MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdw Structured version   Visualization version   GIF version

Theorem dprdw 20030
Description: The property of being a finitely supported function in the family 𝑆. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.)
Hypotheses
Ref Expression
dprdff.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
dprdff.1 (𝜑𝐺dom DProd 𝑆)
dprdff.2 (𝜑 → dom 𝑆 = 𝐼)
Assertion
Ref Expression
dprdw (𝜑 → (𝐹𝑊 ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥) ∧ 𝐹 finSupp 0 )))
Distinct variable groups:   𝑥,,𝐹   𝑥,𝐺   ,𝑖,𝐼,𝑥   0 ,   𝜑,𝑥   𝑆,,𝑖,𝑥
Allowed substitution hints:   𝜑(,𝑖)   𝐹(𝑖)   𝐺(,𝑖)   𝑊(𝑥,,𝑖)   0 (𝑥,𝑖)

Proof of Theorem dprdw
StepHypRef Expression
1 elex 3501 . . . . 5 (𝐹X𝑖𝐼 (𝑆𝑖) → 𝐹 ∈ V)
21a1i 11 . . . 4 (𝜑 → (𝐹X𝑖𝐼 (𝑆𝑖) → 𝐹 ∈ V))
3 dprdff.1 . . . . . . 7 (𝜑𝐺dom DProd 𝑆)
4 dprdff.2 . . . . . . 7 (𝜑 → dom 𝑆 = 𝐼)
53, 4dprddomcld 20021 . . . . . 6 (𝜑𝐼 ∈ V)
6 fnex 7237 . . . . . . 7 ((𝐹 Fn 𝐼𝐼 ∈ V) → 𝐹 ∈ V)
76expcom 413 . . . . . 6 (𝐼 ∈ V → (𝐹 Fn 𝐼𝐹 ∈ V))
85, 7syl 17 . . . . 5 (𝜑 → (𝐹 Fn 𝐼𝐹 ∈ V))
98adantrd 491 . . . 4 (𝜑 → ((𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥)) → 𝐹 ∈ V))
10 fveq2 6906 . . . . . . . . 9 (𝑖 = 𝑥 → (𝑆𝑖) = (𝑆𝑥))
1110cbvixpv 8955 . . . . . . . 8 X𝑖𝐼 (𝑆𝑖) = X𝑥𝐼 (𝑆𝑥)
1211eleq2i 2833 . . . . . . 7 (𝐹X𝑖𝐼 (𝑆𝑖) ↔ 𝐹X𝑥𝐼 (𝑆𝑥))
13 elixp2 8941 . . . . . . 7 (𝐹X𝑥𝐼 (𝑆𝑥) ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥)))
14 3anass 1095 . . . . . . 7 ((𝐹 ∈ V ∧ 𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥)) ↔ (𝐹 ∈ V ∧ (𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥))))
1512, 13, 143bitri 297 . . . . . 6 (𝐹X𝑖𝐼 (𝑆𝑖) ↔ (𝐹 ∈ V ∧ (𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥))))
1615baib 535 . . . . 5 (𝐹 ∈ V → (𝐹X𝑖𝐼 (𝑆𝑖) ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥))))
1716a1i 11 . . . 4 (𝜑 → (𝐹 ∈ V → (𝐹X𝑖𝐼 (𝑆𝑖) ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥)))))
182, 9, 17pm5.21ndd 379 . . 3 (𝜑 → (𝐹X𝑖𝐼 (𝑆𝑖) ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥))))
1918anbi1d 631 . 2 (𝜑 → ((𝐹X𝑖𝐼 (𝑆𝑖) ∧ 𝐹 finSupp 0 ) ↔ ((𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥)) ∧ 𝐹 finSupp 0 )))
20 breq1 5146 . . 3 ( = 𝐹 → ( finSupp 0𝐹 finSupp 0 ))
21 dprdff.w . . 3 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
2220, 21elrab2 3695 . 2 (𝐹𝑊 ↔ (𝐹X𝑖𝐼 (𝑆𝑖) ∧ 𝐹 finSupp 0 ))
23 df-3an 1089 . 2 ((𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥) ∧ 𝐹 finSupp 0 ) ↔ ((𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥)) ∧ 𝐹 finSupp 0 ))
2419, 22, 233bitr4g 314 1 (𝜑 → (𝐹𝑊 ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥) ∧ 𝐹 finSupp 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  {crab 3436  Vcvv 3480   class class class wbr 5143  dom cdm 5685   Fn wfn 6556  cfv 6561  Xcixp 8937   finSupp cfsupp 9401   DProd cdprd 20013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-oprab 7435  df-mpo 7436  df-ixp 8938  df-dprd 20015
This theorem is referenced by:  dprdff  20032  dprdfcl  20033  dprdffsupp  20034  dprdsubg  20044
  Copyright terms: Public domain W3C validator