Step | Hyp | Ref
| Expression |
1 | | df-ima 5564 |
. . 3
⊢ ((𝑥 ∈ 𝑌 ↦ (𝑥‘𝐼)) “ 𝑈) = ran ((𝑥 ∈ 𝑌 ↦ (𝑥‘𝐼)) ↾ 𝑈) |
2 | | elssuni 4851 |
. . . . . . 7
⊢ (𝑈 ∈ 𝐽 → 𝑈 ⊆ ∪ 𝐽) |
3 | | ptpjcn.1 |
. . . . . . 7
⊢ 𝑌 = ∪
𝐽 |
4 | 2, 3 | sseqtrrdi 3952 |
. . . . . 6
⊢ (𝑈 ∈ 𝐽 → 𝑈 ⊆ 𝑌) |
5 | 4 | adantl 485 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) → 𝑈 ⊆ 𝑌) |
6 | 5 | resmptd 5908 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) → ((𝑥 ∈ 𝑌 ↦ (𝑥‘𝐼)) ↾ 𝑈) = (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))) |
7 | 6 | rneqd 5807 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) → ran ((𝑥 ∈ 𝑌 ↦ (𝑥‘𝐼)) ↾ 𝑈) = ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))) |
8 | 1, 7 | syl5eq 2790 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) → ((𝑥 ∈ 𝑌 ↦ (𝑥‘𝐼)) “ 𝑈) = ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))) |
9 | | ptpjcn.2 |
. . . . . . . . . . 11
⊢ 𝐽 =
(∏t‘𝐹) |
10 | | ffn 6545 |
. . . . . . . . . . . 12
⊢ (𝐹:𝐴⟶Top → 𝐹 Fn 𝐴) |
11 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢ {𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑠 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} = {𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑠 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} |
12 | 11 | ptval 22467 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) → (∏t‘𝐹) = (topGen‘{𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑠 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))})) |
13 | 10, 12 | sylan2 596 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) →
(∏t‘𝐹) = (topGen‘{𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑠 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))})) |
14 | 9, 13 | syl5eq 2790 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝐽 = (topGen‘{𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑠 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))})) |
15 | 14 | 3adant3 1134 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) → 𝐽 = (topGen‘{𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑠 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))})) |
16 | 15 | eleq2d 2823 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) → (𝑈 ∈ 𝐽 ↔ 𝑈 ∈ (topGen‘{𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑠 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))}))) |
17 | 16 | biimpa 480 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) → 𝑈 ∈ (topGen‘{𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑠 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))})) |
18 | | tg2 21862 |
. . . . . . 7
⊢ ((𝑈 ∈ (topGen‘{𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑠 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))}) ∧ 𝑠 ∈ 𝑈) → ∃𝑤 ∈ {𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑠 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} (𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈)) |
19 | 17, 18 | sylan 583 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) → ∃𝑤 ∈ {𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑠 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} (𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈)) |
20 | | vex 3412 |
. . . . . . . . 9
⊢ 𝑤 ∈ V |
21 | | eqeq1 2741 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑤 → (𝑠 = X𝑦 ∈ 𝐴 (𝑔‘𝑦) ↔ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))) |
22 | 21 | anbi2d 632 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑤 → (((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑠 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)) ↔ ((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)))) |
23 | 22 | exbidv 1929 |
. . . . . . . . 9
⊢ (𝑠 = 𝑤 → (∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑠 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)) ↔ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)))) |
24 | 20, 23 | elab 3587 |
. . . . . . . 8
⊢ (𝑤 ∈ {𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑠 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ↔ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))) |
25 | | fveq2 6717 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐼 → (𝑔‘𝑦) = (𝑔‘𝐼)) |
26 | | fveq2 6717 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐼 → (𝐹‘𝑦) = (𝐹‘𝐼)) |
27 | 25, 26 | eleq12d 2832 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐼 → ((𝑔‘𝑦) ∈ (𝐹‘𝑦) ↔ (𝑔‘𝐼) ∈ (𝐹‘𝐼))) |
28 | | simplr2 1218 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) → ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦)) |
29 | | simpl3 1195 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) → 𝐼 ∈ 𝐴) |
30 | 29 | ad3antrrr 730 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) → 𝐼 ∈ 𝐴) |
31 | 27, 28, 30 | rspcdva 3539 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) → (𝑔‘𝐼) ∈ (𝐹‘𝐼)) |
32 | | fveq2 6717 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐼 → (𝑠‘𝑦) = (𝑠‘𝐼)) |
33 | 32, 25 | eleq12d 2832 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐼 → ((𝑠‘𝑦) ∈ (𝑔‘𝑦) ↔ (𝑠‘𝐼) ∈ (𝑔‘𝐼))) |
34 | | vex 3412 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑠 ∈ V |
35 | 34 | elixp 8585 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈ X𝑦 ∈
𝐴 (𝑔‘𝑦) ↔ (𝑠 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑠‘𝑦) ∈ (𝑔‘𝑦))) |
36 | 35 | simprbi 500 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 ∈ X𝑦 ∈
𝐴 (𝑔‘𝑦) → ∀𝑦 ∈ 𝐴 (𝑠‘𝑦) ∈ (𝑔‘𝑦)) |
37 | 36 | ad2antrl 728 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) → ∀𝑦 ∈ 𝐴 (𝑠‘𝑦) ∈ (𝑔‘𝑦)) |
38 | 33, 37, 30 | rspcdva 3539 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) → (𝑠‘𝐼) ∈ (𝑔‘𝐼)) |
39 | | simplrr 778 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔‘𝐼)) → X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈) |
40 | | simplrl 777 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ (𝑘 ∈ (𝑔‘𝐼) ∧ 𝑛 ∈ 𝐴)) ∧ 𝑛 = 𝐼) → 𝑘 ∈ (𝑔‘𝐼)) |
41 | | fveq2 6717 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 = 𝐼 → (𝑔‘𝑛) = (𝑔‘𝐼)) |
42 | 41 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ (𝑘 ∈ (𝑔‘𝐼) ∧ 𝑛 ∈ 𝐴)) ∧ 𝑛 = 𝐼) → (𝑔‘𝑛) = (𝑔‘𝐼)) |
43 | 40, 42 | eleqtrrd 2841 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ (𝑘 ∈ (𝑔‘𝐼) ∧ 𝑛 ∈ 𝐴)) ∧ 𝑛 = 𝐼) → 𝑘 ∈ (𝑔‘𝑛)) |
44 | | fveq2 6717 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 = 𝑛 → (𝑠‘𝑦) = (𝑠‘𝑛)) |
45 | | fveq2 6717 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 = 𝑛 → (𝑔‘𝑦) = (𝑔‘𝑛)) |
46 | 44, 45 | eleq12d 2832 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 = 𝑛 → ((𝑠‘𝑦) ∈ (𝑔‘𝑦) ↔ (𝑠‘𝑛) ∈ (𝑔‘𝑛))) |
47 | | simplrl 777 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ (𝑘 ∈ (𝑔‘𝐼) ∧ 𝑛 ∈ 𝐴)) → 𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦)) |
48 | 47, 36 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ (𝑘 ∈ (𝑔‘𝐼) ∧ 𝑛 ∈ 𝐴)) → ∀𝑦 ∈ 𝐴 (𝑠‘𝑦) ∈ (𝑔‘𝑦)) |
49 | | simprr 773 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ (𝑘 ∈ (𝑔‘𝐼) ∧ 𝑛 ∈ 𝐴)) → 𝑛 ∈ 𝐴) |
50 | 46, 48, 49 | rspcdva 3539 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ (𝑘 ∈ (𝑔‘𝐼) ∧ 𝑛 ∈ 𝐴)) → (𝑠‘𝑛) ∈ (𝑔‘𝑛)) |
51 | 50 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ (𝑘 ∈ (𝑔‘𝐼) ∧ 𝑛 ∈ 𝐴)) ∧ ¬ 𝑛 = 𝐼) → (𝑠‘𝑛) ∈ (𝑔‘𝑛)) |
52 | 43, 51 | ifclda 4474 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ (𝑘 ∈ (𝑔‘𝐼) ∧ 𝑛 ∈ 𝐴)) → if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛)) ∈ (𝑔‘𝑛)) |
53 | 52 | anassrs 471 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔‘𝐼)) ∧ 𝑛 ∈ 𝐴) → if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛)) ∈ (𝑔‘𝑛)) |
54 | 53 | ralrimiva 3105 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔‘𝐼)) → ∀𝑛 ∈ 𝐴 if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛)) ∈ (𝑔‘𝑛)) |
55 | | simpll1 1214 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) → 𝐴 ∈ 𝑉) |
56 | 55 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔‘𝐼)) → 𝐴 ∈ 𝑉) |
57 | | mptelixpg 8616 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 ∈ 𝑉 → ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛))) ∈ X𝑛 ∈ 𝐴 (𝑔‘𝑛) ↔ ∀𝑛 ∈ 𝐴 if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛)) ∈ (𝑔‘𝑛))) |
58 | 56, 57 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔‘𝐼)) → ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛))) ∈ X𝑛 ∈ 𝐴 (𝑔‘𝑛) ↔ ∀𝑛 ∈ 𝐴 if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛)) ∈ (𝑔‘𝑛))) |
59 | 54, 58 | mpbird 260 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔‘𝐼)) → (𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛))) ∈ X𝑛 ∈ 𝐴 (𝑔‘𝑛)) |
60 | | fveq2 6717 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 𝑦 → (𝑔‘𝑛) = (𝑔‘𝑦)) |
61 | 60 | cbvixpv 8596 |
. . . . . . . . . . . . . . . . . . 19
⊢ X𝑛 ∈
𝐴 (𝑔‘𝑛) = X𝑦 ∈ 𝐴 (𝑔‘𝑦) |
62 | 59, 61 | eleqtrdi 2848 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔‘𝐼)) → (𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛))) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦)) |
63 | 39, 62 | sseldd 3902 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔‘𝐼)) → (𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛))) ∈ 𝑈) |
64 | 30 | adantr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔‘𝐼)) → 𝐼 ∈ 𝐴) |
65 | | iftrue 4445 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 𝐼 → if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛)) = 𝑘) |
66 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛))) = (𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛))) |
67 | | vex 3412 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑘 ∈ V |
68 | 65, 66, 67 | fvmpt 6818 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐼 ∈ 𝐴 → ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛)))‘𝐼) = 𝑘) |
69 | 64, 68 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔‘𝐼)) → ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛)))‘𝐼) = 𝑘) |
70 | 69 | eqcomd 2743 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔‘𝐼)) → 𝑘 = ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛)))‘𝐼)) |
71 | | fveq1 6716 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = (𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛))) → (𝑥‘𝐼) = ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛)))‘𝐼)) |
72 | 71 | rspceeqv 3552 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛))) ∈ 𝑈 ∧ 𝑘 = ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛)))‘𝐼)) → ∃𝑥 ∈ 𝑈 𝑘 = (𝑥‘𝐼)) |
73 | 63, 70, 72 | syl2anc 587 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔‘𝐼)) → ∃𝑥 ∈ 𝑈 𝑘 = (𝑥‘𝐼)) |
74 | | eqid 2737 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)) = (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)) |
75 | 74 | elrnmpt 5825 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ V → (𝑘 ∈ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)) ↔ ∃𝑥 ∈ 𝑈 𝑘 = (𝑥‘𝐼))) |
76 | 75 | elv 3414 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)) ↔ ∃𝑥 ∈ 𝑈 𝑘 = (𝑥‘𝐼)) |
77 | 73, 76 | sylibr 237 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔‘𝐼)) → 𝑘 ∈ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))) |
78 | 77 | ex 416 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) → (𝑘 ∈ (𝑔‘𝐼) → 𝑘 ∈ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)))) |
79 | 78 | ssrdv 3907 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) → (𝑔‘𝐼) ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))) |
80 | | eleq2 2826 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝑔‘𝐼) → ((𝑠‘𝐼) ∈ 𝑧 ↔ (𝑠‘𝐼) ∈ (𝑔‘𝐼))) |
81 | | sseq1 3926 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝑔‘𝐼) → (𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)) ↔ (𝑔‘𝐼) ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)))) |
82 | 80, 81 | anbi12d 634 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝑔‘𝐼) → (((𝑠‘𝐼) ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))) ↔ ((𝑠‘𝐼) ∈ (𝑔‘𝐼) ∧ (𝑔‘𝐼) ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))))) |
83 | 82 | rspcev 3537 |
. . . . . . . . . . . . 13
⊢ (((𝑔‘𝐼) ∈ (𝐹‘𝐼) ∧ ((𝑠‘𝐼) ∈ (𝑔‘𝐼) ∧ (𝑔‘𝐼) ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)))) → ∃𝑧 ∈ (𝐹‘𝐼)((𝑠‘𝐼) ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)))) |
84 | 31, 38, 79, 83 | syl12anc 837 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) → ∃𝑧 ∈ (𝐹‘𝐼)((𝑠‘𝐼) ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)))) |
85 | 84 | ex 416 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) → ((𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈) → ∃𝑧 ∈ (𝐹‘𝐼)((𝑠‘𝐼) ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))))) |
86 | | eleq2 2826 |
. . . . . . . . . . . . 13
⊢ (𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦) → (𝑠 ∈ 𝑤 ↔ 𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦))) |
87 | | sseq1 3926 |
. . . . . . . . . . . . 13
⊢ (𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦) → (𝑤 ⊆ 𝑈 ↔ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) |
88 | 86, 87 | anbi12d 634 |
. . . . . . . . . . . 12
⊢ (𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦) → ((𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈) ↔ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈))) |
89 | 88 | imbi1d 345 |
. . . . . . . . . . 11
⊢ (𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦) → (((𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈) → ∃𝑧 ∈ (𝐹‘𝐼)((𝑠‘𝐼) ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)))) ↔ ((𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈) → ∃𝑧 ∈ (𝐹‘𝐼)((𝑠‘𝐼) ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)))))) |
90 | 85, 89 | syl5ibrcom 250 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) → (𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦) → ((𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈) → ∃𝑧 ∈ (𝐹‘𝐼)((𝑠‘𝐼) ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)))))) |
91 | 90 | expimpd 457 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) → (((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)) → ((𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈) → ∃𝑧 ∈ (𝐹‘𝐼)((𝑠‘𝐼) ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)))))) |
92 | 91 | exlimdv 1941 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) → (∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)) → ((𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈) → ∃𝑧 ∈ (𝐹‘𝐼)((𝑠‘𝐼) ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)))))) |
93 | 24, 92 | syl5bi 245 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) → (𝑤 ∈ {𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑠 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} → ((𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈) → ∃𝑧 ∈ (𝐹‘𝐼)((𝑠‘𝐼) ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)))))) |
94 | 93 | rexlimdv 3202 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) → (∃𝑤 ∈ {𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑠 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} (𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈) → ∃𝑧 ∈ (𝐹‘𝐼)((𝑠‘𝐼) ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))))) |
95 | 19, 94 | mpd 15 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) → ∃𝑧 ∈ (𝐹‘𝐼)((𝑠‘𝐼) ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)))) |
96 | 95 | ralrimiva 3105 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) → ∀𝑠 ∈ 𝑈 ∃𝑧 ∈ (𝐹‘𝐼)((𝑠‘𝐼) ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)))) |
97 | | fvex 6730 |
. . . . . 6
⊢ (𝑠‘𝐼) ∈ V |
98 | 97 | rgenw 3073 |
. . . . 5
⊢
∀𝑠 ∈
𝑈 (𝑠‘𝐼) ∈ V |
99 | | fveq1 6716 |
. . . . . . 7
⊢ (𝑥 = 𝑠 → (𝑥‘𝐼) = (𝑠‘𝐼)) |
100 | 99 | cbvmptv 5158 |
. . . . . 6
⊢ (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)) = (𝑠 ∈ 𝑈 ↦ (𝑠‘𝐼)) |
101 | | eleq1 2825 |
. . . . . . . 8
⊢ (𝑦 = (𝑠‘𝐼) → (𝑦 ∈ 𝑧 ↔ (𝑠‘𝐼) ∈ 𝑧)) |
102 | 101 | anbi1d 633 |
. . . . . . 7
⊢ (𝑦 = (𝑠‘𝐼) → ((𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))) ↔ ((𝑠‘𝐼) ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))))) |
103 | 102 | rexbidv 3216 |
. . . . . 6
⊢ (𝑦 = (𝑠‘𝐼) → (∃𝑧 ∈ (𝐹‘𝐼)(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))) ↔ ∃𝑧 ∈ (𝐹‘𝐼)((𝑠‘𝐼) ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))))) |
104 | 100, 103 | ralrnmptw 6913 |
. . . . 5
⊢
(∀𝑠 ∈
𝑈 (𝑠‘𝐼) ∈ V → (∀𝑦 ∈ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))∃𝑧 ∈ (𝐹‘𝐼)(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))) ↔ ∀𝑠 ∈ 𝑈 ∃𝑧 ∈ (𝐹‘𝐼)((𝑠‘𝐼) ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))))) |
105 | 98, 104 | ax-mp 5 |
. . . 4
⊢
(∀𝑦 ∈
ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))∃𝑧 ∈ (𝐹‘𝐼)(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))) ↔ ∀𝑠 ∈ 𝑈 ∃𝑧 ∈ (𝐹‘𝐼)((𝑠‘𝐼) ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)))) |
106 | 96, 105 | sylibr 237 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) → ∀𝑦 ∈ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))∃𝑧 ∈ (𝐹‘𝐼)(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)))) |
107 | | simpl2 1194 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) → 𝐹:𝐴⟶Top) |
108 | 107, 29 | ffvelrnd 6905 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) → (𝐹‘𝐼) ∈ Top) |
109 | | eltop2 21872 |
. . . 4
⊢ ((𝐹‘𝐼) ∈ Top → (ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)) ∈ (𝐹‘𝐼) ↔ ∀𝑦 ∈ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))∃𝑧 ∈ (𝐹‘𝐼)(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))))) |
110 | 108, 109 | syl 17 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) → (ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)) ∈ (𝐹‘𝐼) ↔ ∀𝑦 ∈ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))∃𝑧 ∈ (𝐹‘𝐼)(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))))) |
111 | 106, 110 | mpbird 260 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) → ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)) ∈ (𝐹‘𝐼)) |
112 | 8, 111 | eqeltrd 2838 |
1
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) → ((𝑥 ∈ 𝑌 ↦ (𝑥‘𝐼)) “ 𝑈) ∈ (𝐹‘𝐼)) |