MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdwd Structured version   Visualization version   GIF version

Theorem dprdwd 19529
Description: A mapping being a finitely supported function in the family 𝑆. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) (Proof shortened by OpenAI, 30-Mar-2020.)
Hypotheses
Ref Expression
dprdff.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
dprdff.1 (𝜑𝐺dom DProd 𝑆)
dprdff.2 (𝜑 → dom 𝑆 = 𝐼)
dprdwd.3 ((𝜑𝑥𝐼) → 𝐴 ∈ (𝑆𝑥))
dprdwd.4 (𝜑 → (𝑥𝐼𝐴) finSupp 0 )
Assertion
Ref Expression
dprdwd (𝜑 → (𝑥𝐼𝐴) ∈ 𝑊)
Distinct variable groups:   𝐴,   𝑥,   𝑥,𝐺   ,𝑖,𝐼,𝑥   0 ,   𝜑,𝑥   𝑆,,𝑖,𝑥
Allowed substitution hints:   𝜑(,𝑖)   𝐴(𝑥,𝑖)   𝐺(,𝑖)   𝑊(𝑥,,𝑖)   0 (𝑥,𝑖)

Proof of Theorem dprdwd
StepHypRef Expression
1 breq1 5073 . . 3 ( = (𝑥𝐼𝐴) → ( finSupp 0 ↔ (𝑥𝐼𝐴) finSupp 0 ))
2 dprdwd.3 . . . . . 6 ((𝜑𝑥𝐼) → 𝐴 ∈ (𝑆𝑥))
32ralrimiva 3107 . . . . 5 (𝜑 → ∀𝑥𝐼 𝐴 ∈ (𝑆𝑥))
4 dprdff.1 . . . . . . 7 (𝜑𝐺dom DProd 𝑆)
5 dprdff.2 . . . . . . 7 (𝜑 → dom 𝑆 = 𝐼)
64, 5dprddomcld 19519 . . . . . 6 (𝜑𝐼 ∈ V)
7 mptelixpg 8681 . . . . . 6 (𝐼 ∈ V → ((𝑥𝐼𝐴) ∈ X𝑥𝐼 (𝑆𝑥) ↔ ∀𝑥𝐼 𝐴 ∈ (𝑆𝑥)))
86, 7syl 17 . . . . 5 (𝜑 → ((𝑥𝐼𝐴) ∈ X𝑥𝐼 (𝑆𝑥) ↔ ∀𝑥𝐼 𝐴 ∈ (𝑆𝑥)))
93, 8mpbird 256 . . . 4 (𝜑 → (𝑥𝐼𝐴) ∈ X𝑥𝐼 (𝑆𝑥))
10 fveq2 6756 . . . . 5 (𝑥 = 𝑖 → (𝑆𝑥) = (𝑆𝑖))
1110cbvixpv 8661 . . . 4 X𝑥𝐼 (𝑆𝑥) = X𝑖𝐼 (𝑆𝑖)
129, 11eleqtrdi 2849 . . 3 (𝜑 → (𝑥𝐼𝐴) ∈ X𝑖𝐼 (𝑆𝑖))
13 dprdwd.4 . . 3 (𝜑 → (𝑥𝐼𝐴) finSupp 0 )
141, 12, 13elrabd 3619 . 2 (𝜑 → (𝑥𝐼𝐴) ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 })
15 dprdff.w . 2 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
1614, 15eleqtrrdi 2850 1 (𝜑 → (𝑥𝐼𝐴) ∈ 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  {crab 3067  Vcvv 3422   class class class wbr 5070  cmpt 5153  dom cdm 5580  cfv 6418  Xcixp 8643   finSupp cfsupp 9058   DProd cdprd 19511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-oprab 7259  df-mpo 7260  df-ixp 8644  df-dprd 19513
This theorem is referenced by:  dprdfid  19535  dprdfinv  19537  dprdfadd  19538  dmdprdsplitlem  19555  dpjidcl  19576  dchrptlem3  26319
  Copyright terms: Public domain W3C validator