| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dprdw | Structured version Visualization version GIF version | ||
| Description: The property of being a finitely supported function in the family 𝑆. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
| Ref | Expression |
|---|---|
| dprdff.w | ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
| dprdff.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| dprdff.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
| Ref | Expression |
|---|---|
| dprdw | ⊢ (𝜑 → (𝐹 ∈ 𝑊 ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥) ∧ 𝐹 finSupp 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3465 | . . . . 5 ⊢ (𝐹 ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) → 𝐹 ∈ V) | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) → 𝐹 ∈ V)) |
| 3 | dprdff.1 | . . . . . . 7 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
| 4 | dprdff.2 | . . . . . . 7 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
| 5 | 3, 4 | dprddomcld 19909 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ V) |
| 6 | fnex 7173 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐼 ∧ 𝐼 ∈ V) → 𝐹 ∈ V) | |
| 7 | 6 | expcom 413 | . . . . . 6 ⊢ (𝐼 ∈ V → (𝐹 Fn 𝐼 → 𝐹 ∈ V)) |
| 8 | 5, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐹 Fn 𝐼 → 𝐹 ∈ V)) |
| 9 | 8 | adantrd 491 | . . . 4 ⊢ (𝜑 → ((𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥)) → 𝐹 ∈ V)) |
| 10 | fveq2 6840 | . . . . . . . . 9 ⊢ (𝑖 = 𝑥 → (𝑆‘𝑖) = (𝑆‘𝑥)) | |
| 11 | 10 | cbvixpv 8865 | . . . . . . . 8 ⊢ X𝑖 ∈ 𝐼 (𝑆‘𝑖) = X𝑥 ∈ 𝐼 (𝑆‘𝑥) |
| 12 | 11 | eleq2i 2820 | . . . . . . 7 ⊢ (𝐹 ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ↔ 𝐹 ∈ X𝑥 ∈ 𝐼 (𝑆‘𝑥)) |
| 13 | elixp2 8851 | . . . . . . 7 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐼 (𝑆‘𝑥) ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥))) | |
| 14 | 3anass 1094 | . . . . . . 7 ⊢ ((𝐹 ∈ V ∧ 𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥)) ↔ (𝐹 ∈ V ∧ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥)))) | |
| 15 | 12, 13, 14 | 3bitri 297 | . . . . . 6 ⊢ (𝐹 ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ↔ (𝐹 ∈ V ∧ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥)))) |
| 16 | 15 | baib 535 | . . . . 5 ⊢ (𝐹 ∈ V → (𝐹 ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥)))) |
| 17 | 16 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ V → (𝐹 ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥))))) |
| 18 | 2, 9, 17 | pm5.21ndd 379 | . . 3 ⊢ (𝜑 → (𝐹 ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥)))) |
| 19 | 18 | anbi1d 631 | . 2 ⊢ (𝜑 → ((𝐹 ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∧ 𝐹 finSupp 0 ) ↔ ((𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥)) ∧ 𝐹 finSupp 0 ))) |
| 20 | breq1 5105 | . . 3 ⊢ (ℎ = 𝐹 → (ℎ finSupp 0 ↔ 𝐹 finSupp 0 )) | |
| 21 | dprdff.w | . . 3 ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } | |
| 22 | 20, 21 | elrab2 3659 | . 2 ⊢ (𝐹 ∈ 𝑊 ↔ (𝐹 ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∧ 𝐹 finSupp 0 )) |
| 23 | df-3an 1088 | . 2 ⊢ ((𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥) ∧ 𝐹 finSupp 0 ) ↔ ((𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥)) ∧ 𝐹 finSupp 0 )) | |
| 24 | 19, 22, 23 | 3bitr4g 314 | 1 ⊢ (𝜑 → (𝐹 ∈ 𝑊 ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥) ∧ 𝐹 finSupp 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3402 Vcvv 3444 class class class wbr 5102 dom cdm 5631 Fn wfn 6494 ‘cfv 6499 Xcixp 8847 finSupp cfsupp 9288 DProd cdprd 19901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-oprab 7373 df-mpo 7374 df-ixp 8848 df-dprd 19903 |
| This theorem is referenced by: dprdff 19920 dprdfcl 19921 dprdffsupp 19922 dprdsubg 19932 |
| Copyright terms: Public domain | W3C validator |