| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dprdwd | Structured version Visualization version GIF version | ||
| Description: A mapping being a finitely supported function in the family 𝑆. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) (Proof shortened by OpenAI, 30-Mar-2020.) |
| Ref | Expression |
|---|---|
| dprdff.w | ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
| dprdff.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| dprdff.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
| dprdwd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐴 ∈ (𝑆‘𝑥)) |
| dprdwd.4 | ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) finSupp 0 ) |
| Ref | Expression |
|---|---|
| dprdwd | ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) ∈ 𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5095 | . . 3 ⊢ (ℎ = (𝑥 ∈ 𝐼 ↦ 𝐴) → (ℎ finSupp 0 ↔ (𝑥 ∈ 𝐼 ↦ 𝐴) finSupp 0 )) | |
| 2 | dprdwd.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐴 ∈ (𝑆‘𝑥)) | |
| 3 | 2 | ralrimiva 3121 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝐴 ∈ (𝑆‘𝑥)) |
| 4 | dprdff.1 | . . . . . . 7 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
| 5 | dprdff.2 | . . . . . . 7 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
| 6 | 4, 5 | dprddomcld 19882 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ V) |
| 7 | mptelixpg 8862 | . . . . . 6 ⊢ (𝐼 ∈ V → ((𝑥 ∈ 𝐼 ↦ 𝐴) ∈ X𝑥 ∈ 𝐼 (𝑆‘𝑥) ↔ ∀𝑥 ∈ 𝐼 𝐴 ∈ (𝑆‘𝑥))) | |
| 8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ 𝐴) ∈ X𝑥 ∈ 𝐼 (𝑆‘𝑥) ↔ ∀𝑥 ∈ 𝐼 𝐴 ∈ (𝑆‘𝑥))) |
| 9 | 3, 8 | mpbird 257 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) ∈ X𝑥 ∈ 𝐼 (𝑆‘𝑥)) |
| 10 | fveq2 6822 | . . . . 5 ⊢ (𝑥 = 𝑖 → (𝑆‘𝑥) = (𝑆‘𝑖)) | |
| 11 | 10 | cbvixpv 8842 | . . . 4 ⊢ X𝑥 ∈ 𝐼 (𝑆‘𝑥) = X𝑖 ∈ 𝐼 (𝑆‘𝑖) |
| 12 | 9, 11 | eleqtrdi 2838 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖)) |
| 13 | dprdwd.4 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) finSupp 0 ) | |
| 14 | 1, 12, 13 | elrabd 3650 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 }) |
| 15 | dprdff.w | . 2 ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } | |
| 16 | 14, 15 | eleqtrrdi 2839 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) ∈ 𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3394 Vcvv 3436 class class class wbr 5092 ↦ cmpt 5173 dom cdm 5619 ‘cfv 6482 Xcixp 8824 finSupp cfsupp 9251 DProd cdprd 19874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-oprab 7353 df-mpo 7354 df-ixp 8825 df-dprd 19876 |
| This theorem is referenced by: dprdfid 19898 dprdfinv 19900 dprdfadd 19901 dmdprdsplitlem 19918 dpjidcl 19939 dchrptlem3 27175 |
| Copyright terms: Public domain | W3C validator |