Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdwd Structured version   Visualization version   GIF version

Theorem dprdwd 19125
 Description: A mapping being a finitely supported function in the family 𝑆. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) (Proof shortened by OpenAI, 30-Mar-2020.)
Hypotheses
Ref Expression
dprdff.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
dprdff.1 (𝜑𝐺dom DProd 𝑆)
dprdff.2 (𝜑 → dom 𝑆 = 𝐼)
dprdwd.3 ((𝜑𝑥𝐼) → 𝐴 ∈ (𝑆𝑥))
dprdwd.4 (𝜑 → (𝑥𝐼𝐴) finSupp 0 )
Assertion
Ref Expression
dprdwd (𝜑 → (𝑥𝐼𝐴) ∈ 𝑊)
Distinct variable groups:   𝐴,   𝑥,   𝑥,𝐺   ,𝑖,𝐼,𝑥   0 ,   𝜑,𝑥   𝑆,,𝑖,𝑥
Allowed substitution hints:   𝜑(,𝑖)   𝐴(𝑥,𝑖)   𝐺(,𝑖)   𝑊(𝑥,,𝑖)   0 (𝑥,𝑖)

Proof of Theorem dprdwd
StepHypRef Expression
1 breq1 5060 . . 3 ( = (𝑥𝐼𝐴) → ( finSupp 0 ↔ (𝑥𝐼𝐴) finSupp 0 ))
2 dprdwd.3 . . . . . 6 ((𝜑𝑥𝐼) → 𝐴 ∈ (𝑆𝑥))
32ralrimiva 3180 . . . . 5 (𝜑 → ∀𝑥𝐼 𝐴 ∈ (𝑆𝑥))
4 dprdff.1 . . . . . . 7 (𝜑𝐺dom DProd 𝑆)
5 dprdff.2 . . . . . . 7 (𝜑 → dom 𝑆 = 𝐼)
64, 5dprddomcld 19115 . . . . . 6 (𝜑𝐼 ∈ V)
7 mptelixpg 8491 . . . . . 6 (𝐼 ∈ V → ((𝑥𝐼𝐴) ∈ X𝑥𝐼 (𝑆𝑥) ↔ ∀𝑥𝐼 𝐴 ∈ (𝑆𝑥)))
86, 7syl 17 . . . . 5 (𝜑 → ((𝑥𝐼𝐴) ∈ X𝑥𝐼 (𝑆𝑥) ↔ ∀𝑥𝐼 𝐴 ∈ (𝑆𝑥)))
93, 8mpbird 259 . . . 4 (𝜑 → (𝑥𝐼𝐴) ∈ X𝑥𝐼 (𝑆𝑥))
10 fveq2 6663 . . . . 5 (𝑥 = 𝑖 → (𝑆𝑥) = (𝑆𝑖))
1110cbvixpv 8471 . . . 4 X𝑥𝐼 (𝑆𝑥) = X𝑖𝐼 (𝑆𝑖)
129, 11eleqtrdi 2921 . . 3 (𝜑 → (𝑥𝐼𝐴) ∈ X𝑖𝐼 (𝑆𝑖))
13 dprdwd.4 . . 3 (𝜑 → (𝑥𝐼𝐴) finSupp 0 )
141, 12, 13elrabd 3680 . 2 (𝜑 → (𝑥𝐼𝐴) ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 })
15 dprdff.w . 2 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
1614, 15eleqtrrdi 2922 1 (𝜑 → (𝑥𝐼𝐴) ∈ 𝑊)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   = wceq 1530   ∈ wcel 2107  ∀wral 3136  {crab 3140  Vcvv 3493   class class class wbr 5057   ↦ cmpt 5137  dom cdm 5548  ‘cfv 6348  Xcixp 8453   finSupp cfsupp 8825   DProd cdprd 19107 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-oprab 7152  df-mpo 7153  df-ixp 8454  df-dprd 19109 This theorem is referenced by:  dprdfid  19131  dprdfinv  19133  dprdfadd  19134  dmdprdsplitlem  19151  dpjidcl  19172  dchrptlem3  25834
 Copyright terms: Public domain W3C validator