| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | df-ima 5697 | . . 3
⊢ ((𝑥 ∈ 𝑌 ↦ (𝑥‘𝐼)) “ 𝑈) = ran ((𝑥 ∈ 𝑌 ↦ (𝑥‘𝐼)) ↾ 𝑈) | 
| 2 |  | elssuni 4936 | . . . . . . 7
⊢ (𝑈 ∈ 𝐽 → 𝑈 ⊆ ∪ 𝐽) | 
| 3 |  | ptpjcn.1 | . . . . . . 7
⊢ 𝑌 = ∪
𝐽 | 
| 4 | 2, 3 | sseqtrrdi 4024 | . . . . . 6
⊢ (𝑈 ∈ 𝐽 → 𝑈 ⊆ 𝑌) | 
| 5 | 4 | adantl 481 | . . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) → 𝑈 ⊆ 𝑌) | 
| 6 | 5 | resmptd 6057 | . . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) → ((𝑥 ∈ 𝑌 ↦ (𝑥‘𝐼)) ↾ 𝑈) = (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))) | 
| 7 | 6 | rneqd 5948 | . . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) → ran ((𝑥 ∈ 𝑌 ↦ (𝑥‘𝐼)) ↾ 𝑈) = ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))) | 
| 8 | 1, 7 | eqtrid 2788 | . 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) → ((𝑥 ∈ 𝑌 ↦ (𝑥‘𝐼)) “ 𝑈) = ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))) | 
| 9 |  | ptpjcn.2 | . . . . . . . . . . 11
⊢ 𝐽 =
(∏t‘𝐹) | 
| 10 |  | ffn 6735 | . . . . . . . . . . . 12
⊢ (𝐹:𝐴⟶Top → 𝐹 Fn 𝐴) | 
| 11 |  | eqid 2736 | . . . . . . . . . . . . 13
⊢ {𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑠 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} = {𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑠 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} | 
| 12 | 11 | ptval 23579 | . . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) → (∏t‘𝐹) = (topGen‘{𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑠 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))})) | 
| 13 | 10, 12 | sylan2 593 | . . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) →
(∏t‘𝐹) = (topGen‘{𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑠 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))})) | 
| 14 | 9, 13 | eqtrid 2788 | . . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝐽 = (topGen‘{𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑠 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))})) | 
| 15 | 14 | 3adant3 1132 | . . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) → 𝐽 = (topGen‘{𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑠 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))})) | 
| 16 | 15 | eleq2d 2826 | . . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) → (𝑈 ∈ 𝐽 ↔ 𝑈 ∈ (topGen‘{𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑠 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))}))) | 
| 17 | 16 | biimpa 476 | . . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) → 𝑈 ∈ (topGen‘{𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑠 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))})) | 
| 18 |  | tg2 22973 | . . . . . . 7
⊢ ((𝑈 ∈ (topGen‘{𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑠 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))}) ∧ 𝑠 ∈ 𝑈) → ∃𝑤 ∈ {𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑠 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} (𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈)) | 
| 19 | 17, 18 | sylan 580 | . . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) → ∃𝑤 ∈ {𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑠 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} (𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈)) | 
| 20 |  | vex 3483 | . . . . . . . . 9
⊢ 𝑤 ∈ V | 
| 21 |  | eqeq1 2740 | . . . . . . . . . . 11
⊢ (𝑠 = 𝑤 → (𝑠 = X𝑦 ∈ 𝐴 (𝑔‘𝑦) ↔ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))) | 
| 22 | 21 | anbi2d 630 | . . . . . . . . . 10
⊢ (𝑠 = 𝑤 → (((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑠 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)) ↔ ((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)))) | 
| 23 | 22 | exbidv 1920 | . . . . . . . . 9
⊢ (𝑠 = 𝑤 → (∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑠 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)) ↔ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)))) | 
| 24 | 20, 23 | elab 3678 | . . . . . . . 8
⊢ (𝑤 ∈ {𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑠 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ↔ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))) | 
| 25 |  | fveq2 6905 | . . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐼 → (𝑔‘𝑦) = (𝑔‘𝐼)) | 
| 26 |  | fveq2 6905 | . . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐼 → (𝐹‘𝑦) = (𝐹‘𝐼)) | 
| 27 | 25, 26 | eleq12d 2834 | . . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐼 → ((𝑔‘𝑦) ∈ (𝐹‘𝑦) ↔ (𝑔‘𝐼) ∈ (𝐹‘𝐼))) | 
| 28 |  | simplr2 1216 | . . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) → ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦)) | 
| 29 |  | simpl3 1193 | . . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) → 𝐼 ∈ 𝐴) | 
| 30 | 29 | ad3antrrr 730 | . . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) → 𝐼 ∈ 𝐴) | 
| 31 | 27, 28, 30 | rspcdva 3622 | . . . . . . . . . . . . 13
⊢
((((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) → (𝑔‘𝐼) ∈ (𝐹‘𝐼)) | 
| 32 |  | fveq2 6905 | . . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐼 → (𝑠‘𝑦) = (𝑠‘𝐼)) | 
| 33 | 32, 25 | eleq12d 2834 | . . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐼 → ((𝑠‘𝑦) ∈ (𝑔‘𝑦) ↔ (𝑠‘𝐼) ∈ (𝑔‘𝐼))) | 
| 34 |  | vex 3483 | . . . . . . . . . . . . . . . . 17
⊢ 𝑠 ∈ V | 
| 35 | 34 | elixp 8945 | . . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈ X𝑦 ∈
𝐴 (𝑔‘𝑦) ↔ (𝑠 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑠‘𝑦) ∈ (𝑔‘𝑦))) | 
| 36 | 35 | simprbi 496 | . . . . . . . . . . . . . . 15
⊢ (𝑠 ∈ X𝑦 ∈
𝐴 (𝑔‘𝑦) → ∀𝑦 ∈ 𝐴 (𝑠‘𝑦) ∈ (𝑔‘𝑦)) | 
| 37 | 36 | ad2antrl 728 | . . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) → ∀𝑦 ∈ 𝐴 (𝑠‘𝑦) ∈ (𝑔‘𝑦)) | 
| 38 | 33, 37, 30 | rspcdva 3622 | . . . . . . . . . . . . 13
⊢
((((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) → (𝑠‘𝐼) ∈ (𝑔‘𝐼)) | 
| 39 |  | simplrr 777 | . . . . . . . . . . . . . . . . . 18
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔‘𝐼)) → X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈) | 
| 40 |  | simplrl 776 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ (𝑘 ∈ (𝑔‘𝐼) ∧ 𝑛 ∈ 𝐴)) ∧ 𝑛 = 𝐼) → 𝑘 ∈ (𝑔‘𝐼)) | 
| 41 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 = 𝐼 → (𝑔‘𝑛) = (𝑔‘𝐼)) | 
| 42 | 41 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ (𝑘 ∈ (𝑔‘𝐼) ∧ 𝑛 ∈ 𝐴)) ∧ 𝑛 = 𝐼) → (𝑔‘𝑛) = (𝑔‘𝐼)) | 
| 43 | 40, 42 | eleqtrrd 2843 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ (𝑘 ∈ (𝑔‘𝐼) ∧ 𝑛 ∈ 𝐴)) ∧ 𝑛 = 𝐼) → 𝑘 ∈ (𝑔‘𝑛)) | 
| 44 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 = 𝑛 → (𝑠‘𝑦) = (𝑠‘𝑛)) | 
| 45 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 = 𝑛 → (𝑔‘𝑦) = (𝑔‘𝑛)) | 
| 46 | 44, 45 | eleq12d 2834 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 = 𝑛 → ((𝑠‘𝑦) ∈ (𝑔‘𝑦) ↔ (𝑠‘𝑛) ∈ (𝑔‘𝑛))) | 
| 47 |  | simplrl 776 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ (𝑘 ∈ (𝑔‘𝐼) ∧ 𝑛 ∈ 𝐴)) → 𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦)) | 
| 48 | 47, 36 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ (𝑘 ∈ (𝑔‘𝐼) ∧ 𝑛 ∈ 𝐴)) → ∀𝑦 ∈ 𝐴 (𝑠‘𝑦) ∈ (𝑔‘𝑦)) | 
| 49 |  | simprr 772 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ (𝑘 ∈ (𝑔‘𝐼) ∧ 𝑛 ∈ 𝐴)) → 𝑛 ∈ 𝐴) | 
| 50 | 46, 48, 49 | rspcdva 3622 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ (𝑘 ∈ (𝑔‘𝐼) ∧ 𝑛 ∈ 𝐴)) → (𝑠‘𝑛) ∈ (𝑔‘𝑛)) | 
| 51 | 50 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ (𝑘 ∈ (𝑔‘𝐼) ∧ 𝑛 ∈ 𝐴)) ∧ ¬ 𝑛 = 𝐼) → (𝑠‘𝑛) ∈ (𝑔‘𝑛)) | 
| 52 | 43, 51 | ifclda 4560 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ (𝑘 ∈ (𝑔‘𝐼) ∧ 𝑛 ∈ 𝐴)) → if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛)) ∈ (𝑔‘𝑛)) | 
| 53 | 52 | anassrs 467 | . . . . . . . . . . . . . . . . . . . . 21
⊢
((((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔‘𝐼)) ∧ 𝑛 ∈ 𝐴) → if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛)) ∈ (𝑔‘𝑛)) | 
| 54 | 53 | ralrimiva 3145 | . . . . . . . . . . . . . . . . . . . 20
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔‘𝐼)) → ∀𝑛 ∈ 𝐴 if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛)) ∈ (𝑔‘𝑛)) | 
| 55 |  | simpll1 1212 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) → 𝐴 ∈ 𝑉) | 
| 56 | 55 | ad3antrrr 730 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔‘𝐼)) → 𝐴 ∈ 𝑉) | 
| 57 |  | mptelixpg 8976 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 ∈ 𝑉 → ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛))) ∈ X𝑛 ∈ 𝐴 (𝑔‘𝑛) ↔ ∀𝑛 ∈ 𝐴 if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛)) ∈ (𝑔‘𝑛))) | 
| 58 | 56, 57 | syl 17 | . . . . . . . . . . . . . . . . . . . 20
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔‘𝐼)) → ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛))) ∈ X𝑛 ∈ 𝐴 (𝑔‘𝑛) ↔ ∀𝑛 ∈ 𝐴 if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛)) ∈ (𝑔‘𝑛))) | 
| 59 | 54, 58 | mpbird 257 | . . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔‘𝐼)) → (𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛))) ∈ X𝑛 ∈ 𝐴 (𝑔‘𝑛)) | 
| 60 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 𝑦 → (𝑔‘𝑛) = (𝑔‘𝑦)) | 
| 61 | 60 | cbvixpv 8956 | . . . . . . . . . . . . . . . . . . 19
⊢ X𝑛 ∈
𝐴 (𝑔‘𝑛) = X𝑦 ∈ 𝐴 (𝑔‘𝑦) | 
| 62 | 59, 61 | eleqtrdi 2850 | . . . . . . . . . . . . . . . . . 18
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔‘𝐼)) → (𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛))) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦)) | 
| 63 | 39, 62 | sseldd 3983 | . . . . . . . . . . . . . . . . 17
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔‘𝐼)) → (𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛))) ∈ 𝑈) | 
| 64 | 30 | adantr 480 | . . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔‘𝐼)) → 𝐼 ∈ 𝐴) | 
| 65 |  | iftrue 4530 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 𝐼 → if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛)) = 𝑘) | 
| 66 |  | eqid 2736 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛))) = (𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛))) | 
| 67 |  | vex 3483 | . . . . . . . . . . . . . . . . . . . 20
⊢ 𝑘 ∈ V | 
| 68 | 65, 66, 67 | fvmpt 7015 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝐼 ∈ 𝐴 → ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛)))‘𝐼) = 𝑘) | 
| 69 | 64, 68 | syl 17 | . . . . . . . . . . . . . . . . . 18
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔‘𝐼)) → ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛)))‘𝐼) = 𝑘) | 
| 70 | 69 | eqcomd 2742 | . . . . . . . . . . . . . . . . 17
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔‘𝐼)) → 𝑘 = ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛)))‘𝐼)) | 
| 71 |  | fveq1 6904 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = (𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛))) → (𝑥‘𝐼) = ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛)))‘𝐼)) | 
| 72 | 71 | rspceeqv 3644 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛))) ∈ 𝑈 ∧ 𝑘 = ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝐼, 𝑘, (𝑠‘𝑛)))‘𝐼)) → ∃𝑥 ∈ 𝑈 𝑘 = (𝑥‘𝐼)) | 
| 73 | 63, 70, 72 | syl2anc 584 | . . . . . . . . . . . . . . . 16
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔‘𝐼)) → ∃𝑥 ∈ 𝑈 𝑘 = (𝑥‘𝐼)) | 
| 74 |  | eqid 2736 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)) = (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)) | 
| 75 | 74 | elrnmpt 5968 | . . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ V → (𝑘 ∈ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)) ↔ ∃𝑥 ∈ 𝑈 𝑘 = (𝑥‘𝐼))) | 
| 76 | 75 | elv 3484 | . . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)) ↔ ∃𝑥 ∈ 𝑈 𝑘 = (𝑥‘𝐼)) | 
| 77 | 73, 76 | sylibr 234 | . . . . . . . . . . . . . . 15
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) ∧ 𝑘 ∈ (𝑔‘𝐼)) → 𝑘 ∈ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))) | 
| 78 | 77 | ex 412 | . . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) → (𝑘 ∈ (𝑔‘𝐼) → 𝑘 ∈ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)))) | 
| 79 | 78 | ssrdv 3988 | . . . . . . . . . . . . 13
⊢
((((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) → (𝑔‘𝐼) ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))) | 
| 80 |  | eleq2 2829 | . . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝑔‘𝐼) → ((𝑠‘𝐼) ∈ 𝑧 ↔ (𝑠‘𝐼) ∈ (𝑔‘𝐼))) | 
| 81 |  | sseq1 4008 | . . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝑔‘𝐼) → (𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)) ↔ (𝑔‘𝐼) ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)))) | 
| 82 | 80, 81 | anbi12d 632 | . . . . . . . . . . . . . 14
⊢ (𝑧 = (𝑔‘𝐼) → (((𝑠‘𝐼) ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))) ↔ ((𝑠‘𝐼) ∈ (𝑔‘𝐼) ∧ (𝑔‘𝐼) ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))))) | 
| 83 | 82 | rspcev 3621 | . . . . . . . . . . . . 13
⊢ (((𝑔‘𝐼) ∈ (𝐹‘𝐼) ∧ ((𝑠‘𝐼) ∈ (𝑔‘𝐼) ∧ (𝑔‘𝐼) ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)))) → ∃𝑧 ∈ (𝐹‘𝐼)((𝑠‘𝐼) ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)))) | 
| 84 | 31, 38, 79, 83 | syl12anc 836 | . . . . . . . . . . . 12
⊢
((((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) → ∃𝑧 ∈ (𝐹‘𝐼)((𝑠‘𝐼) ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)))) | 
| 85 | 84 | ex 412 | . . . . . . . . . . 11
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) → ((𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈) → ∃𝑧 ∈ (𝐹‘𝐼)((𝑠‘𝐼) ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))))) | 
| 86 |  | eleq2 2829 | . . . . . . . . . . . . 13
⊢ (𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦) → (𝑠 ∈ 𝑤 ↔ 𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦))) | 
| 87 |  | sseq1 4008 | . . . . . . . . . . . . 13
⊢ (𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦) → (𝑤 ⊆ 𝑈 ↔ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈)) | 
| 88 | 86, 87 | anbi12d 632 | . . . . . . . . . . . 12
⊢ (𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦) → ((𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈) ↔ (𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈))) | 
| 89 | 88 | imbi1d 341 | . . . . . . . . . . 11
⊢ (𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦) → (((𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈) → ∃𝑧 ∈ (𝐹‘𝐼)((𝑠‘𝐼) ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)))) ↔ ((𝑠 ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ 𝑈) → ∃𝑧 ∈ (𝐹‘𝐼)((𝑠‘𝐼) ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)))))) | 
| 90 | 85, 89 | syl5ibrcom 247 | . . . . . . . . . 10
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) → (𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦) → ((𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈) → ∃𝑧 ∈ (𝐹‘𝐼)((𝑠‘𝐼) ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)))))) | 
| 91 | 90 | expimpd 453 | . . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) → (((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)) → ((𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈) → ∃𝑧 ∈ (𝐹‘𝐼)((𝑠‘𝐼) ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)))))) | 
| 92 | 91 | exlimdv 1932 | . . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) → (∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)) → ((𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈) → ∃𝑧 ∈ (𝐹‘𝐼)((𝑠‘𝐼) ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)))))) | 
| 93 | 24, 92 | biimtrid 242 | . . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) → (𝑤 ∈ {𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑠 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} → ((𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈) → ∃𝑧 ∈ (𝐹‘𝐼)((𝑠‘𝐼) ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)))))) | 
| 94 | 93 | rexlimdv 3152 | . . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) → (∃𝑤 ∈ {𝑠 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑠 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} (𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈) → ∃𝑧 ∈ (𝐹‘𝐼)((𝑠‘𝐼) ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))))) | 
| 95 | 19, 94 | mpd 15 | . . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) ∧ 𝑠 ∈ 𝑈) → ∃𝑧 ∈ (𝐹‘𝐼)((𝑠‘𝐼) ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)))) | 
| 96 | 95 | ralrimiva 3145 | . . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) → ∀𝑠 ∈ 𝑈 ∃𝑧 ∈ (𝐹‘𝐼)((𝑠‘𝐼) ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)))) | 
| 97 |  | fvex 6918 | . . . . . 6
⊢ (𝑠‘𝐼) ∈ V | 
| 98 | 97 | rgenw 3064 | . . . . 5
⊢
∀𝑠 ∈
𝑈 (𝑠‘𝐼) ∈ V | 
| 99 |  | fveq1 6904 | . . . . . . 7
⊢ (𝑥 = 𝑠 → (𝑥‘𝐼) = (𝑠‘𝐼)) | 
| 100 | 99 | cbvmptv 5254 | . . . . . 6
⊢ (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)) = (𝑠 ∈ 𝑈 ↦ (𝑠‘𝐼)) | 
| 101 |  | eleq1 2828 | . . . . . . . 8
⊢ (𝑦 = (𝑠‘𝐼) → (𝑦 ∈ 𝑧 ↔ (𝑠‘𝐼) ∈ 𝑧)) | 
| 102 | 101 | anbi1d 631 | . . . . . . 7
⊢ (𝑦 = (𝑠‘𝐼) → ((𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))) ↔ ((𝑠‘𝐼) ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))))) | 
| 103 | 102 | rexbidv 3178 | . . . . . 6
⊢ (𝑦 = (𝑠‘𝐼) → (∃𝑧 ∈ (𝐹‘𝐼)(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))) ↔ ∃𝑧 ∈ (𝐹‘𝐼)((𝑠‘𝐼) ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))))) | 
| 104 | 100, 103 | ralrnmptw 7113 | . . . . 5
⊢
(∀𝑠 ∈
𝑈 (𝑠‘𝐼) ∈ V → (∀𝑦 ∈ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))∃𝑧 ∈ (𝐹‘𝐼)(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))) ↔ ∀𝑠 ∈ 𝑈 ∃𝑧 ∈ (𝐹‘𝐼)((𝑠‘𝐼) ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))))) | 
| 105 | 98, 104 | ax-mp 5 | . . . 4
⊢
(∀𝑦 ∈
ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))∃𝑧 ∈ (𝐹‘𝐼)(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))) ↔ ∀𝑠 ∈ 𝑈 ∃𝑧 ∈ (𝐹‘𝐼)((𝑠‘𝐼) ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)))) | 
| 106 | 96, 105 | sylibr 234 | . . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) → ∀𝑦 ∈ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))∃𝑧 ∈ (𝐹‘𝐼)(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)))) | 
| 107 |  | simpl2 1192 | . . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) → 𝐹:𝐴⟶Top) | 
| 108 | 107, 29 | ffvelcdmd 7104 | . . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) → (𝐹‘𝐼) ∈ Top) | 
| 109 |  | eltop2 22983 | . . . 4
⊢ ((𝐹‘𝐼) ∈ Top → (ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)) ∈ (𝐹‘𝐼) ↔ ∀𝑦 ∈ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))∃𝑧 ∈ (𝐹‘𝐼)(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))))) | 
| 110 | 108, 109 | syl 17 | . . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) → (ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)) ∈ (𝐹‘𝐼) ↔ ∀𝑦 ∈ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))∃𝑧 ∈ (𝐹‘𝐼)(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼))))) | 
| 111 | 106, 110 | mpbird 257 | . 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) → ran (𝑥 ∈ 𝑈 ↦ (𝑥‘𝐼)) ∈ (𝐹‘𝐼)) | 
| 112 | 8, 111 | eqeltrd 2840 | 1
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) → ((𝑥 ∈ 𝑌 ↦ (𝑥‘𝐼)) “ 𝑈) ∈ (𝐹‘𝐼)) |