| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dprdwd | Structured version Visualization version GIF version | ||
| Description: A mapping being a finitely supported function in the family 𝑆. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) (Proof shortened by OpenAI, 30-Mar-2020.) |
| Ref | Expression |
|---|---|
| dprdff.w | ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
| dprdff.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| dprdff.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
| dprdwd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐴 ∈ (𝑆‘𝑥)) |
| dprdwd.4 | ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) finSupp 0 ) |
| Ref | Expression |
|---|---|
| dprdwd | ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) ∈ 𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5113 | . . 3 ⊢ (ℎ = (𝑥 ∈ 𝐼 ↦ 𝐴) → (ℎ finSupp 0 ↔ (𝑥 ∈ 𝐼 ↦ 𝐴) finSupp 0 )) | |
| 2 | dprdwd.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐴 ∈ (𝑆‘𝑥)) | |
| 3 | 2 | ralrimiva 3126 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝐴 ∈ (𝑆‘𝑥)) |
| 4 | dprdff.1 | . . . . . . 7 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
| 5 | dprdff.2 | . . . . . . 7 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
| 6 | 4, 5 | dprddomcld 19940 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ V) |
| 7 | mptelixpg 8911 | . . . . . 6 ⊢ (𝐼 ∈ V → ((𝑥 ∈ 𝐼 ↦ 𝐴) ∈ X𝑥 ∈ 𝐼 (𝑆‘𝑥) ↔ ∀𝑥 ∈ 𝐼 𝐴 ∈ (𝑆‘𝑥))) | |
| 8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ 𝐴) ∈ X𝑥 ∈ 𝐼 (𝑆‘𝑥) ↔ ∀𝑥 ∈ 𝐼 𝐴 ∈ (𝑆‘𝑥))) |
| 9 | 3, 8 | mpbird 257 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) ∈ X𝑥 ∈ 𝐼 (𝑆‘𝑥)) |
| 10 | fveq2 6861 | . . . . 5 ⊢ (𝑥 = 𝑖 → (𝑆‘𝑥) = (𝑆‘𝑖)) | |
| 11 | 10 | cbvixpv 8891 | . . . 4 ⊢ X𝑥 ∈ 𝐼 (𝑆‘𝑥) = X𝑖 ∈ 𝐼 (𝑆‘𝑖) |
| 12 | 9, 11 | eleqtrdi 2839 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖)) |
| 13 | dprdwd.4 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) finSupp 0 ) | |
| 14 | 1, 12, 13 | elrabd 3664 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 }) |
| 15 | dprdff.w | . 2 ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } | |
| 16 | 14, 15 | eleqtrrdi 2840 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) ∈ 𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 {crab 3408 Vcvv 3450 class class class wbr 5110 ↦ cmpt 5191 dom cdm 5641 ‘cfv 6514 Xcixp 8873 finSupp cfsupp 9319 DProd cdprd 19932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-oprab 7394 df-mpo 7395 df-ixp 8874 df-dprd 19934 |
| This theorem is referenced by: dprdfid 19956 dprdfinv 19958 dprdfadd 19959 dmdprdsplitlem 19976 dpjidcl 19997 dchrptlem3 27184 |
| Copyright terms: Public domain | W3C validator |