MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdwd Structured version   Visualization version   GIF version

Theorem dprdwd 19713
Description: A mapping being a finitely supported function in the family 𝑆. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) (Proof shortened by OpenAI, 30-Mar-2020.)
Hypotheses
Ref Expression
dprdff.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
dprdff.1 (𝜑𝐺dom DProd 𝑆)
dprdff.2 (𝜑 → dom 𝑆 = 𝐼)
dprdwd.3 ((𝜑𝑥𝐼) → 𝐴 ∈ (𝑆𝑥))
dprdwd.4 (𝜑 → (𝑥𝐼𝐴) finSupp 0 )
Assertion
Ref Expression
dprdwd (𝜑 → (𝑥𝐼𝐴) ∈ 𝑊)
Distinct variable groups:   𝐴,   𝑥,   𝑥,𝐺   ,𝑖,𝐼,𝑥   0 ,   𝜑,𝑥   𝑆,,𝑖,𝑥
Allowed substitution hints:   𝜑(,𝑖)   𝐴(𝑥,𝑖)   𝐺(,𝑖)   𝑊(𝑥,,𝑖)   0 (𝑥,𝑖)

Proof of Theorem dprdwd
StepHypRef Expression
1 breq1 5103 . . 3 ( = (𝑥𝐼𝐴) → ( finSupp 0 ↔ (𝑥𝐼𝐴) finSupp 0 ))
2 dprdwd.3 . . . . . 6 ((𝜑𝑥𝐼) → 𝐴 ∈ (𝑆𝑥))
32ralrimiva 3141 . . . . 5 (𝜑 → ∀𝑥𝐼 𝐴 ∈ (𝑆𝑥))
4 dprdff.1 . . . . . . 7 (𝜑𝐺dom DProd 𝑆)
5 dprdff.2 . . . . . . 7 (𝜑 → dom 𝑆 = 𝐼)
64, 5dprddomcld 19703 . . . . . 6 (𝜑𝐼 ∈ V)
7 mptelixpg 8803 . . . . . 6 (𝐼 ∈ V → ((𝑥𝐼𝐴) ∈ X𝑥𝐼 (𝑆𝑥) ↔ ∀𝑥𝐼 𝐴 ∈ (𝑆𝑥)))
86, 7syl 17 . . . . 5 (𝜑 → ((𝑥𝐼𝐴) ∈ X𝑥𝐼 (𝑆𝑥) ↔ ∀𝑥𝐼 𝐴 ∈ (𝑆𝑥)))
93, 8mpbird 257 . . . 4 (𝜑 → (𝑥𝐼𝐴) ∈ X𝑥𝐼 (𝑆𝑥))
10 fveq2 6834 . . . . 5 (𝑥 = 𝑖 → (𝑆𝑥) = (𝑆𝑖))
1110cbvixpv 8783 . . . 4 X𝑥𝐼 (𝑆𝑥) = X𝑖𝐼 (𝑆𝑖)
129, 11eleqtrdi 2848 . . 3 (𝜑 → (𝑥𝐼𝐴) ∈ X𝑖𝐼 (𝑆𝑖))
13 dprdwd.4 . . 3 (𝜑 → (𝑥𝐼𝐴) finSupp 0 )
141, 12, 13elrabd 3642 . 2 (𝜑 → (𝑥𝐼𝐴) ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 })
15 dprdff.w . 2 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
1614, 15eleqtrrdi 2849 1 (𝜑 → (𝑥𝐼𝐴) ∈ 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1541  wcel 2106  wral 3062  {crab 3405  Vcvv 3443   class class class wbr 5100  cmpt 5183  dom cdm 5627  cfv 6488  Xcixp 8765   finSupp cfsupp 9235   DProd cdprd 19695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5237  ax-sep 5251  ax-nul 5258  ax-pr 5379  ax-un 7659
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4278  df-if 4482  df-sn 4582  df-pr 4584  df-op 4588  df-uni 4861  df-iun 4951  df-br 5101  df-opab 5163  df-mpt 5184  df-id 5525  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-res 5639  df-ima 5640  df-iota 6440  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-oprab 7350  df-mpo 7351  df-ixp 8766  df-dprd 19697
This theorem is referenced by:  dprdfid  19719  dprdfinv  19721  dprdfadd  19722  dmdprdsplitlem  19739  dpjidcl  19760  dchrptlem3  26524
  Copyright terms: Public domain W3C validator