Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mccl Structured version   Visualization version   GIF version

Theorem mccl 45580
Description: A multinomial coefficient, in its standard domain, is a positive integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
mccl.kb 𝑘𝐵
mccl.a (𝜑𝐴 ∈ Fin)
mccl.b (𝜑𝐵 ∈ (ℕ0m 𝐴))
Assertion
Ref Expression
mccl (𝜑 → ((!‘Σ𝑘𝐴 (𝐵𝑘)) / ∏𝑘𝐴 (!‘(𝐵𝑘))) ∈ ℕ)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem mccl
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumeq1 15614 . . . . . . . 8 (𝑎 = ∅ → Σ𝑘𝑎 (𝑏𝑘) = Σ𝑘 ∈ ∅ (𝑏𝑘))
21fveq2d 6830 . . . . . . 7 (𝑎 = ∅ → (!‘Σ𝑘𝑎 (𝑏𝑘)) = (!‘Σ𝑘 ∈ ∅ (𝑏𝑘)))
3 prodeq1 15832 . . . . . . 7 (𝑎 = ∅ → ∏𝑘𝑎 (!‘(𝑏𝑘)) = ∏𝑘 ∈ ∅ (!‘(𝑏𝑘)))
42, 3oveq12d 7371 . . . . . 6 (𝑎 = ∅ → ((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) = ((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))))
54eleq1d 2813 . . . . 5 (𝑎 = ∅ → (((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) ∈ ℕ))
65ralbidv 3152 . . . 4 (𝑎 = ∅ → (∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) ∈ ℕ))
7 oveq2 7361 . . . . 5 (𝑎 = ∅ → (ℕ0m 𝑎) = (ℕ0m ∅))
87raleqdv 3290 . . . 4 (𝑎 = ∅ → (∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0m ∅)((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) ∈ ℕ))
96, 8bitrd 279 . . 3 (𝑎 = ∅ → (∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0m ∅)((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) ∈ ℕ))
10 sumeq1 15614 . . . . . . . 8 (𝑎 = 𝑐 → Σ𝑘𝑎 (𝑏𝑘) = Σ𝑘𝑐 (𝑏𝑘))
1110fveq2d 6830 . . . . . . 7 (𝑎 = 𝑐 → (!‘Σ𝑘𝑎 (𝑏𝑘)) = (!‘Σ𝑘𝑐 (𝑏𝑘)))
12 prodeq1 15832 . . . . . . 7 (𝑎 = 𝑐 → ∏𝑘𝑎 (!‘(𝑏𝑘)) = ∏𝑘𝑐 (!‘(𝑏𝑘)))
1311, 12oveq12d 7371 . . . . . 6 (𝑎 = 𝑐 → ((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) = ((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))))
1413eleq1d 2813 . . . . 5 (𝑎 = 𝑐 → (((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ))
1514ralbidv 3152 . . . 4 (𝑎 = 𝑐 → (∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ))
16 oveq2 7361 . . . . 5 (𝑎 = 𝑐 → (ℕ0m 𝑎) = (ℕ0m 𝑐))
1716raleqdv 3290 . . . 4 (𝑎 = 𝑐 → (∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ))
1815, 17bitrd 279 . . 3 (𝑎 = 𝑐 → (∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ))
19 sumeq1 15614 . . . . . . . 8 (𝑎 = (𝑐 ∪ {𝑑}) → Σ𝑘𝑎 (𝑏𝑘) = Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘))
2019fveq2d 6830 . . . . . . 7 (𝑎 = (𝑐 ∪ {𝑑}) → (!‘Σ𝑘𝑎 (𝑏𝑘)) = (!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)))
21 prodeq1 15832 . . . . . . 7 (𝑎 = (𝑐 ∪ {𝑑}) → ∏𝑘𝑎 (!‘(𝑏𝑘)) = ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘)))
2220, 21oveq12d 7371 . . . . . 6 (𝑎 = (𝑐 ∪ {𝑑}) → ((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) = ((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))))
2322eleq1d 2813 . . . . 5 (𝑎 = (𝑐 ∪ {𝑑}) → (((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ))
2423ralbidv 3152 . . . 4 (𝑎 = (𝑐 ∪ {𝑑}) → (∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ))
25 oveq2 7361 . . . . 5 (𝑎 = (𝑐 ∪ {𝑑}) → (ℕ0m 𝑎) = (ℕ0m (𝑐 ∪ {𝑑})))
2625raleqdv 3290 . . . 4 (𝑎 = (𝑐 ∪ {𝑑}) → (∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ))
2724, 26bitrd 279 . . 3 (𝑎 = (𝑐 ∪ {𝑑}) → (∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ))
28 sumeq1 15614 . . . . . . . 8 (𝑎 = 𝐴 → Σ𝑘𝑎 (𝑏𝑘) = Σ𝑘𝐴 (𝑏𝑘))
2928fveq2d 6830 . . . . . . 7 (𝑎 = 𝐴 → (!‘Σ𝑘𝑎 (𝑏𝑘)) = (!‘Σ𝑘𝐴 (𝑏𝑘)))
30 prodeq1 15832 . . . . . . 7 (𝑎 = 𝐴 → ∏𝑘𝑎 (!‘(𝑏𝑘)) = ∏𝑘𝐴 (!‘(𝑏𝑘)))
3129, 30oveq12d 7371 . . . . . 6 (𝑎 = 𝐴 → ((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) = ((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))))
3231eleq1d 2813 . . . . 5 (𝑎 = 𝐴 → (((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))) ∈ ℕ))
3332ralbidv 3152 . . . 4 (𝑎 = 𝐴 → (∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))) ∈ ℕ))
34 oveq2 7361 . . . . 5 (𝑎 = 𝐴 → (ℕ0m 𝑎) = (ℕ0m 𝐴))
3534raleqdv 3290 . . . 4 (𝑎 = 𝐴 → (∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0m 𝐴)((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))) ∈ ℕ))
3633, 35bitrd 279 . . 3 (𝑎 = 𝐴 → (∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0m 𝐴)((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))) ∈ ℕ))
37 sum0 15646 . . . . . . . . . 10 Σ𝑘 ∈ ∅ (𝑏𝑘) = 0
3837fveq2i 6829 . . . . . . . . 9 (!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) = (!‘0)
39 fac0 14201 . . . . . . . . 9 (!‘0) = 1
4038, 39eqtri 2752 . . . . . . . 8 (!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) = 1
41 prod0 15868 . . . . . . . 8 𝑘 ∈ ∅ (!‘(𝑏𝑘)) = 1
4240, 41oveq12i 7365 . . . . . . 7 ((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) = (1 / 1)
43 1div1e1 11833 . . . . . . 7 (1 / 1) = 1
4442, 43eqtri 2752 . . . . . 6 ((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) = 1
45 1nn 12157 . . . . . 6 1 ∈ ℕ
4644, 45eqeltri 2824 . . . . 5 ((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) ∈ ℕ
4746a1i 11 . . . 4 ((𝜑𝑏 ∈ (ℕ0m ∅)) → ((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) ∈ ℕ)
4847ralrimiva 3121 . . 3 (𝜑 → ∀𝑏 ∈ (ℕ0m ∅)((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) ∈ ℕ)
49 nfv 1914 . . . . . 6 𝑏(𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐)))
50 nfra1 3253 . . . . . 6 𝑏𝑏 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ
5149, 50nfan 1899 . . . . 5 𝑏((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑏 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ)
52 simpll 766 . . . . . . 7 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑏 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))) → (𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))))
53 fveq2 6826 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → (𝑏𝑘) = (𝑏𝑗))
5453cbvsumv 15621 . . . . . . . . . . . . . . 15 Σ𝑘𝑐 (𝑏𝑘) = Σ𝑗𝑐 (𝑏𝑗)
5554a1i 11 . . . . . . . . . . . . . 14 (𝑏 = 𝑒 → Σ𝑘𝑐 (𝑏𝑘) = Σ𝑗𝑐 (𝑏𝑗))
56 fveq1 6825 . . . . . . . . . . . . . . 15 (𝑏 = 𝑒 → (𝑏𝑗) = (𝑒𝑗))
5756sumeq2sdv 15628 . . . . . . . . . . . . . 14 (𝑏 = 𝑒 → Σ𝑗𝑐 (𝑏𝑗) = Σ𝑗𝑐 (𝑒𝑗))
5855, 57eqtrd 2764 . . . . . . . . . . . . 13 (𝑏 = 𝑒 → Σ𝑘𝑐 (𝑏𝑘) = Σ𝑗𝑐 (𝑒𝑗))
5958fveq2d 6830 . . . . . . . . . . . 12 (𝑏 = 𝑒 → (!‘Σ𝑘𝑐 (𝑏𝑘)) = (!‘Σ𝑗𝑐 (𝑒𝑗)))
60 2fveq3 6831 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (!‘(𝑏𝑘)) = (!‘(𝑏𝑗)))
6160cbvprodv 15839 . . . . . . . . . . . . . 14 𝑘𝑐 (!‘(𝑏𝑘)) = ∏𝑗𝑐 (!‘(𝑏𝑗))
6261a1i 11 . . . . . . . . . . . . 13 (𝑏 = 𝑒 → ∏𝑘𝑐 (!‘(𝑏𝑘)) = ∏𝑗𝑐 (!‘(𝑏𝑗)))
6356fveq2d 6830 . . . . . . . . . . . . . 14 (𝑏 = 𝑒 → (!‘(𝑏𝑗)) = (!‘(𝑒𝑗)))
6463prodeq2ad 45574 . . . . . . . . . . . . 13 (𝑏 = 𝑒 → ∏𝑗𝑐 (!‘(𝑏𝑗)) = ∏𝑗𝑐 (!‘(𝑒𝑗)))
6562, 64eqtrd 2764 . . . . . . . . . . . 12 (𝑏 = 𝑒 → ∏𝑘𝑐 (!‘(𝑏𝑘)) = ∏𝑗𝑐 (!‘(𝑒𝑗)))
6659, 65oveq12d 7371 . . . . . . . . . . 11 (𝑏 = 𝑒 → ((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) = ((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))))
6766eleq1d 2813 . . . . . . . . . 10 (𝑏 = 𝑒 → (((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ ↔ ((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ))
6867cbvralvw 3207 . . . . . . . . 9 (∀𝑏 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ)
6968biimpi 216 . . . . . . . 8 (∀𝑏 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ → ∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ)
7069ad2antlr 727 . . . . . . 7 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑏 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))) → ∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ)
71 simpr 484 . . . . . . 7 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑏 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))) → 𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑})))
72 mccl.a . . . . . . . . 9 (𝜑𝐴 ∈ Fin)
7372ad3antrrr 730 . . . . . . . 8 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))) → 𝐴 ∈ Fin)
74 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) → 𝑐𝐴)
7574ad2antrr 726 . . . . . . . 8 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))) → 𝑐𝐴)
76 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) → 𝑑 ∈ (𝐴𝑐))
7776ad2antrr 726 . . . . . . . 8 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))) → 𝑑 ∈ (𝐴𝑐))
78 simpr 484 . . . . . . . 8 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))) → 𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑})))
79 fveq2 6826 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → (𝑒𝑗) = (𝑒𝑘))
8079cbvsumv 15621 . . . . . . . . . . . . . 14 Σ𝑗𝑐 (𝑒𝑗) = Σ𝑘𝑐 (𝑒𝑘)
8180fveq2i 6829 . . . . . . . . . . . . 13 (!‘Σ𝑗𝑐 (𝑒𝑗)) = (!‘Σ𝑘𝑐 (𝑒𝑘))
82 2fveq3 6831 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → (!‘(𝑒𝑗)) = (!‘(𝑒𝑘)))
8382cbvprodv 15839 . . . . . . . . . . . . 13 𝑗𝑐 (!‘(𝑒𝑗)) = ∏𝑘𝑐 (!‘(𝑒𝑘))
8481, 83oveq12i 7365 . . . . . . . . . . . 12 ((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) = ((!‘Σ𝑘𝑐 (𝑒𝑘)) / ∏𝑘𝑐 (!‘(𝑒𝑘)))
8584eleq1i 2819 . . . . . . . . . . 11 (((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ ↔ ((!‘Σ𝑘𝑐 (𝑒𝑘)) / ∏𝑘𝑐 (!‘(𝑒𝑘))) ∈ ℕ)
8685ralbii 3075 . . . . . . . . . 10 (∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ ↔ ∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑒𝑘)) / ∏𝑘𝑐 (!‘(𝑒𝑘))) ∈ ℕ)
8786biimpi 216 . . . . . . . . 9 (∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ → ∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑒𝑘)) / ∏𝑘𝑐 (!‘(𝑒𝑘))) ∈ ℕ)
8887ad2antlr 727 . . . . . . . 8 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))) → ∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑒𝑘)) / ∏𝑘𝑐 (!‘(𝑒𝑘))) ∈ ℕ)
8973, 75, 77, 78, 88mccllem 45579 . . . . . . 7 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))) → ((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ)
9052, 70, 71, 89syl21anc 837 . . . . . 6 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑏 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))) → ((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ)
9190ex 412 . . . . 5 (((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑏 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ) → (𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑})) → ((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ))
9251, 91ralrimi 3227 . . . 4 (((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑏 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ) → ∀𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ)
9392ex 412 . . 3 ((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) → (∀𝑏 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ → ∀𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ))
949, 18, 27, 36, 48, 93, 72findcard2d 9090 . 2 (𝜑 → ∀𝑏 ∈ (ℕ0m 𝐴)((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))) ∈ ℕ)
95 mccl.b . 2 (𝜑𝐵 ∈ (ℕ0m 𝐴))
96 nfcv 2891 . . . . . . . . 9 𝑘𝑏
97 mccl.kb . . . . . . . . 9 𝑘𝐵
9896, 97nfeq 2905 . . . . . . . 8 𝑘 𝑏 = 𝐵
99 fveq1 6825 . . . . . . . . 9 (𝑏 = 𝐵 → (𝑏𝑘) = (𝐵𝑘))
10099a1d 25 . . . . . . . 8 (𝑏 = 𝐵 → (𝑘𝐴 → (𝑏𝑘) = (𝐵𝑘)))
10198, 100ralrimi 3227 . . . . . . 7 (𝑏 = 𝐵 → ∀𝑘𝐴 (𝑏𝑘) = (𝐵𝑘))
102101sumeq2d 15626 . . . . . 6 (𝑏 = 𝐵 → Σ𝑘𝐴 (𝑏𝑘) = Σ𝑘𝐴 (𝐵𝑘))
103102fveq2d 6830 . . . . 5 (𝑏 = 𝐵 → (!‘Σ𝑘𝐴 (𝑏𝑘)) = (!‘Σ𝑘𝐴 (𝐵𝑘)))
10499fveq2d 6830 . . . . . . . 8 (𝑏 = 𝐵 → (!‘(𝑏𝑘)) = (!‘(𝐵𝑘)))
105104a1d 25 . . . . . . 7 (𝑏 = 𝐵 → (𝑘𝐴 → (!‘(𝑏𝑘)) = (!‘(𝐵𝑘))))
10698, 105ralrimi 3227 . . . . . 6 (𝑏 = 𝐵 → ∀𝑘𝐴 (!‘(𝑏𝑘)) = (!‘(𝐵𝑘)))
107106prodeq2d 15846 . . . . 5 (𝑏 = 𝐵 → ∏𝑘𝐴 (!‘(𝑏𝑘)) = ∏𝑘𝐴 (!‘(𝐵𝑘)))
108103, 107oveq12d 7371 . . . 4 (𝑏 = 𝐵 → ((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))) = ((!‘Σ𝑘𝐴 (𝐵𝑘)) / ∏𝑘𝐴 (!‘(𝐵𝑘))))
109108eleq1d 2813 . . 3 (𝑏 = 𝐵 → (((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))) ∈ ℕ ↔ ((!‘Σ𝑘𝐴 (𝐵𝑘)) / ∏𝑘𝐴 (!‘(𝐵𝑘))) ∈ ℕ))
110109rspccva 3578 . 2 ((∀𝑏 ∈ (ℕ0m 𝐴)((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))) ∈ ℕ ∧ 𝐵 ∈ (ℕ0m 𝐴)) → ((!‘Σ𝑘𝐴 (𝐵𝑘)) / ∏𝑘𝐴 (!‘(𝐵𝑘))) ∈ ℕ)
11194, 95, 110syl2anc 584 1 (𝜑 → ((!‘Σ𝑘𝐴 (𝐵𝑘)) / ∏𝑘𝐴 (!‘(𝐵𝑘))) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wnfc 2876  wral 3044  cdif 3902  cun 3903  wss 3905  c0 4286  {csn 4579  cfv 6486  (class class class)co 7353  m cmap 8760  Fincfn 8879  0cc0 11028  1c1 11029   / cdiv 11795  cn 12146  0cn0 12402  !cfa 14198  Σcsu 15611  cprod 15828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-prod 15829
This theorem is referenced by:  etransclem24  46240  etransclem25  46241  etransclem26  46242  etransclem28  46244  etransclem35  46251  etransclem37  46253
  Copyright terms: Public domain W3C validator