MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdwd Structured version   Visualization version   GIF version

Theorem dprdwd 20046
Description: A mapping being a finitely supported function in the family 𝑆. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) (Proof shortened by OpenAI, 30-Mar-2020.)
Hypotheses
Ref Expression
dprdff.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
dprdff.1 (𝜑𝐺dom DProd 𝑆)
dprdff.2 (𝜑 → dom 𝑆 = 𝐼)
dprdwd.3 ((𝜑𝑥𝐼) → 𝐴 ∈ (𝑆𝑥))
dprdwd.4 (𝜑 → (𝑥𝐼𝐴) finSupp 0 )
Assertion
Ref Expression
dprdwd (𝜑 → (𝑥𝐼𝐴) ∈ 𝑊)
Distinct variable groups:   𝐴,   𝑥,   𝑥,𝐺   ,𝑖,𝐼,𝑥   0 ,   𝜑,𝑥   𝑆,,𝑖,𝑥
Allowed substitution hints:   𝜑(,𝑖)   𝐴(𝑥,𝑖)   𝐺(,𝑖)   𝑊(𝑥,,𝑖)   0 (𝑥,𝑖)

Proof of Theorem dprdwd
StepHypRef Expression
1 breq1 5151 . . 3 ( = (𝑥𝐼𝐴) → ( finSupp 0 ↔ (𝑥𝐼𝐴) finSupp 0 ))
2 dprdwd.3 . . . . . 6 ((𝜑𝑥𝐼) → 𝐴 ∈ (𝑆𝑥))
32ralrimiva 3144 . . . . 5 (𝜑 → ∀𝑥𝐼 𝐴 ∈ (𝑆𝑥))
4 dprdff.1 . . . . . . 7 (𝜑𝐺dom DProd 𝑆)
5 dprdff.2 . . . . . . 7 (𝜑 → dom 𝑆 = 𝐼)
64, 5dprddomcld 20036 . . . . . 6 (𝜑𝐼 ∈ V)
7 mptelixpg 8974 . . . . . 6 (𝐼 ∈ V → ((𝑥𝐼𝐴) ∈ X𝑥𝐼 (𝑆𝑥) ↔ ∀𝑥𝐼 𝐴 ∈ (𝑆𝑥)))
86, 7syl 17 . . . . 5 (𝜑 → ((𝑥𝐼𝐴) ∈ X𝑥𝐼 (𝑆𝑥) ↔ ∀𝑥𝐼 𝐴 ∈ (𝑆𝑥)))
93, 8mpbird 257 . . . 4 (𝜑 → (𝑥𝐼𝐴) ∈ X𝑥𝐼 (𝑆𝑥))
10 fveq2 6907 . . . . 5 (𝑥 = 𝑖 → (𝑆𝑥) = (𝑆𝑖))
1110cbvixpv 8954 . . . 4 X𝑥𝐼 (𝑆𝑥) = X𝑖𝐼 (𝑆𝑖)
129, 11eleqtrdi 2849 . . 3 (𝜑 → (𝑥𝐼𝐴) ∈ X𝑖𝐼 (𝑆𝑖))
13 dprdwd.4 . . 3 (𝜑 → (𝑥𝐼𝐴) finSupp 0 )
141, 12, 13elrabd 3697 . 2 (𝜑 → (𝑥𝐼𝐴) ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 })
15 dprdff.w . 2 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
1614, 15eleqtrrdi 2850 1 (𝜑 → (𝑥𝐼𝐴) ∈ 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  {crab 3433  Vcvv 3478   class class class wbr 5148  cmpt 5231  dom cdm 5689  cfv 6563  Xcixp 8936   finSupp cfsupp 9399   DProd cdprd 20028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-oprab 7435  df-mpo 7436  df-ixp 8937  df-dprd 20030
This theorem is referenced by:  dprdfid  20052  dprdfinv  20054  dprdfadd  20055  dmdprdsplitlem  20072  dpjidcl  20093  dchrptlem3  27325
  Copyright terms: Public domain W3C validator