MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdwd Structured version   Visualization version   GIF version

Theorem dprdwd 19614
Description: A mapping being a finitely supported function in the family 𝑆. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) (Proof shortened by OpenAI, 30-Mar-2020.)
Hypotheses
Ref Expression
dprdff.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
dprdff.1 (𝜑𝐺dom DProd 𝑆)
dprdff.2 (𝜑 → dom 𝑆 = 𝐼)
dprdwd.3 ((𝜑𝑥𝐼) → 𝐴 ∈ (𝑆𝑥))
dprdwd.4 (𝜑 → (𝑥𝐼𝐴) finSupp 0 )
Assertion
Ref Expression
dprdwd (𝜑 → (𝑥𝐼𝐴) ∈ 𝑊)
Distinct variable groups:   𝐴,   𝑥,   𝑥,𝐺   ,𝑖,𝐼,𝑥   0 ,   𝜑,𝑥   𝑆,,𝑖,𝑥
Allowed substitution hints:   𝜑(,𝑖)   𝐴(𝑥,𝑖)   𝐺(,𝑖)   𝑊(𝑥,,𝑖)   0 (𝑥,𝑖)

Proof of Theorem dprdwd
StepHypRef Expression
1 breq1 5077 . . 3 ( = (𝑥𝐼𝐴) → ( finSupp 0 ↔ (𝑥𝐼𝐴) finSupp 0 ))
2 dprdwd.3 . . . . . 6 ((𝜑𝑥𝐼) → 𝐴 ∈ (𝑆𝑥))
32ralrimiva 3103 . . . . 5 (𝜑 → ∀𝑥𝐼 𝐴 ∈ (𝑆𝑥))
4 dprdff.1 . . . . . . 7 (𝜑𝐺dom DProd 𝑆)
5 dprdff.2 . . . . . . 7 (𝜑 → dom 𝑆 = 𝐼)
64, 5dprddomcld 19604 . . . . . 6 (𝜑𝐼 ∈ V)
7 mptelixpg 8723 . . . . . 6 (𝐼 ∈ V → ((𝑥𝐼𝐴) ∈ X𝑥𝐼 (𝑆𝑥) ↔ ∀𝑥𝐼 𝐴 ∈ (𝑆𝑥)))
86, 7syl 17 . . . . 5 (𝜑 → ((𝑥𝐼𝐴) ∈ X𝑥𝐼 (𝑆𝑥) ↔ ∀𝑥𝐼 𝐴 ∈ (𝑆𝑥)))
93, 8mpbird 256 . . . 4 (𝜑 → (𝑥𝐼𝐴) ∈ X𝑥𝐼 (𝑆𝑥))
10 fveq2 6774 . . . . 5 (𝑥 = 𝑖 → (𝑆𝑥) = (𝑆𝑖))
1110cbvixpv 8703 . . . 4 X𝑥𝐼 (𝑆𝑥) = X𝑖𝐼 (𝑆𝑖)
129, 11eleqtrdi 2849 . . 3 (𝜑 → (𝑥𝐼𝐴) ∈ X𝑖𝐼 (𝑆𝑖))
13 dprdwd.4 . . 3 (𝜑 → (𝑥𝐼𝐴) finSupp 0 )
141, 12, 13elrabd 3626 . 2 (𝜑 → (𝑥𝐼𝐴) ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 })
15 dprdff.w . 2 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
1614, 15eleqtrrdi 2850 1 (𝜑 → (𝑥𝐼𝐴) ∈ 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  {crab 3068  Vcvv 3432   class class class wbr 5074  cmpt 5157  dom cdm 5589  cfv 6433  Xcixp 8685   finSupp cfsupp 9128   DProd cdprd 19596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-oprab 7279  df-mpo 7280  df-ixp 8686  df-dprd 19598
This theorem is referenced by:  dprdfid  19620  dprdfinv  19622  dprdfadd  19623  dmdprdsplitlem  19640  dpjidcl  19661  dchrptlem3  26414
  Copyright terms: Public domain W3C validator