MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptpjopn Structured version   Visualization version   GIF version

Theorem ptpjopn 23641
Description: The projection map is an open map. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
ptpjcn.1 𝑌 = 𝐽
ptpjcn.2 𝐽 = (∏t𝐹)
Assertion
Ref Expression
ptpjopn (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) → ((𝑥𝑌 ↦ (𝑥𝐼)) “ 𝑈) ∈ (𝐹𝐼))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐼   𝑥,𝑉   𝑥,𝑌   𝑥,𝑈
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem ptpjopn
Dummy variables 𝑔 𝑘 𝑛 𝑠 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ima 5713 . . 3 ((𝑥𝑌 ↦ (𝑥𝐼)) “ 𝑈) = ran ((𝑥𝑌 ↦ (𝑥𝐼)) ↾ 𝑈)
2 elssuni 4961 . . . . . . 7 (𝑈𝐽𝑈 𝐽)
3 ptpjcn.1 . . . . . . 7 𝑌 = 𝐽
42, 3sseqtrrdi 4060 . . . . . 6 (𝑈𝐽𝑈𝑌)
54adantl 481 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) → 𝑈𝑌)
65resmptd 6069 . . . 4 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) → ((𝑥𝑌 ↦ (𝑥𝐼)) ↾ 𝑈) = (𝑥𝑈 ↦ (𝑥𝐼)))
76rneqd 5963 . . 3 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) → ran ((𝑥𝑌 ↦ (𝑥𝐼)) ↾ 𝑈) = ran (𝑥𝑈 ↦ (𝑥𝐼)))
81, 7eqtrid 2792 . 2 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) → ((𝑥𝑌 ↦ (𝑥𝐼)) “ 𝑈) = ran (𝑥𝑈 ↦ (𝑥𝐼)))
9 ptpjcn.2 . . . . . . . . . . 11 𝐽 = (∏t𝐹)
10 ffn 6747 . . . . . . . . . . . 12 (𝐹:𝐴⟶Top → 𝐹 Fn 𝐴)
11 eqid 2740 . . . . . . . . . . . . 13 {𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑔𝑦))} = {𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑔𝑦))}
1211ptval 23599 . . . . . . . . . . . 12 ((𝐴𝑉𝐹 Fn 𝐴) → (∏t𝐹) = (topGen‘{𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑔𝑦))}))
1310, 12sylan2 592 . . . . . . . . . . 11 ((𝐴𝑉𝐹:𝐴⟶Top) → (∏t𝐹) = (topGen‘{𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑔𝑦))}))
149, 13eqtrid 2792 . . . . . . . . . 10 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐽 = (topGen‘{𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑔𝑦))}))
15143adant3 1132 . . . . . . . . 9 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → 𝐽 = (topGen‘{𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑔𝑦))}))
1615eleq2d 2830 . . . . . . . 8 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → (𝑈𝐽𝑈 ∈ (topGen‘{𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑔𝑦))})))
1716biimpa 476 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) → 𝑈 ∈ (topGen‘{𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑔𝑦))}))
18 tg2 22993 . . . . . . 7 ((𝑈 ∈ (topGen‘{𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑔𝑦))}) ∧ 𝑠𝑈) → ∃𝑤 ∈ {𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑔𝑦))} (𝑠𝑤𝑤𝑈))
1917, 18sylan 579 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) → ∃𝑤 ∈ {𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑔𝑦))} (𝑠𝑤𝑤𝑈))
20 vex 3492 . . . . . . . . 9 𝑤 ∈ V
21 eqeq1 2744 . . . . . . . . . . 11 (𝑠 = 𝑤 → (𝑠 = X𝑦𝐴 (𝑔𝑦) ↔ 𝑤 = X𝑦𝐴 (𝑔𝑦)))
2221anbi2d 629 . . . . . . . . . 10 (𝑠 = 𝑤 → (((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑔𝑦)) ↔ ((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))))
2322exbidv 1920 . . . . . . . . 9 (𝑠 = 𝑤 → (∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑔𝑦)) ↔ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))))
2420, 23elab 3694 . . . . . . . 8 (𝑤 ∈ {𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑔𝑦))} ↔ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦)))
25 fveq2 6920 . . . . . . . . . . . . . . 15 (𝑦 = 𝐼 → (𝑔𝑦) = (𝑔𝐼))
26 fveq2 6920 . . . . . . . . . . . . . . 15 (𝑦 = 𝐼 → (𝐹𝑦) = (𝐹𝐼))
2725, 26eleq12d 2838 . . . . . . . . . . . . . 14 (𝑦 = 𝐼 → ((𝑔𝑦) ∈ (𝐹𝑦) ↔ (𝑔𝐼) ∈ (𝐹𝐼)))
28 simplr2 1216 . . . . . . . . . . . . . 14 ((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) → ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦))
29 simpl3 1193 . . . . . . . . . . . . . . 15 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) → 𝐼𝐴)
3029ad3antrrr 729 . . . . . . . . . . . . . 14 ((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) → 𝐼𝐴)
3127, 28, 30rspcdva 3636 . . . . . . . . . . . . 13 ((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) → (𝑔𝐼) ∈ (𝐹𝐼))
32 fveq2 6920 . . . . . . . . . . . . . . 15 (𝑦 = 𝐼 → (𝑠𝑦) = (𝑠𝐼))
3332, 25eleq12d 2838 . . . . . . . . . . . . . 14 (𝑦 = 𝐼 → ((𝑠𝑦) ∈ (𝑔𝑦) ↔ (𝑠𝐼) ∈ (𝑔𝐼)))
34 vex 3492 . . . . . . . . . . . . . . . . 17 𝑠 ∈ V
3534elixp 8962 . . . . . . . . . . . . . . . 16 (𝑠X𝑦𝐴 (𝑔𝑦) ↔ (𝑠 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑠𝑦) ∈ (𝑔𝑦)))
3635simprbi 496 . . . . . . . . . . . . . . 15 (𝑠X𝑦𝐴 (𝑔𝑦) → ∀𝑦𝐴 (𝑠𝑦) ∈ (𝑔𝑦))
3736ad2antrl 727 . . . . . . . . . . . . . 14 ((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) → ∀𝑦𝐴 (𝑠𝑦) ∈ (𝑔𝑦))
3833, 37, 30rspcdva 3636 . . . . . . . . . . . . 13 ((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) → (𝑠𝐼) ∈ (𝑔𝐼))
39 simplrr 777 . . . . . . . . . . . . . . . . . 18 (((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔𝐼)) → X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)
40 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ (𝑘 ∈ (𝑔𝐼) ∧ 𝑛𝐴)) ∧ 𝑛 = 𝐼) → 𝑘 ∈ (𝑔𝐼))
41 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝐼 → (𝑔𝑛) = (𝑔𝐼))
4241adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ (𝑘 ∈ (𝑔𝐼) ∧ 𝑛𝐴)) ∧ 𝑛 = 𝐼) → (𝑔𝑛) = (𝑔𝐼))
4340, 42eleqtrrd 2847 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ (𝑘 ∈ (𝑔𝐼) ∧ 𝑛𝐴)) ∧ 𝑛 = 𝐼) → 𝑘 ∈ (𝑔𝑛))
44 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = 𝑛 → (𝑠𝑦) = (𝑠𝑛))
45 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = 𝑛 → (𝑔𝑦) = (𝑔𝑛))
4644, 45eleq12d 2838 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = 𝑛 → ((𝑠𝑦) ∈ (𝑔𝑦) ↔ (𝑠𝑛) ∈ (𝑔𝑛)))
47 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ (𝑘 ∈ (𝑔𝐼) ∧ 𝑛𝐴)) → 𝑠X𝑦𝐴 (𝑔𝑦))
4847, 36syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ (𝑘 ∈ (𝑔𝐼) ∧ 𝑛𝐴)) → ∀𝑦𝐴 (𝑠𝑦) ∈ (𝑔𝑦))
49 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ (𝑘 ∈ (𝑔𝐼) ∧ 𝑛𝐴)) → 𝑛𝐴)
5046, 48, 49rspcdva 3636 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ (𝑘 ∈ (𝑔𝐼) ∧ 𝑛𝐴)) → (𝑠𝑛) ∈ (𝑔𝑛))
5150adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ (𝑘 ∈ (𝑔𝐼) ∧ 𝑛𝐴)) ∧ ¬ 𝑛 = 𝐼) → (𝑠𝑛) ∈ (𝑔𝑛))
5243, 51ifclda 4583 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ (𝑘 ∈ (𝑔𝐼) ∧ 𝑛𝐴)) → if(𝑛 = 𝐼, 𝑘, (𝑠𝑛)) ∈ (𝑔𝑛))
5352anassrs 467 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔𝐼)) ∧ 𝑛𝐴) → if(𝑛 = 𝐼, 𝑘, (𝑠𝑛)) ∈ (𝑔𝑛))
5453ralrimiva 3152 . . . . . . . . . . . . . . . . . . . 20 (((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔𝐼)) → ∀𝑛𝐴 if(𝑛 = 𝐼, 𝑘, (𝑠𝑛)) ∈ (𝑔𝑛))
55 simpll1 1212 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) → 𝐴𝑉)
5655ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔𝐼)) → 𝐴𝑉)
57 mptelixpg 8993 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝑉 → ((𝑛𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠𝑛))) ∈ X𝑛𝐴 (𝑔𝑛) ↔ ∀𝑛𝐴 if(𝑛 = 𝐼, 𝑘, (𝑠𝑛)) ∈ (𝑔𝑛)))
5856, 57syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔𝐼)) → ((𝑛𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠𝑛))) ∈ X𝑛𝐴 (𝑔𝑛) ↔ ∀𝑛𝐴 if(𝑛 = 𝐼, 𝑘, (𝑠𝑛)) ∈ (𝑔𝑛)))
5954, 58mpbird 257 . . . . . . . . . . . . . . . . . . 19 (((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔𝐼)) → (𝑛𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠𝑛))) ∈ X𝑛𝐴 (𝑔𝑛))
60 fveq2 6920 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑦 → (𝑔𝑛) = (𝑔𝑦))
6160cbvixpv 8973 . . . . . . . . . . . . . . . . . . 19 X𝑛𝐴 (𝑔𝑛) = X𝑦𝐴 (𝑔𝑦)
6259, 61eleqtrdi 2854 . . . . . . . . . . . . . . . . . 18 (((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔𝐼)) → (𝑛𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠𝑛))) ∈ X𝑦𝐴 (𝑔𝑦))
6339, 62sseldd 4009 . . . . . . . . . . . . . . . . 17 (((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔𝐼)) → (𝑛𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠𝑛))) ∈ 𝑈)
6430adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔𝐼)) → 𝐼𝐴)
65 iftrue 4554 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝐼 → if(𝑛 = 𝐼, 𝑘, (𝑠𝑛)) = 𝑘)
66 eqid 2740 . . . . . . . . . . . . . . . . . . . 20 (𝑛𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠𝑛))) = (𝑛𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠𝑛)))
67 vex 3492 . . . . . . . . . . . . . . . . . . . 20 𝑘 ∈ V
6865, 66, 67fvmpt 7029 . . . . . . . . . . . . . . . . . . 19 (𝐼𝐴 → ((𝑛𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠𝑛)))‘𝐼) = 𝑘)
6964, 68syl 17 . . . . . . . . . . . . . . . . . 18 (((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔𝐼)) → ((𝑛𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠𝑛)))‘𝐼) = 𝑘)
7069eqcomd 2746 . . . . . . . . . . . . . . . . 17 (((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔𝐼)) → 𝑘 = ((𝑛𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠𝑛)))‘𝐼))
71 fveq1 6919 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑛𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠𝑛))) → (𝑥𝐼) = ((𝑛𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠𝑛)))‘𝐼))
7271rspceeqv 3658 . . . . . . . . . . . . . . . . 17 (((𝑛𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠𝑛))) ∈ 𝑈𝑘 = ((𝑛𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠𝑛)))‘𝐼)) → ∃𝑥𝑈 𝑘 = (𝑥𝐼))
7363, 70, 72syl2anc 583 . . . . . . . . . . . . . . . 16 (((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔𝐼)) → ∃𝑥𝑈 𝑘 = (𝑥𝐼))
74 eqid 2740 . . . . . . . . . . . . . . . . . 18 (𝑥𝑈 ↦ (𝑥𝐼)) = (𝑥𝑈 ↦ (𝑥𝐼))
7574elrnmpt 5981 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ V → (𝑘 ∈ ran (𝑥𝑈 ↦ (𝑥𝐼)) ↔ ∃𝑥𝑈 𝑘 = (𝑥𝐼)))
7675elv 3493 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ran (𝑥𝑈 ↦ (𝑥𝐼)) ↔ ∃𝑥𝑈 𝑘 = (𝑥𝐼))
7773, 76sylibr 234 . . . . . . . . . . . . . . 15 (((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔𝐼)) → 𝑘 ∈ ran (𝑥𝑈 ↦ (𝑥𝐼)))
7877ex 412 . . . . . . . . . . . . . 14 ((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) → (𝑘 ∈ (𝑔𝐼) → 𝑘 ∈ ran (𝑥𝑈 ↦ (𝑥𝐼))))
7978ssrdv 4014 . . . . . . . . . . . . 13 ((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) → (𝑔𝐼) ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼)))
80 eleq2 2833 . . . . . . . . . . . . . . 15 (𝑧 = (𝑔𝐼) → ((𝑠𝐼) ∈ 𝑧 ↔ (𝑠𝐼) ∈ (𝑔𝐼)))
81 sseq1 4034 . . . . . . . . . . . . . . 15 (𝑧 = (𝑔𝐼) → (𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼)) ↔ (𝑔𝐼) ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼))))
8280, 81anbi12d 631 . . . . . . . . . . . . . 14 (𝑧 = (𝑔𝐼) → (((𝑠𝐼) ∈ 𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼))) ↔ ((𝑠𝐼) ∈ (𝑔𝐼) ∧ (𝑔𝐼) ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼)))))
8382rspcev 3635 . . . . . . . . . . . . 13 (((𝑔𝐼) ∈ (𝐹𝐼) ∧ ((𝑠𝐼) ∈ (𝑔𝐼) ∧ (𝑔𝐼) ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼)))) → ∃𝑧 ∈ (𝐹𝐼)((𝑠𝐼) ∈ 𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼))))
8431, 38, 79, 83syl12anc 836 . . . . . . . . . . . 12 ((((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) ∧ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)) → ∃𝑧 ∈ (𝐹𝐼)((𝑠𝐼) ∈ 𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼))))
8584ex 412 . . . . . . . . . . 11 (((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) → ((𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈) → ∃𝑧 ∈ (𝐹𝐼)((𝑠𝐼) ∈ 𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼)))))
86 eleq2 2833 . . . . . . . . . . . . 13 (𝑤 = X𝑦𝐴 (𝑔𝑦) → (𝑠𝑤𝑠X𝑦𝐴 (𝑔𝑦)))
87 sseq1 4034 . . . . . . . . . . . . 13 (𝑤 = X𝑦𝐴 (𝑔𝑦) → (𝑤𝑈X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈))
8886, 87anbi12d 631 . . . . . . . . . . . 12 (𝑤 = X𝑦𝐴 (𝑔𝑦) → ((𝑠𝑤𝑤𝑈) ↔ (𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈)))
8988imbi1d 341 . . . . . . . . . . 11 (𝑤 = X𝑦𝐴 (𝑔𝑦) → (((𝑠𝑤𝑤𝑈) → ∃𝑧 ∈ (𝐹𝐼)((𝑠𝐼) ∈ 𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼)))) ↔ ((𝑠X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ 𝑈) → ∃𝑧 ∈ (𝐹𝐼)((𝑠𝐼) ∈ 𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼))))))
9085, 89syl5ibrcom 247 . . . . . . . . . 10 (((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) → (𝑤 = X𝑦𝐴 (𝑔𝑦) → ((𝑠𝑤𝑤𝑈) → ∃𝑧 ∈ (𝐹𝐼)((𝑠𝐼) ∈ 𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼))))))
9190expimpd 453 . . . . . . . . 9 ((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) → (((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦)) → ((𝑠𝑤𝑤𝑈) → ∃𝑧 ∈ (𝐹𝐼)((𝑠𝐼) ∈ 𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼))))))
9291exlimdv 1932 . . . . . . . 8 ((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) → (∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦)) → ((𝑠𝑤𝑤𝑈) → ∃𝑧 ∈ (𝐹𝐼)((𝑠𝐼) ∈ 𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼))))))
9324, 92biimtrid 242 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) → (𝑤 ∈ {𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑔𝑦))} → ((𝑠𝑤𝑤𝑈) → ∃𝑧 ∈ (𝐹𝐼)((𝑠𝐼) ∈ 𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼))))))
9493rexlimdv 3159 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) → (∃𝑤 ∈ {𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑔𝑦))} (𝑠𝑤𝑤𝑈) → ∃𝑧 ∈ (𝐹𝐼)((𝑠𝐼) ∈ 𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼)))))
9519, 94mpd 15 . . . . 5 ((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) ∧ 𝑠𝑈) → ∃𝑧 ∈ (𝐹𝐼)((𝑠𝐼) ∈ 𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼))))
9695ralrimiva 3152 . . . 4 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) → ∀𝑠𝑈𝑧 ∈ (𝐹𝐼)((𝑠𝐼) ∈ 𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼))))
97 fvex 6933 . . . . . 6 (𝑠𝐼) ∈ V
9897rgenw 3071 . . . . 5 𝑠𝑈 (𝑠𝐼) ∈ V
99 fveq1 6919 . . . . . . 7 (𝑥 = 𝑠 → (𝑥𝐼) = (𝑠𝐼))
10099cbvmptv 5279 . . . . . 6 (𝑥𝑈 ↦ (𝑥𝐼)) = (𝑠𝑈 ↦ (𝑠𝐼))
101 eleq1 2832 . . . . . . . 8 (𝑦 = (𝑠𝐼) → (𝑦𝑧 ↔ (𝑠𝐼) ∈ 𝑧))
102101anbi1d 630 . . . . . . 7 (𝑦 = (𝑠𝐼) → ((𝑦𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼))) ↔ ((𝑠𝐼) ∈ 𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼)))))
103102rexbidv 3185 . . . . . 6 (𝑦 = (𝑠𝐼) → (∃𝑧 ∈ (𝐹𝐼)(𝑦𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼))) ↔ ∃𝑧 ∈ (𝐹𝐼)((𝑠𝐼) ∈ 𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼)))))
104100, 103ralrnmptw 7128 . . . . 5 (∀𝑠𝑈 (𝑠𝐼) ∈ V → (∀𝑦 ∈ ran (𝑥𝑈 ↦ (𝑥𝐼))∃𝑧 ∈ (𝐹𝐼)(𝑦𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼))) ↔ ∀𝑠𝑈𝑧 ∈ (𝐹𝐼)((𝑠𝐼) ∈ 𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼)))))
10598, 104ax-mp 5 . . . 4 (∀𝑦 ∈ ran (𝑥𝑈 ↦ (𝑥𝐼))∃𝑧 ∈ (𝐹𝐼)(𝑦𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼))) ↔ ∀𝑠𝑈𝑧 ∈ (𝐹𝐼)((𝑠𝐼) ∈ 𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼))))
10696, 105sylibr 234 . . 3 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) → ∀𝑦 ∈ ran (𝑥𝑈 ↦ (𝑥𝐼))∃𝑧 ∈ (𝐹𝐼)(𝑦𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼))))
107 simpl2 1192 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) → 𝐹:𝐴⟶Top)
108107, 29ffvelcdmd 7119 . . . 4 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) → (𝐹𝐼) ∈ Top)
109 eltop2 23003 . . . 4 ((𝐹𝐼) ∈ Top → (ran (𝑥𝑈 ↦ (𝑥𝐼)) ∈ (𝐹𝐼) ↔ ∀𝑦 ∈ ran (𝑥𝑈 ↦ (𝑥𝐼))∃𝑧 ∈ (𝐹𝐼)(𝑦𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼)))))
110108, 109syl 17 . . 3 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) → (ran (𝑥𝑈 ↦ (𝑥𝐼)) ∈ (𝐹𝐼) ↔ ∀𝑦 ∈ ran (𝑥𝑈 ↦ (𝑥𝐼))∃𝑧 ∈ (𝐹𝐼)(𝑦𝑧𝑧 ⊆ ran (𝑥𝑈 ↦ (𝑥𝐼)))))
111106, 110mpbird 257 . 2 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) → ran (𝑥𝑈 ↦ (𝑥𝐼)) ∈ (𝐹𝐼))
1128, 111eqeltrd 2844 1 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑈𝐽) → ((𝑥𝑌 ↦ (𝑥𝐼)) “ 𝑈) ∈ (𝐹𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wral 3067  wrex 3076  Vcvv 3488  cdif 3973  wss 3976  ifcif 4548   cuni 4931  cmpt 5249  ran crn 5701  cres 5702  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  Xcixp 8955  Fincfn 9003  topGenctg 17497  tcpt 17498  Topctop 22920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ixp 8956  df-topgen 17503  df-pt 17504  df-top 22921
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator