MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptpjopn Structured version   Visualization version   GIF version

Theorem ptpjopn 23555
Description: The projection map is an open map. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
ptpjcn.1 𝑌 = 𝐽
ptpjcn.2 𝐽 = (∏t𝐹)
Assertion
Ref Expression
ptpjopn (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) → ((𝑥𝑌 ↦ (𝑥𝐼)) “ 𝑈) ∈ (𝐹𝐼))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐼   𝑥,𝑉   𝑥,𝑌   𝑥,𝑈
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem ptpjopn
Dummy variables 𝑔 𝑘 𝑛 𝑠 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ima 5672 . . 3 ((𝑥𝑌 ↦ (𝑥𝐼)) “ 𝑈) = ran ((𝑥𝑌 ↦ (𝑥𝐼)) ↾ 𝑈)
2 elssuni 4918 . . . . . . 7 (𝑈𝐽𝑈 𝐽)
3 ptpjcn.1 . . . . . . 7 𝑌 = 𝐽
42, 3sseqtrrdi 4005 . . . . . 6 (𝑈𝐽𝑈𝑌)
54adantl 481 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) → 𝑈𝑌)
65resmptd 6032 . . . 4 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) → ((𝑥𝑌 ↦ (𝑥𝐼)) ↾ 𝑈) = (𝑥𝑈 ↦ (𝑥𝐼)))
76rneqd 5923 . . 3 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) → ran ((𝑥𝑌 ↦ (𝑥𝐼)) ↾ 𝑈) = ran (𝑥𝑈 ↦ (𝑥𝐼)))
81, 7eqtrid 2783 . 2 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) → ((𝑥𝑌 ↦ (𝑥𝐼)) “ 𝑈) = ran (𝑥𝑈 ↦ (𝑥𝐼)))
9 ptpjcn.2 . . . . . . . . . . 11 𝐽 = (∏t𝐹)
10 ffn 6711 . . . . . . . . . . . 12 (𝐹:𝐴⟶Top → 𝐹 Fn 𝐴)
11 eqid 2736 . . . . . . . . . . . . 13 {𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑔𝑦))} = {𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑔𝑦))}
1211ptval 23513 . . . . . . . . . . . 12 ((𝐴𝑉𝐹 Fn 𝐴) → (∏t𝐹) = (topGen‘{𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑔𝑦))}))
1310, 12sylan2 593 . . . . . . . . . . 11 ((𝐴𝑉𝐹:𝐴⟶Top) → (∏t𝐹) = (topGen‘{𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑔𝑦))}))
149, 13eqtrid 2783 . . . . . . . . . 10 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐽 = (topGen‘{𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑔𝑦))}))
15143adant3 1132 . . . . . . . . 9 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → 𝐽 = (topGen‘{𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑔𝑦))}))
1615eleq2d 2821 . . . . . . . 8 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → (𝑈𝐽𝑈 ∈ (topGen‘{𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑔𝑦))})))
1716biimpa 476 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) → 𝑈 ∈ (topGen‘{𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑔𝑦))}))
18 tg2 22908 . . . . . . 7 ((𝑈 ∈ (topGen‘{𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑔𝑦))}) ∧ 𝑠𝑈) → ∃𝑤 ∈ {𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑔𝑦))} (𝑠𝑤𝑤𝑈))
1917, 18sylan 580 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) → ∃𝑤 ∈ {𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑔𝑦))} (𝑠𝑤𝑤𝑈))
20 vex 3468 . . . . . . . . 9 𝑤 ∈ V
21 eqeq1 2740 . . . . . . . . . . 11 (𝑠 = 𝑤 → (𝑠 = X𝑦𝐴 (𝑔𝑦) ↔ 𝑤 = X𝑦𝐴 (𝑔𝑦)))
2221anbi2d 630 . . . . . . . . . 10 (𝑠 = 𝑤 → (((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑔𝑦)) ↔ ((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))))
2322exbidv 1921 . . . . . . . . 9 (𝑠 = 𝑤 → (∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑔𝑦)) ↔ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))))
2420, 23elab 3663 . . . . . . . 8 (𝑤 ∈ {𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑔𝑦))} ↔ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦)))
25 fveq2 6881 . . . . . . . . . . . . . . 15 (𝑦 = 𝐼 → (𝑔𝑦) = (𝑔𝐼))
26 fveq2 6881 . . . . . . . . . . . . . . 15 (𝑦 = 𝐼 → (𝐹𝑦) = (𝐹𝐼))
2725, 26eleq12d 2829 . . . . . . . . . . . . . 14 (𝑦 = 𝐼 → ((𝑔𝑦) ∈ (𝐹𝑦) ↔ (𝑔𝐼) ∈ (𝐹𝐼)))
28 simplr2 1217 . . . . . . . . . . . . . 14 ((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) → ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦))
29 simpl3 1194 . . . . . . . . . . . . . . 15 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) → 𝐼𝐴)
3029ad3antrrr 730 . . . . . . . . . . . . . 14 ((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) → 𝐼𝐴)
3127, 28, 30rspcdva 3607 . . . . . . . . . . . . 13 ((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) → (𝑔𝐼) ∈ (𝐹𝐼))
32 fveq2 6881 . . . . . . . . . . . . . . 15 (𝑦 = 𝐼 → (𝑠𝑦) = (𝑠𝐼))
3332, 25eleq12d 2829 . . . . . . . . . . . . . 14 (𝑦 = 𝐼 → ((𝑠𝑦) ∈ (𝑔𝑦) ↔ (𝑠𝐼) ∈ (𝑔𝐼)))
34 vex 3468 . . . . . . . . . . . . . . . . 17 𝑠 ∈ V
3534elixp 8923 . . . . . . . . . . . . . . . 16 (𝑠X𝑦𝐴 (𝑔𝑦) ↔ (𝑠 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑠𝑦) ∈ (𝑔𝑦)))
3635simprbi 496 . . . . . . . . . . . . . . 15 (𝑠X𝑦𝐴 (𝑔𝑦) → ∀𝑦𝐴 (𝑠𝑦) ∈ (𝑔𝑦))
3736ad2antrl 728 . . . . . . . . . . . . . 14 ((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) → ∀𝑦𝐴 (𝑠𝑦) ∈ (𝑔𝑦))
3833, 37, 30rspcdva 3607 . . . . . . . . . . . . 13 ((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) → (𝑠𝐼) ∈ (𝑔𝐼))
39 simplrr 777 . . . . . . . . . . . . . . . . . 18 (((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔𝐼)) → X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)
40 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ (𝑘 ∈ (𝑔𝐼) ∧ 𝑛𝐴)) ∧ 𝑛 = 𝐼) → 𝑘 ∈ (𝑔𝐼))
41 fveq2 6881 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝐼 → (𝑔𝑛) = (𝑔𝐼))
4241adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ (𝑘 ∈ (𝑔𝐼) ∧ 𝑛𝐴)) ∧ 𝑛 = 𝐼) → (𝑔𝑛) = (𝑔𝐼))
4340, 42eleqtrrd 2838 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ (𝑘 ∈ (𝑔𝐼) ∧ 𝑛𝐴)) ∧ 𝑛 = 𝐼) → 𝑘 ∈ (𝑔𝑛))
44 fveq2 6881 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = 𝑛 → (𝑠𝑦) = (𝑠𝑛))
45 fveq2 6881 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = 𝑛 → (𝑔𝑦) = (𝑔𝑛))
4644, 45eleq12d 2829 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = 𝑛 → ((𝑠𝑦) ∈ (𝑔𝑦) ↔ (𝑠𝑛) ∈ (𝑔𝑛)))
47 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ (𝑘 ∈ (𝑔𝐼) ∧ 𝑛𝐴)) → 𝑠X𝑦𝐴 (𝑔𝑦))
4847, 36syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ (𝑘 ∈ (𝑔𝐼) ∧ 𝑛𝐴)) → ∀𝑦𝐴 (𝑠𝑦) ∈ (𝑔𝑦))
49 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ (𝑘 ∈ (𝑔𝐼) ∧ 𝑛𝐴)) → 𝑛𝐴)
5046, 48, 49rspcdva 3607 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ (𝑘 ∈ (𝑔𝐼) ∧ 𝑛𝐴)) → (𝑠𝑛) ∈ (𝑔𝑛))
5150adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ (𝑘 ∈ (𝑔𝐼) ∧ 𝑛𝐴)) ∧ ¬ 𝑛 = 𝐼) → (𝑠𝑛) ∈ (𝑔𝑛))
5243, 51ifclda 4541 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ (𝑘 ∈ (𝑔𝐼) ∧ 𝑛𝐴)) → if(𝑛 = 𝐼, 𝑘, (𝑠𝑛)) ∈ (𝑔𝑛))
5352anassrs 467 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔𝐼)) ∧ 𝑛𝐴) → if(𝑛 = 𝐼, 𝑘, (𝑠𝑛)) ∈ (𝑔𝑛))
5453ralrimiva 3133 . . . . . . . . . . . . . . . . . . . 20 (((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔𝐼)) → ∀𝑛𝐴 if(𝑛 = 𝐼, 𝑘, (𝑠𝑛)) ∈ (𝑔𝑛))
55 simpll1 1213 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) → 𝐴𝑉)
5655ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔𝐼)) → 𝐴𝑉)
57 mptelixpg 8954 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝑉 → ((𝑛𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠𝑛))) ∈ X𝑛𝐴 (𝑔𝑛) ↔ ∀𝑛𝐴 if(𝑛 = 𝐼, 𝑘, (𝑠𝑛)) ∈ (𝑔𝑛)))
5856, 57syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔𝐼)) → ((𝑛𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠𝑛))) ∈ X𝑛𝐴 (𝑔𝑛) ↔ ∀𝑛𝐴 if(𝑛 = 𝐼, 𝑘, (𝑠𝑛)) ∈ (𝑔𝑛)))
5954, 58mpbird 257 . . . . . . . . . . . . . . . . . . 19 (((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔𝐼)) → (𝑛𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠𝑛))) ∈ X𝑛𝐴 (𝑔𝑛))
60 fveq2 6881 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑦 → (𝑔𝑛) = (𝑔𝑦))
6160cbvixpv 8934 . . . . . . . . . . . . . . . . . . 19 X𝑛𝐴 (𝑔𝑛) = X𝑦𝐴 (𝑔𝑦)
6259, 61eleqtrdi 2845 . . . . . . . . . . . . . . . . . 18 (((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔𝐼)) → (𝑛𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠𝑛))) ∈ X𝑦𝐴 (𝑔𝑦))
6339, 62sseldd 3964 . . . . . . . . . . . . . . . . 17 (((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔𝐼)) → (𝑛𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠𝑛))) ∈ 𝑈)
6430adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔𝐼)) → 𝐼𝐴)
65 iftrue 4511 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝐼 → if(𝑛 = 𝐼, 𝑘, (𝑠𝑛)) = 𝑘)
66 eqid 2736 . . . . . . . . . . . . . . . . . . . 20 (𝑛𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠𝑛))) = (𝑛𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠𝑛)))
67 vex 3468 . . . . . . . . . . . . . . . . . . . 20 𝑘 ∈ V
6865, 66, 67fvmpt 6991 . . . . . . . . . . . . . . . . . . 19 (𝐼𝐴 → ((𝑛𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠𝑛)))‘𝐼) = 𝑘)
6964, 68syl 17 . . . . . . . . . . . . . . . . . 18 (((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔𝐼)) → ((𝑛𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠𝑛)))‘𝐼) = 𝑘)
7069eqcomd 2742 . . . . . . . . . . . . . . . . 17 (((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔𝐼)) → 𝑘 = ((𝑛𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠𝑛)))‘𝐼))
71 fveq1 6880 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑛𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠𝑛))) → (𝑥𝐼) = ((𝑛𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠𝑛)))‘𝐼))
7271rspceeqv 3629 . . . . . . . . . . . . . . . . 17 (((𝑛𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠𝑛))) ∈ 𝑈𝑘 = ((𝑛𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠𝑛)))‘𝐼)) → ∃𝑥𝑈 𝑘 = (𝑥𝐼))
7363, 70, 72syl2anc 584 . . . . . . . . . . . . . . . 16 (((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔𝐼)) → ∃𝑥𝑈 𝑘 = (𝑥𝐼))
74 eqid 2736 . . . . . . . . . . . . . . . . . 18 (𝑥𝑈 ↦ (𝑥𝐼)) = (𝑥𝑈 ↦ (𝑥𝐼))
7574elrnmpt 5943 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ V → (𝑘 ∈ ran (𝑥𝑈 ↦ (𝑥𝐼)) ↔ ∃𝑥𝑈 𝑘 = (𝑥𝐼)))
7675elv 3469 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ran (𝑥𝑈 ↦ (𝑥𝐼)) ↔ ∃𝑥𝑈 𝑘 = (𝑥𝐼))
7773, 76sylibr 234 . . . . . . . . . . . . . . 15 (((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔𝐼)) → 𝑘 ∈ ran (𝑥𝑈 ↦ (𝑥𝐼)))
7877ex 412 . . . . . . . . . . . . . 14 ((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) → (𝑘 ∈ (𝑔𝐼) → 𝑘 ∈ ran (𝑥𝑈 ↦ (𝑥𝐼))))
7978ssrdv 3969 . . . . . . . . . . . . 13 ((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) → (𝑔𝐼) ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼)))
80 eleq2 2824 . . . . . . . . . . . . . . 15 (𝑧 = (𝑔𝐼) → ((𝑠𝐼) ∈ 𝑧 ↔ (𝑠𝐼) ∈ (𝑔𝐼)))
81 sseq1 3989 . . . . . . . . . . . . . . 15 (𝑧 = (𝑔𝐼) → (𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼)) ↔ (𝑔𝐼) ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼))))
8280, 81anbi12d 632 . . . . . . . . . . . . . 14 (𝑧 = (𝑔𝐼) → (((𝑠𝐼) ∈ 𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼))) ↔ ((𝑠𝐼) ∈ (𝑔𝐼) ∧ (𝑔𝐼) ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼)))))
8382rspcev 3606 . . . . . . . . . . . . 13 (((𝑔𝐼) ∈ (𝐹𝐼) ∧ ((𝑠𝐼) ∈ (𝑔𝐼) ∧ (𝑔𝐼) ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼)))) → ∃𝑧 ∈ (𝐹𝐼)((𝑠𝐼) ∈ 𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼))))
8431, 38, 79, 83syl12anc 836 . . . . . . . . . . . 12 ((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) → ∃𝑧 ∈ (𝐹𝐼)((𝑠𝐼) ∈ 𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼))))
8584ex 412 . . . . . . . . . . 11 (((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) → ((𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈) → ∃𝑧 ∈ (𝐹𝐼)((𝑠𝐼) ∈ 𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼)))))
86 eleq2 2824 . . . . . . . . . . . . 13 (𝑤 = X𝑦𝐴 (𝑔𝑦) → (𝑠𝑤𝑠X𝑦𝐴 (𝑔𝑦)))
87 sseq1 3989 . . . . . . . . . . . . 13 (𝑤 = X𝑦𝐴 (𝑔𝑦) → (𝑤𝑈X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈))
8886, 87anbi12d 632 . . . . . . . . . . . 12 (𝑤 = X𝑦𝐴 (𝑔𝑦) → ((𝑠𝑤𝑤𝑈) ↔ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)))
8988imbi1d 341 . . . . . . . . . . 11 (𝑤 = X𝑦𝐴 (𝑔𝑦) → (((𝑠𝑤𝑤𝑈) → ∃𝑧 ∈ (𝐹𝐼)((𝑠𝐼) ∈ 𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼)))) ↔ ((𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈) → ∃𝑧 ∈ (𝐹𝐼)((𝑠𝐼) ∈ 𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼))))))
9085, 89syl5ibrcom 247 . . . . . . . . . 10 (((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) → (𝑤 = X𝑦𝐴 (𝑔𝑦) → ((𝑠𝑤𝑤𝑈) → ∃𝑧 ∈ (𝐹𝐼)((𝑠𝐼) ∈ 𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼))))))
9190expimpd 453 . . . . . . . . 9 ((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) → (((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦)) → ((𝑠𝑤𝑤𝑈) → ∃𝑧 ∈ (𝐹𝐼)((𝑠𝐼) ∈ 𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼))))))
9291exlimdv 1933 . . . . . . . 8 ((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) → (∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦)) → ((𝑠𝑤𝑤𝑈) → ∃𝑧 ∈ (𝐹𝐼)((𝑠𝐼) ∈ 𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼))))))
9324, 92biimtrid 242 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) → (𝑤 ∈ {𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑔𝑦))} → ((𝑠𝑤𝑤𝑈) → ∃𝑧 ∈ (𝐹𝐼)((𝑠𝐼) ∈ 𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼))))))
9493rexlimdv 3140 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) → (∃𝑤 ∈ {𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑔𝑦))} (𝑠𝑤𝑤𝑈) → ∃𝑧 ∈ (𝐹𝐼)((𝑠𝐼) ∈ 𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼)))))
9519, 94mpd 15 . . . . 5 ((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) → ∃𝑧 ∈ (𝐹𝐼)((𝑠𝐼) ∈ 𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼))))
9695ralrimiva 3133 . . . 4 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) → ∀𝑠𝑈𝑧 ∈ (𝐹𝐼)((𝑠𝐼) ∈ 𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼))))
97 fvex 6894 . . . . . 6 (𝑠𝐼) ∈ V
9897rgenw 3056 . . . . 5 𝑠𝑈 (𝑠𝐼) ∈ V
99 fveq1 6880 . . . . . . 7 (𝑥 = 𝑠 → (𝑥𝐼) = (𝑠𝐼))
10099cbvmptv 5230 . . . . . 6 (𝑥𝑈 ↦ (𝑥𝐼)) = (𝑠𝑈 ↦ (𝑠𝐼))
101 eleq1 2823 . . . . . . . 8 (𝑦 = (𝑠𝐼) → (𝑦𝑧 ↔ (𝑠𝐼) ∈ 𝑧))
102101anbi1d 631 . . . . . . 7 (𝑦 = (𝑠𝐼) → ((𝑦𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼))) ↔ ((𝑠𝐼) ∈ 𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼)))))
103102rexbidv 3165 . . . . . 6 (𝑦 = (𝑠𝐼) → (∃𝑧 ∈ (𝐹𝐼)(𝑦𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼))) ↔ ∃𝑧 ∈ (𝐹𝐼)((𝑠𝐼) ∈ 𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼)))))
104100, 103ralrnmptw 7089 . . . . 5 (∀𝑠𝑈 (𝑠𝐼) ∈ V → (∀𝑦 ∈ ran (𝑥𝑈 ↦ (𝑥𝐼))∃𝑧 ∈ (𝐹𝐼)(𝑦𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼))) ↔ ∀𝑠𝑈𝑧 ∈ (𝐹𝐼)((𝑠𝐼) ∈ 𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼)))))
10598, 104ax-mp 5 . . . 4 (∀𝑦 ∈ ran (𝑥𝑈 ↦ (𝑥𝐼))∃𝑧 ∈ (𝐹𝐼)(𝑦𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼))) ↔ ∀𝑠𝑈𝑧 ∈ (𝐹𝐼)((𝑠𝐼) ∈ 𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼))))
10696, 105sylibr 234 . . 3 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) → ∀𝑦 ∈ ran (𝑥𝑈 ↦ (𝑥𝐼))∃𝑧 ∈ (𝐹𝐼)(𝑦𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼))))
107 simpl2 1193 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) → 𝐹:𝐴⟶Top)
108107, 29ffvelcdmd 7080 . . . 4 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) → (𝐹𝐼) ∈ Top)
109 eltop2 22918 . . . 4 ((𝐹𝐼) ∈ Top → (ran (𝑥𝑈 ↦ (𝑥𝐼)) ∈ (𝐹𝐼) ↔ ∀𝑦 ∈ ran (𝑥𝑈 ↦ (𝑥𝐼))∃𝑧 ∈ (𝐹𝐼)(𝑦𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼)))))
110108, 109syl 17 . . 3 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) → (ran (𝑥𝑈 ↦ (𝑥𝐼)) ∈ (𝐹𝐼) ↔ ∀𝑦 ∈ ran (𝑥𝑈 ↦ (𝑥𝐼))∃𝑧 ∈ (𝐹𝐼)(𝑦𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼)))))
111106, 110mpbird 257 . 2 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) → ran (𝑥𝑈 ↦ (𝑥𝐼)) ∈ (𝐹𝐼))
1128, 111eqeltrd 2835 1 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) → ((𝑥𝑌 ↦ (𝑥𝐼)) “ 𝑈) ∈ (𝐹𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2714  wral 3052  wrex 3061  Vcvv 3464  cdif 3928  wss 3931  ifcif 4505   cuni 4888  cmpt 5206  ran crn 5660  cres 5661  cima 5662   Fn wfn 6531  wf 6532  cfv 6536  Xcixp 8916  Fincfn 8964  topGenctg 17456  tcpt 17457  Topctop 22836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ixp 8917  df-topgen 17462  df-pt 17463  df-top 22837
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator