Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mccl Structured version   Visualization version   GIF version

Theorem mccl 45553
Description: A multinomial coefficient, in its standard domain, is a positive integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
mccl.kb 𝑘𝐵
mccl.a (𝜑𝐴 ∈ Fin)
mccl.b (𝜑𝐵 ∈ (ℕ0m 𝐴))
Assertion
Ref Expression
mccl (𝜑 → ((!‘Σ𝑘𝐴 (𝐵𝑘)) / ∏𝑘𝐴 (!‘(𝐵𝑘))) ∈ ℕ)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem mccl
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumeq1 15721 . . . . . . . 8 (𝑎 = ∅ → Σ𝑘𝑎 (𝑏𝑘) = Σ𝑘 ∈ ∅ (𝑏𝑘))
21fveq2d 6910 . . . . . . 7 (𝑎 = ∅ → (!‘Σ𝑘𝑎 (𝑏𝑘)) = (!‘Σ𝑘 ∈ ∅ (𝑏𝑘)))
3 prodeq1 15939 . . . . . . 7 (𝑎 = ∅ → ∏𝑘𝑎 (!‘(𝑏𝑘)) = ∏𝑘 ∈ ∅ (!‘(𝑏𝑘)))
42, 3oveq12d 7448 . . . . . 6 (𝑎 = ∅ → ((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) = ((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))))
54eleq1d 2823 . . . . 5 (𝑎 = ∅ → (((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) ∈ ℕ))
65ralbidv 3175 . . . 4 (𝑎 = ∅ → (∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) ∈ ℕ))
7 oveq2 7438 . . . . 5 (𝑎 = ∅ → (ℕ0m 𝑎) = (ℕ0m ∅))
87raleqdv 3323 . . . 4 (𝑎 = ∅ → (∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0m ∅)((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) ∈ ℕ))
96, 8bitrd 279 . . 3 (𝑎 = ∅ → (∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0m ∅)((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) ∈ ℕ))
10 sumeq1 15721 . . . . . . . 8 (𝑎 = 𝑐 → Σ𝑘𝑎 (𝑏𝑘) = Σ𝑘𝑐 (𝑏𝑘))
1110fveq2d 6910 . . . . . . 7 (𝑎 = 𝑐 → (!‘Σ𝑘𝑎 (𝑏𝑘)) = (!‘Σ𝑘𝑐 (𝑏𝑘)))
12 prodeq1 15939 . . . . . . 7 (𝑎 = 𝑐 → ∏𝑘𝑎 (!‘(𝑏𝑘)) = ∏𝑘𝑐 (!‘(𝑏𝑘)))
1311, 12oveq12d 7448 . . . . . 6 (𝑎 = 𝑐 → ((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) = ((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))))
1413eleq1d 2823 . . . . 5 (𝑎 = 𝑐 → (((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ))
1514ralbidv 3175 . . . 4 (𝑎 = 𝑐 → (∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ))
16 oveq2 7438 . . . . 5 (𝑎 = 𝑐 → (ℕ0m 𝑎) = (ℕ0m 𝑐))
1716raleqdv 3323 . . . 4 (𝑎 = 𝑐 → (∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ))
1815, 17bitrd 279 . . 3 (𝑎 = 𝑐 → (∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ))
19 sumeq1 15721 . . . . . . . 8 (𝑎 = (𝑐 ∪ {𝑑}) → Σ𝑘𝑎 (𝑏𝑘) = Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘))
2019fveq2d 6910 . . . . . . 7 (𝑎 = (𝑐 ∪ {𝑑}) → (!‘Σ𝑘𝑎 (𝑏𝑘)) = (!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)))
21 prodeq1 15939 . . . . . . 7 (𝑎 = (𝑐 ∪ {𝑑}) → ∏𝑘𝑎 (!‘(𝑏𝑘)) = ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘)))
2220, 21oveq12d 7448 . . . . . 6 (𝑎 = (𝑐 ∪ {𝑑}) → ((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) = ((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))))
2322eleq1d 2823 . . . . 5 (𝑎 = (𝑐 ∪ {𝑑}) → (((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ))
2423ralbidv 3175 . . . 4 (𝑎 = (𝑐 ∪ {𝑑}) → (∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ))
25 oveq2 7438 . . . . 5 (𝑎 = (𝑐 ∪ {𝑑}) → (ℕ0m 𝑎) = (ℕ0m (𝑐 ∪ {𝑑})))
2625raleqdv 3323 . . . 4 (𝑎 = (𝑐 ∪ {𝑑}) → (∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ))
2724, 26bitrd 279 . . 3 (𝑎 = (𝑐 ∪ {𝑑}) → (∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ))
28 sumeq1 15721 . . . . . . . 8 (𝑎 = 𝐴 → Σ𝑘𝑎 (𝑏𝑘) = Σ𝑘𝐴 (𝑏𝑘))
2928fveq2d 6910 . . . . . . 7 (𝑎 = 𝐴 → (!‘Σ𝑘𝑎 (𝑏𝑘)) = (!‘Σ𝑘𝐴 (𝑏𝑘)))
30 prodeq1 15939 . . . . . . 7 (𝑎 = 𝐴 → ∏𝑘𝑎 (!‘(𝑏𝑘)) = ∏𝑘𝐴 (!‘(𝑏𝑘)))
3129, 30oveq12d 7448 . . . . . 6 (𝑎 = 𝐴 → ((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) = ((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))))
3231eleq1d 2823 . . . . 5 (𝑎 = 𝐴 → (((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))) ∈ ℕ))
3332ralbidv 3175 . . . 4 (𝑎 = 𝐴 → (∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))) ∈ ℕ))
34 oveq2 7438 . . . . 5 (𝑎 = 𝐴 → (ℕ0m 𝑎) = (ℕ0m 𝐴))
3534raleqdv 3323 . . . 4 (𝑎 = 𝐴 → (∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0m 𝐴)((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))) ∈ ℕ))
3633, 35bitrd 279 . . 3 (𝑎 = 𝐴 → (∀𝑏 ∈ (ℕ0m 𝑎)((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0m 𝐴)((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))) ∈ ℕ))
37 sum0 15753 . . . . . . . . . 10 Σ𝑘 ∈ ∅ (𝑏𝑘) = 0
3837fveq2i 6909 . . . . . . . . 9 (!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) = (!‘0)
39 fac0 14311 . . . . . . . . 9 (!‘0) = 1
4038, 39eqtri 2762 . . . . . . . 8 (!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) = 1
41 prod0 15975 . . . . . . . 8 𝑘 ∈ ∅ (!‘(𝑏𝑘)) = 1
4240, 41oveq12i 7442 . . . . . . 7 ((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) = (1 / 1)
43 1div1e1 11955 . . . . . . 7 (1 / 1) = 1
4442, 43eqtri 2762 . . . . . 6 ((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) = 1
45 1nn 12274 . . . . . 6 1 ∈ ℕ
4644, 45eqeltri 2834 . . . . 5 ((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) ∈ ℕ
4746a1i 11 . . . 4 ((𝜑𝑏 ∈ (ℕ0m ∅)) → ((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) ∈ ℕ)
4847ralrimiva 3143 . . 3 (𝜑 → ∀𝑏 ∈ (ℕ0m ∅)((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) ∈ ℕ)
49 nfv 1911 . . . . . 6 𝑏(𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐)))
50 nfra1 3281 . . . . . 6 𝑏𝑏 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ
5149, 50nfan 1896 . . . . 5 𝑏((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑏 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ)
52 simpll 767 . . . . . . 7 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑏 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))) → (𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))))
53 fveq2 6906 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → (𝑏𝑘) = (𝑏𝑗))
5453cbvsumv 15728 . . . . . . . . . . . . . . 15 Σ𝑘𝑐 (𝑏𝑘) = Σ𝑗𝑐 (𝑏𝑗)
5554a1i 11 . . . . . . . . . . . . . 14 (𝑏 = 𝑒 → Σ𝑘𝑐 (𝑏𝑘) = Σ𝑗𝑐 (𝑏𝑗))
56 fveq1 6905 . . . . . . . . . . . . . . 15 (𝑏 = 𝑒 → (𝑏𝑗) = (𝑒𝑗))
5756sumeq2sdv 15735 . . . . . . . . . . . . . 14 (𝑏 = 𝑒 → Σ𝑗𝑐 (𝑏𝑗) = Σ𝑗𝑐 (𝑒𝑗))
5855, 57eqtrd 2774 . . . . . . . . . . . . 13 (𝑏 = 𝑒 → Σ𝑘𝑐 (𝑏𝑘) = Σ𝑗𝑐 (𝑒𝑗))
5958fveq2d 6910 . . . . . . . . . . . 12 (𝑏 = 𝑒 → (!‘Σ𝑘𝑐 (𝑏𝑘)) = (!‘Σ𝑗𝑐 (𝑒𝑗)))
60 2fveq3 6911 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (!‘(𝑏𝑘)) = (!‘(𝑏𝑗)))
6160cbvprodv 15946 . . . . . . . . . . . . . 14 𝑘𝑐 (!‘(𝑏𝑘)) = ∏𝑗𝑐 (!‘(𝑏𝑗))
6261a1i 11 . . . . . . . . . . . . 13 (𝑏 = 𝑒 → ∏𝑘𝑐 (!‘(𝑏𝑘)) = ∏𝑗𝑐 (!‘(𝑏𝑗)))
6356fveq2d 6910 . . . . . . . . . . . . . 14 (𝑏 = 𝑒 → (!‘(𝑏𝑗)) = (!‘(𝑒𝑗)))
6463prodeq2ad 45547 . . . . . . . . . . . . 13 (𝑏 = 𝑒 → ∏𝑗𝑐 (!‘(𝑏𝑗)) = ∏𝑗𝑐 (!‘(𝑒𝑗)))
6562, 64eqtrd 2774 . . . . . . . . . . . 12 (𝑏 = 𝑒 → ∏𝑘𝑐 (!‘(𝑏𝑘)) = ∏𝑗𝑐 (!‘(𝑒𝑗)))
6659, 65oveq12d 7448 . . . . . . . . . . 11 (𝑏 = 𝑒 → ((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) = ((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))))
6766eleq1d 2823 . . . . . . . . . 10 (𝑏 = 𝑒 → (((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ ↔ ((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ))
6867cbvralvw 3234 . . . . . . . . 9 (∀𝑏 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ)
6968biimpi 216 . . . . . . . 8 (∀𝑏 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ → ∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ)
7069ad2antlr 727 . . . . . . 7 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑏 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))) → ∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ)
71 simpr 484 . . . . . . 7 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑏 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))) → 𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑})))
72 mccl.a . . . . . . . . 9 (𝜑𝐴 ∈ Fin)
7372ad3antrrr 730 . . . . . . . 8 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))) → 𝐴 ∈ Fin)
74 simprl 771 . . . . . . . . 9 ((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) → 𝑐𝐴)
7574ad2antrr 726 . . . . . . . 8 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))) → 𝑐𝐴)
76 simprr 773 . . . . . . . . 9 ((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) → 𝑑 ∈ (𝐴𝑐))
7776ad2antrr 726 . . . . . . . 8 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))) → 𝑑 ∈ (𝐴𝑐))
78 simpr 484 . . . . . . . 8 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))) → 𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑})))
79 fveq2 6906 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → (𝑒𝑗) = (𝑒𝑘))
8079cbvsumv 15728 . . . . . . . . . . . . . 14 Σ𝑗𝑐 (𝑒𝑗) = Σ𝑘𝑐 (𝑒𝑘)
8180fveq2i 6909 . . . . . . . . . . . . 13 (!‘Σ𝑗𝑐 (𝑒𝑗)) = (!‘Σ𝑘𝑐 (𝑒𝑘))
82 2fveq3 6911 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → (!‘(𝑒𝑗)) = (!‘(𝑒𝑘)))
8382cbvprodv 15946 . . . . . . . . . . . . 13 𝑗𝑐 (!‘(𝑒𝑗)) = ∏𝑘𝑐 (!‘(𝑒𝑘))
8481, 83oveq12i 7442 . . . . . . . . . . . 12 ((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) = ((!‘Σ𝑘𝑐 (𝑒𝑘)) / ∏𝑘𝑐 (!‘(𝑒𝑘)))
8584eleq1i 2829 . . . . . . . . . . 11 (((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ ↔ ((!‘Σ𝑘𝑐 (𝑒𝑘)) / ∏𝑘𝑐 (!‘(𝑒𝑘))) ∈ ℕ)
8685ralbii 3090 . . . . . . . . . 10 (∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ ↔ ∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑒𝑘)) / ∏𝑘𝑐 (!‘(𝑒𝑘))) ∈ ℕ)
8786biimpi 216 . . . . . . . . 9 (∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ → ∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑒𝑘)) / ∏𝑘𝑐 (!‘(𝑒𝑘))) ∈ ℕ)
8887ad2antlr 727 . . . . . . . 8 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))) → ∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑒𝑘)) / ∏𝑘𝑐 (!‘(𝑒𝑘))) ∈ ℕ)
8973, 75, 77, 78, 88mccllem 45552 . . . . . . 7 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑒 ∈ (ℕ0m 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))) → ((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ)
9052, 70, 71, 89syl21anc 838 . . . . . 6 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑏 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))) → ((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ)
9190ex 412 . . . . 5 (((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑏 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ) → (𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑})) → ((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ))
9251, 91ralrimi 3254 . . . 4 (((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑏 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ) → ∀𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ)
9392ex 412 . . 3 ((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) → (∀𝑏 ∈ (ℕ0m 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ → ∀𝑏 ∈ (ℕ0m (𝑐 ∪ {𝑑}))((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ))
949, 18, 27, 36, 48, 93, 72findcard2d 9204 . 2 (𝜑 → ∀𝑏 ∈ (ℕ0m 𝐴)((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))) ∈ ℕ)
95 mccl.b . 2 (𝜑𝐵 ∈ (ℕ0m 𝐴))
96 nfcv 2902 . . . . . . . . 9 𝑘𝑏
97 mccl.kb . . . . . . . . 9 𝑘𝐵
9896, 97nfeq 2916 . . . . . . . 8 𝑘 𝑏 = 𝐵
99 fveq1 6905 . . . . . . . . 9 (𝑏 = 𝐵 → (𝑏𝑘) = (𝐵𝑘))
10099a1d 25 . . . . . . . 8 (𝑏 = 𝐵 → (𝑘𝐴 → (𝑏𝑘) = (𝐵𝑘)))
10198, 100ralrimi 3254 . . . . . . 7 (𝑏 = 𝐵 → ∀𝑘𝐴 (𝑏𝑘) = (𝐵𝑘))
102101sumeq2d 15733 . . . . . 6 (𝑏 = 𝐵 → Σ𝑘𝐴 (𝑏𝑘) = Σ𝑘𝐴 (𝐵𝑘))
103102fveq2d 6910 . . . . 5 (𝑏 = 𝐵 → (!‘Σ𝑘𝐴 (𝑏𝑘)) = (!‘Σ𝑘𝐴 (𝐵𝑘)))
10499fveq2d 6910 . . . . . . . 8 (𝑏 = 𝐵 → (!‘(𝑏𝑘)) = (!‘(𝐵𝑘)))
105104a1d 25 . . . . . . 7 (𝑏 = 𝐵 → (𝑘𝐴 → (!‘(𝑏𝑘)) = (!‘(𝐵𝑘))))
10698, 105ralrimi 3254 . . . . . 6 (𝑏 = 𝐵 → ∀𝑘𝐴 (!‘(𝑏𝑘)) = (!‘(𝐵𝑘)))
107106prodeq2d 15953 . . . . 5 (𝑏 = 𝐵 → ∏𝑘𝐴 (!‘(𝑏𝑘)) = ∏𝑘𝐴 (!‘(𝐵𝑘)))
108103, 107oveq12d 7448 . . . 4 (𝑏 = 𝐵 → ((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))) = ((!‘Σ𝑘𝐴 (𝐵𝑘)) / ∏𝑘𝐴 (!‘(𝐵𝑘))))
109108eleq1d 2823 . . 3 (𝑏 = 𝐵 → (((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))) ∈ ℕ ↔ ((!‘Σ𝑘𝐴 (𝐵𝑘)) / ∏𝑘𝐴 (!‘(𝐵𝑘))) ∈ ℕ))
110109rspccva 3620 . 2 ((∀𝑏 ∈ (ℕ0m 𝐴)((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))) ∈ ℕ ∧ 𝐵 ∈ (ℕ0m 𝐴)) → ((!‘Σ𝑘𝐴 (𝐵𝑘)) / ∏𝑘𝐴 (!‘(𝐵𝑘))) ∈ ℕ)
11194, 95, 110syl2anc 584 1 (𝜑 → ((!‘Σ𝑘𝐴 (𝐵𝑘)) / ∏𝑘𝐴 (!‘(𝐵𝑘))) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  wnfc 2887  wral 3058  cdif 3959  cun 3960  wss 3962  c0 4338  {csn 4630  cfv 6562  (class class class)co 7430  m cmap 8864  Fincfn 8983  0cc0 11152  1c1 11153   / cdiv 11917  cn 12263  0cn0 12523  !cfa 14308  Σcsu 15718  cprod 15935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fz 13544  df-fzo 13691  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-sum 15719  df-prod 15936
This theorem is referenced by:  etransclem24  46213  etransclem25  46214  etransclem26  46215  etransclem28  46217  etransclem35  46224  etransclem37  46226
  Copyright terms: Public domain W3C validator