version Visualization version GIF version |
Description: The property of being a finitely supported function in the family 𝑆. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
Ref | Expression |
---|---|
dprdff.w | ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
dprdff.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
dprdff.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
Ref | Expression |
---|---|
dprdw | ⊢ (𝜑 → (𝐹 ∈ 𝑊 ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥) ∧ 𝐹 finSupp 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3440 | . . . . 5 ⊢ (𝐹 ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) → 𝐹 ∈ V) | |
2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) → 𝐹 ∈ V)) |
3 | dprdff.1 | . . . . . . 7 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
4 | dprdff.2 | . . . . . . 7 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
5 | 3, 4 | dprddomcld 19519 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ V) |
6 | fnex 7075 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐼 ∧ 𝐼 ∈ V) → 𝐹 ∈ V) | |
7 | 6 | expcom 413 | . . . . . 6 ⊢ (𝐼 ∈ V → (𝐹 Fn 𝐼 → 𝐹 ∈ V)) |
8 | 5, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐹 Fn 𝐼 → 𝐹 ∈ V)) |
9 | 8 | adantrd 491 | . . . 4 ⊢ (𝜑 → ((𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥)) → 𝐹 ∈ V)) |
10 | fveq2 6756 | . . . . . . . . 9 ⊢ (𝑖 = 𝑥 → (𝑆‘𝑖) = (𝑆‘𝑥)) | |
11 | 10 | cbvixpv 8661 | . . . . . . . 8 ⊢ X𝑖 ∈ 𝐼 (𝑆‘𝑖) = X𝑥 ∈ 𝐼 (𝑆‘𝑥) |
12 | 11 | eleq2i 2830 | . . . . . . 7 ⊢ (𝐹 ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ↔ 𝐹 ∈ X𝑥 ∈ 𝐼 (𝑆‘𝑥)) |
13 | elixp2 8647 | . . . . . . 7 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐼 (𝑆‘𝑥) ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥))) | |
14 | 3anass 1093 | . . . . . . 7 ⊢ ((𝐹 ∈ V ∧ 𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥)) ↔ (𝐹 ∈ V ∧ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥)))) | |
15 | 12, 13, 14 | 3bitri 296 | . . . . . 6 ⊢ (𝐹 ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ↔ (𝐹 ∈ V ∧ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥)))) |
16 | 15 | baib 535 | . . . . 5 ⊢ (𝐹 ∈ V → (𝐹 ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥)))) |
17 | 16 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ V → (𝐹 ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥))))) |
18 | 2, 9, 17 | pm5.21ndd 380 | . . 3 ⊢ (𝜑 → (𝐹 ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥)))) |
19 | 18 | anbi1d 629 | . 2 ⊢ (𝜑 → ((𝐹 ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∧ 𝐹 finSupp 0 ) ↔ ((𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥)) ∧ 𝐹 finSupp 0 ))) |
20 | breq1 5073 | . . 3 ⊢ (ℎ = 𝐹 → (ℎ finSupp 0 ↔ 𝐹 finSupp 0 )) | |
21 | dprdff.w | . . 3 ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } | |
22 | 20, 21 | elrab2 3620 | . 2 ⊢ (𝐹 ∈ 𝑊 ↔ (𝐹 ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∧ 𝐹 finSupp 0 )) |
23 | df-3an 1087 | . 2 ⊢ ((𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥) ∧ 𝐹 finSupp 0 ) ↔ ((𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥)) ∧ 𝐹 finSupp 0 )) | |
24 | 19, 22, 23 | 3bitr4g 313 | 1 ⊢ (𝜑 → (𝐹 ∈ 𝑊 ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥) ∧ 𝐹 finSupp 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {crab 3067 Vcvv 3422 class class class wbr 5070 dom cdm 5580 Fn wfn 6413 ‘cfv 6418 Xcixp 8643 finSupp cfsupp 9058 DProd cdprd 19511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-oprab 7259 df-mpo 7260 df-ixp 8644 df-dprd 19513 |
This theorem is referenced by: dprdff 19530 dprdfcl 19531 dprdffsupp 19532 dprdsubg 19542 |
Copyright terms: Public domain | W3C validator |