Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dprdwd | Structured version Visualization version GIF version |
Description: A mapping being a finitely supported function in the family 𝑆. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) (Proof shortened by OpenAI, 30-Mar-2020.) |
Ref | Expression |
---|---|
dprdff.w | ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
dprdff.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
dprdff.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
dprdwd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐴 ∈ (𝑆‘𝑥)) |
dprdwd.4 | ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) finSupp 0 ) |
Ref | Expression |
---|---|
dprdwd | ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) ∈ 𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5103 | . . 3 ⊢ (ℎ = (𝑥 ∈ 𝐼 ↦ 𝐴) → (ℎ finSupp 0 ↔ (𝑥 ∈ 𝐼 ↦ 𝐴) finSupp 0 )) | |
2 | dprdwd.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐴 ∈ (𝑆‘𝑥)) | |
3 | 2 | ralrimiva 3141 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝐴 ∈ (𝑆‘𝑥)) |
4 | dprdff.1 | . . . . . . 7 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
5 | dprdff.2 | . . . . . . 7 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
6 | 4, 5 | dprddomcld 19703 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ V) |
7 | mptelixpg 8803 | . . . . . 6 ⊢ (𝐼 ∈ V → ((𝑥 ∈ 𝐼 ↦ 𝐴) ∈ X𝑥 ∈ 𝐼 (𝑆‘𝑥) ↔ ∀𝑥 ∈ 𝐼 𝐴 ∈ (𝑆‘𝑥))) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ 𝐴) ∈ X𝑥 ∈ 𝐼 (𝑆‘𝑥) ↔ ∀𝑥 ∈ 𝐼 𝐴 ∈ (𝑆‘𝑥))) |
9 | 3, 8 | mpbird 257 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) ∈ X𝑥 ∈ 𝐼 (𝑆‘𝑥)) |
10 | fveq2 6834 | . . . . 5 ⊢ (𝑥 = 𝑖 → (𝑆‘𝑥) = (𝑆‘𝑖)) | |
11 | 10 | cbvixpv 8783 | . . . 4 ⊢ X𝑥 ∈ 𝐼 (𝑆‘𝑥) = X𝑖 ∈ 𝐼 (𝑆‘𝑖) |
12 | 9, 11 | eleqtrdi 2848 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖)) |
13 | dprdwd.4 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) finSupp 0 ) | |
14 | 1, 12, 13 | elrabd 3642 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 }) |
15 | dprdff.w | . 2 ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } | |
16 | 14, 15 | eleqtrrdi 2849 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) ∈ 𝑊) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ∀wral 3062 {crab 3405 Vcvv 3443 class class class wbr 5100 ↦ cmpt 5183 dom cdm 5627 ‘cfv 6488 Xcixp 8765 finSupp cfsupp 9235 DProd cdprd 19695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5237 ax-sep 5251 ax-nul 5258 ax-pr 5379 ax-un 7659 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4278 df-if 4482 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-iun 4951 df-br 5101 df-opab 5163 df-mpt 5184 df-id 5525 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-oprab 7350 df-mpo 7351 df-ixp 8766 df-dprd 19697 |
This theorem is referenced by: dprdfid 19719 dprdfinv 19721 dprdfadd 19722 dmdprdsplitlem 19739 dpjidcl 19760 dchrptlem3 26524 |
Copyright terms: Public domain | W3C validator |