![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dprdwd | Structured version Visualization version GIF version |
Description: A mapping being a finitely supported function in the family 𝑆. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) (Proof shortened by OpenAI, 30-Mar-2020.) |
Ref | Expression |
---|---|
dprdff.w | ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
dprdff.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
dprdff.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
dprdwd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐴 ∈ (𝑆‘𝑥)) |
dprdwd.4 | ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) finSupp 0 ) |
Ref | Expression |
---|---|
dprdwd | ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) ∈ 𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2826 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) = (𝑥 ∈ 𝐼 ↦ 𝐴)) | |
2 | dprdwd.3 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐴 ∈ (𝑆‘𝑥)) | |
3 | 2 | ralrimiva 3175 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝐴 ∈ (𝑆‘𝑥)) |
4 | dprdff.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
5 | dprdff.2 | . . . . . . . 8 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
6 | 4, 5 | dprddomcld 18761 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ V) |
7 | mptelixpg 8218 | . . . . . . 7 ⊢ (𝐼 ∈ V → ((𝑥 ∈ 𝐼 ↦ 𝐴) ∈ X𝑥 ∈ 𝐼 (𝑆‘𝑥) ↔ ∀𝑥 ∈ 𝐼 𝐴 ∈ (𝑆‘𝑥))) | |
8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ 𝐴) ∈ X𝑥 ∈ 𝐼 (𝑆‘𝑥) ↔ ∀𝑥 ∈ 𝐼 𝐴 ∈ (𝑆‘𝑥))) |
9 | 3, 8 | mpbird 249 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) ∈ X𝑥 ∈ 𝐼 (𝑆‘𝑥)) |
10 | fveq2 6437 | . . . . . 6 ⊢ (𝑥 = 𝑖 → (𝑆‘𝑥) = (𝑆‘𝑖)) | |
11 | 10 | cbvixpv 8199 | . . . . 5 ⊢ X𝑥 ∈ 𝐼 (𝑆‘𝑥) = X𝑖 ∈ 𝐼 (𝑆‘𝑖) |
12 | 9, 11 | syl6eleq 2916 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖)) |
13 | dprdwd.4 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) finSupp 0 ) | |
14 | breq1 4878 | . . . . 5 ⊢ (ℎ = (𝑥 ∈ 𝐼 ↦ 𝐴) → (ℎ finSupp 0 ↔ (𝑥 ∈ 𝐼 ↦ 𝐴) finSupp 0 )) | |
15 | 14 | elrab 3585 | . . . 4 ⊢ ((𝑥 ∈ 𝐼 ↦ 𝐴) ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } ↔ ((𝑥 ∈ 𝐼 ↦ 𝐴) ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∧ (𝑥 ∈ 𝐼 ↦ 𝐴) finSupp 0 )) |
16 | 12, 13, 15 | sylanbrc 578 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 }) |
17 | dprdff.w | . . 3 ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } | |
18 | 16, 17 | syl6eleqr 2917 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) ∈ 𝑊) |
19 | 1, 18 | eqeltrrd 2907 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) ∈ 𝑊) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ∀wral 3117 {crab 3121 Vcvv 3414 class class class wbr 4875 ↦ cmpt 4954 dom cdm 5346 ‘cfv 6127 Xcixp 8181 finSupp cfsupp 8550 DProd cdprd 18753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-oprab 6914 df-mpt2 6915 df-ixp 8182 df-dprd 18755 |
This theorem is referenced by: dprdfid 18777 dprdfinv 18779 dprdfadd 18780 dmdprdsplitlem 18797 dpjidcl 18818 dchrptlem3 25411 |
Copyright terms: Public domain | W3C validator |