Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mccl Structured version   Visualization version   GIF version

Theorem mccl 45255
Description: A multinomial coefficient, in its standard domain, is a positive integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
mccl.kb 𝑘𝐵
mccl.a (𝜑𝐴 ∈ Fin)
mccl.b (𝜑𝐵 ∈ (ℕ0m 𝐴))
Assertion
Ref Expression
mccl (𝜑 → ((!‘Σ𝑘𝐴 (𝐵𝑘)) / ∏𝑘𝐴 (!‘(𝐵𝑘))) ∈ ℕ)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem mccl
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumeq1 15688 . . . . . . . 8 (𝑎 = ∅ → Σ𝑘𝑎 (𝑏𝑘) = Σ𝑘 ∈ ∅ (𝑏𝑘))
21fveq2d 6897 . . . . . . 7 (𝑎 = ∅ → (!‘Σ𝑘𝑎 (𝑏𝑘)) = (!‘Σ𝑘 ∈ ∅ (𝑏𝑘)))
3 prodeq1 15906 . . . . . . 7 (𝑎 = ∅ → ∏𝑘𝑎 (!‘(𝑏𝑘)) = ∏𝑘 ∈ ∅ (!‘(𝑏𝑘)))
42, 3oveq12d 7434 . . . . . 6 (𝑎 = ∅ → ((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) = ((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))))
54eleq1d 2811 . . . . 5 (𝑎 = ∅ → (((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) ∈ ℕ))
65ralbidv 3168 . . . 4 (𝑎 = ∅ → (∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) ∈ ℕ))
7 oveq2 7424 . . . . 5 (𝑎 = ∅ → (ℕ0m 𝑎) = (ℕ0m ∅))
87raleqdv 3315 . . . 4 (𝑎 = ∅ → (∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0m ∅)((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) ∈ ℕ))
96, 8bitrd 278 . . 3 (𝑎 = ∅ → (∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0m ∅)((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) ∈ ℕ))
10 sumeq1 15688 . . . . . . . 8 (𝑎 = 𝑐 → Σ𝑘𝑎 (𝑏𝑘) = Σ𝑘𝑐 (𝑏𝑘))
1110fveq2d 6897 . . . . . . 7 (𝑎 = 𝑐 → (!‘Σ𝑘𝑎 (𝑏𝑘)) = (!‘Σ𝑘𝑐 (𝑏𝑘)))
12 prodeq1 15906 . . . . . . 7 (𝑎 = 𝑐 → ∏𝑘𝑎 (!‘(𝑏𝑘)) = ∏𝑘𝑐 (!‘(𝑏𝑘)))
1311, 12oveq12d 7434 . . . . . 6 (𝑎 = 𝑐 → ((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) = ((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))))
1413eleq1d 2811 . . . . 5 (𝑎 = 𝑐 → (((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ))
1514ralbidv 3168 . . . 4 (𝑎 = 𝑐 → (∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ))
16 oveq2 7424 . . . . 5 (𝑎 = 𝑐 → (ℕ0m 𝑎) = (ℕ0m 𝑐))
1716raleqdv 3315 . . . 4 (𝑎 = 𝑐 → (∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ))
1815, 17bitrd 278 . . 3 (𝑎 = 𝑐 → (∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ))
19 sumeq1 15688 . . . . . . . 8 (𝑎 = (𝑐 ∪ {𝑑}) → Σ𝑘𝑎 (𝑏𝑘) = Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘))
2019fveq2d 6897 . . . . . . 7 (𝑎 = (𝑐 ∪ {𝑑}) → (!‘Σ𝑘𝑎 (𝑏𝑘)) = (!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)))
21 prodeq1 15906 . . . . . . 7 (𝑎 = (𝑐 ∪ {𝑑}) → ∏𝑘𝑎 (!‘(𝑏𝑘)) = ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘)))
2220, 21oveq12d 7434 . . . . . 6 (𝑎 = (𝑐 ∪ {𝑑}) → ((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) = ((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))))
2322eleq1d 2811 . . . . 5 (𝑎 = (𝑐 ∪ {𝑑}) → (((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ))
2423ralbidv 3168 . . . 4 (𝑎 = (𝑐 ∪ {𝑑}) → (∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ))
25 oveq2 7424 . . . . 5 (𝑎 = (𝑐 ∪ {𝑑}) → (ℕ0m 𝑎) = (ℕ0m (𝑐 ∪ {𝑑})))
2625raleqdv 3315 . . . 4 (𝑎 = (𝑐 ∪ {𝑑}) → (∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ))
2724, 26bitrd 278 . . 3 (𝑎 = (𝑐 ∪ {𝑑}) → (∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ))
28 sumeq1 15688 . . . . . . . 8 (𝑎 = 𝐴 → Σ𝑘𝑎 (𝑏𝑘) = Σ𝑘𝐴 (𝑏𝑘))
2928fveq2d 6897 . . . . . . 7 (𝑎 = 𝐴 → (!‘Σ𝑘𝑎 (𝑏𝑘)) = (!‘Σ𝑘𝐴 (𝑏𝑘)))
30 prodeq1 15906 . . . . . . 7 (𝑎 = 𝐴 → ∏𝑘𝑎 (!‘(𝑏𝑘)) = ∏𝑘𝐴 (!‘(𝑏𝑘)))
3129, 30oveq12d 7434 . . . . . 6 (𝑎 = 𝐴 → ((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) = ((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))))
3231eleq1d 2811 . . . . 5 (𝑎 = 𝐴 → (((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))) ∈ ℕ))
3332ralbidv 3168 . . . 4 (𝑎 = 𝐴 → (∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))) ∈ ℕ))
34 oveq2 7424 . . . . 5 (𝑎 = 𝐴 → (ℕ0m 𝑎) = (ℕ0m 𝐴))
3534raleqdv 3315 . . . 4 (𝑎 = 𝐴 → (∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0m 𝐴)((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))) ∈ ℕ))
3633, 35bitrd 278 . . 3 (𝑎 = 𝐴 → (∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0m 𝐴)((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))) ∈ ℕ))
37 sum0 15720 . . . . . . . . . 10 Σ𝑘 ∈ ∅ (𝑏𝑘) = 0
3837fveq2i 6896 . . . . . . . . 9 (!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) = (!‘0)
39 fac0 14288 . . . . . . . . 9 (!‘0) = 1
4038, 39eqtri 2754 . . . . . . . 8 (!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) = 1
41 prod0 15940 . . . . . . . 8 𝑘 ∈ ∅ (!‘(𝑏𝑘)) = 1
4240, 41oveq12i 7428 . . . . . . 7 ((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) = (1 / 1)
43 1div1e1 11950 . . . . . . 7 (1 / 1) = 1
4442, 43eqtri 2754 . . . . . 6 ((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) = 1
45 1nn 12269 . . . . . 6 1 ∈ ℕ
4644, 45eqeltri 2822 . . . . 5 ((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) ∈ ℕ
4746a1i 11 . . . 4 ((𝜑𝑏 ∈ (ℕ0m ∅)) → ((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) ∈ ℕ)
4847ralrimiva 3136 . . 3 (𝜑 → ∀𝑏 ∈ (ℕ0m ∅)((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) ∈ ℕ)
49 nfv 1910 . . . . . 6 𝑏(𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐)))
50 nfra1 3272 . . . . . 6 𝑏𝑏 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ
5149, 50nfan 1895 . . . . 5 𝑏((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑏 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ)
52 simpll 765 . . . . . . 7 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑏 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))) → (𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))))
53 fveq2 6893 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → (𝑏𝑘) = (𝑏𝑗))
5453cbvsumv 15695 . . . . . . . . . . . . . . 15 Σ𝑘𝑐 (𝑏𝑘) = Σ𝑗𝑐 (𝑏𝑗)
5554a1i 11 . . . . . . . . . . . . . 14 (𝑏 = 𝑒 → Σ𝑘𝑐 (𝑏𝑘) = Σ𝑗𝑐 (𝑏𝑗))
56 fveq1 6892 . . . . . . . . . . . . . . 15 (𝑏 = 𝑒 → (𝑏𝑗) = (𝑒𝑗))
5756sumeq2sdv 15703 . . . . . . . . . . . . . 14 (𝑏 = 𝑒 → Σ𝑗𝑐 (𝑏𝑗) = Σ𝑗𝑐 (𝑒𝑗))
5855, 57eqtrd 2766 . . . . . . . . . . . . 13 (𝑏 = 𝑒 → Σ𝑘𝑐 (𝑏𝑘) = Σ𝑗𝑐 (𝑒𝑗))
5958fveq2d 6897 . . . . . . . . . . . 12 (𝑏 = 𝑒 → (!‘Σ𝑘𝑐 (𝑏𝑘)) = (!‘Σ𝑗𝑐 (𝑒𝑗)))
60 2fveq3 6898 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (!‘(𝑏𝑘)) = (!‘(𝑏𝑗)))
6160cbvprodv 15913 . . . . . . . . . . . . . 14 𝑘𝑐 (!‘(𝑏𝑘)) = ∏𝑗𝑐 (!‘(𝑏𝑗))
6261a1i 11 . . . . . . . . . . . . 13 (𝑏 = 𝑒 → ∏𝑘𝑐 (!‘(𝑏𝑘)) = ∏𝑗𝑐 (!‘(𝑏𝑗)))
6356fveq2d 6897 . . . . . . . . . . . . . 14 (𝑏 = 𝑒 → (!‘(𝑏𝑗)) = (!‘(𝑒𝑗)))
6463prodeq2ad 45249 . . . . . . . . . . . . 13 (𝑏 = 𝑒 → ∏𝑗𝑐 (!‘(𝑏𝑗)) = ∏𝑗𝑐 (!‘(𝑒𝑗)))
6562, 64eqtrd 2766 . . . . . . . . . . . 12 (𝑏 = 𝑒 → ∏𝑘𝑐 (!‘(𝑏𝑘)) = ∏𝑗𝑐 (!‘(𝑒𝑗)))
6659, 65oveq12d 7434 . . . . . . . . . . 11 (𝑏 = 𝑒 → ((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) = ((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))))
6766eleq1d 2811 . . . . . . . . . 10 (𝑏 = 𝑒 → (((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ ↔ ((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ))
6867cbvralvw 3225 . . . . . . . . 9 (∀𝑏 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ)
6968biimpi 215 . . . . . . . 8 (∀𝑏 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ → ∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ)
7069ad2antlr 725 . . . . . . 7 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑏 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))) → ∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ)
71 simpr 483 . . . . . . 7 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑏 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))) → 𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑})))
72 mccl.a . . . . . . . . 9 (𝜑𝐴 ∈ Fin)
7372ad3antrrr 728 . . . . . . . 8 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))) → 𝐴 ∈ Fin)
74 simprl 769 . . . . . . . . 9 ((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) → 𝑐𝐴)
7574ad2antrr 724 . . . . . . . 8 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))) → 𝑐𝐴)
76 simprr 771 . . . . . . . . 9 ((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) → 𝑑 ∈ (𝐴𝑐))
7776ad2antrr 724 . . . . . . . 8 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))) → 𝑑 ∈ (𝐴𝑐))
78 simpr 483 . . . . . . . 8 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))) → 𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑})))
79 fveq2 6893 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → (𝑒𝑗) = (𝑒𝑘))
8079cbvsumv 15695 . . . . . . . . . . . . . 14 Σ𝑗𝑐 (𝑒𝑗) = Σ𝑘𝑐 (𝑒𝑘)
8180fveq2i 6896 . . . . . . . . . . . . 13 (!‘Σ𝑗𝑐 (𝑒𝑗)) = (!‘Σ𝑘𝑐 (𝑒𝑘))
82 2fveq3 6898 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → (!‘(𝑒𝑗)) = (!‘(𝑒𝑘)))
8382cbvprodv 15913 . . . . . . . . . . . . 13 𝑗𝑐 (!‘(𝑒𝑗)) = ∏𝑘𝑐 (!‘(𝑒𝑘))
8481, 83oveq12i 7428 . . . . . . . . . . . 12 ((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) = ((!‘Σ𝑘𝑐 (𝑒𝑘)) / ∏𝑘𝑐 (!‘(𝑒𝑘)))
8584eleq1i 2817 . . . . . . . . . . 11 (((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ ↔ ((!‘Σ𝑘𝑐 (𝑒𝑘)) / ∏𝑘𝑐 (!‘(𝑒𝑘))) ∈ ℕ)
8685ralbii 3083 . . . . . . . . . 10 (∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ ↔ ∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑒𝑘)) / ∏𝑘𝑐 (!‘(𝑒𝑘))) ∈ ℕ)
8786biimpi 215 . . . . . . . . 9 (∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ → ∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑒𝑘)) / ∏𝑘𝑐 (!‘(𝑒𝑘))) ∈ ℕ)
8887ad2antlr 725 . . . . . . . 8 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))) → ∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑒𝑘)) / ∏𝑘𝑐 (!‘(𝑒𝑘))) ∈ ℕ)
8973, 75, 77, 78, 88mccllem 45254 . . . . . . 7 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))) → ((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ)
9052, 70, 71, 89syl21anc 836 . . . . . 6 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑏 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))) → ((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ)
9190ex 411 . . . . 5 (((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑏 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ) → (𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑})) → ((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ))
9251, 91ralrimi 3245 . . . 4 (((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑏 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ) → ∀𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ)
9392ex 411 . . 3 ((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) → (∀𝑏 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ → ∀𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ))
949, 18, 27, 36, 48, 93, 72findcard2d 9196 . 2 (𝜑 → ∀𝑏 ∈ (ℕ0m 𝐴)((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))) ∈ ℕ)
95 mccl.b . 2 (𝜑𝐵 ∈ (ℕ0m 𝐴))
96 nfcv 2892 . . . . . . . . 9 𝑘𝑏
97 mccl.kb . . . . . . . . 9 𝑘𝐵
9896, 97nfeq 2906 . . . . . . . 8 𝑘 𝑏 = 𝐵
99 fveq1 6892 . . . . . . . . 9 (𝑏 = 𝐵 → (𝑏𝑘) = (𝐵𝑘))
10099a1d 25 . . . . . . . 8 (𝑏 = 𝐵 → (𝑘𝐴 → (𝑏𝑘) = (𝐵𝑘)))
10198, 100ralrimi 3245 . . . . . . 7 (𝑏 = 𝐵 → ∀𝑘𝐴 (𝑏𝑘) = (𝐵𝑘))
102101sumeq2d 15701 . . . . . 6 (𝑏 = 𝐵 → Σ𝑘𝐴 (𝑏𝑘) = Σ𝑘𝐴 (𝐵𝑘))
103102fveq2d 6897 . . . . 5 (𝑏 = 𝐵 → (!‘Σ𝑘𝐴 (𝑏𝑘)) = (!‘Σ𝑘𝐴 (𝐵𝑘)))
10499fveq2d 6897 . . . . . . . 8 (𝑏 = 𝐵 → (!‘(𝑏𝑘)) = (!‘(𝐵𝑘)))
105104a1d 25 . . . . . . 7 (𝑏 = 𝐵 → (𝑘𝐴 → (!‘(𝑏𝑘)) = (!‘(𝐵𝑘))))
10698, 105ralrimi 3245 . . . . . 6 (𝑏 = 𝐵 → ∀𝑘𝐴 (!‘(𝑏𝑘)) = (!‘(𝐵𝑘)))
107106prodeq2d 15919 . . . . 5 (𝑏 = 𝐵 → ∏𝑘𝐴 (!‘(𝑏𝑘)) = ∏𝑘𝐴 (!‘(𝐵𝑘)))
108103, 107oveq12d 7434 . . . 4 (𝑏 = 𝐵 → ((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))) = ((!‘Σ𝑘𝐴 (𝐵𝑘)) / ∏𝑘𝐴 (!‘(𝐵𝑘))))
109108eleq1d 2811 . . 3 (𝑏 = 𝐵 → (((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))) ∈ ℕ ↔ ((!‘Σ𝑘𝐴 (𝐵𝑘)) / ∏𝑘𝐴 (!‘(𝐵𝑘))) ∈ ℕ))
110109rspccva 3606 . 2 ((∀𝑏 ∈ (ℕ0m 𝐴)((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))) ∈ ℕ ∧ 𝐵 ∈ (ℕ0m 𝐴)) → ((!‘Σ𝑘𝐴 (𝐵𝑘)) / ∏𝑘𝐴 (!‘(𝐵𝑘))) ∈ ℕ)
11194, 95, 110syl2anc 582 1 (𝜑 → ((!‘Σ𝑘𝐴 (𝐵𝑘)) / ∏𝑘𝐴 (!‘(𝐵𝑘))) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  wnfc 2876  wral 3051  cdif 3943  cun 3944  wss 3946  c0 4322  {csn 4623  cfv 6546  (class class class)co 7416  m cmap 8847  Fincfn 8966  0cc0 11149  1c1 11150   / cdiv 11912  cn 12258  0cn0 12518  !cfa 14285  Σcsu 15685  cprod 15902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-inf2 9677  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226  ax-pre-sup 11227
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-isom 6555  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8726  df-map 8849  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-sup 9478  df-oi 9546  df-card 9975  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-div 11913  df-nn 12259  df-2 12321  df-3 12322  df-n0 12519  df-z 12605  df-uz 12869  df-rp 13023  df-fz 13533  df-fzo 13676  df-seq 14016  df-exp 14076  df-fac 14286  df-bc 14315  df-hash 14343  df-cj 15099  df-re 15100  df-im 15101  df-sqrt 15235  df-abs 15236  df-clim 15485  df-sum 15686  df-prod 15903
This theorem is referenced by:  etransclem24  45915  etransclem25  45916  etransclem26  45917  etransclem28  45919  etransclem35  45926  etransclem37  45928
  Copyright terms: Public domain W3C validator