| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemksel | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma K of [Crawley] p. 118. Conditions for the sigma(p) function to be a translation. TODO: combine cdlemki 40802? (Contributed by NM, 26-Jun-2013.) |
| Ref | Expression |
|---|---|
| cdlemk.b | ⊢ 𝐵 = (Base‘𝐾) |
| cdlemk.l | ⊢ ≤ = (le‘𝐾) |
| cdlemk.j | ⊢ ∨ = (join‘𝐾) |
| cdlemk.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdlemk.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdlemk.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| cdlemk.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| cdlemk.m | ⊢ ∧ = (meet‘𝐾) |
| cdlemk.s | ⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) |
| Ref | Expression |
|---|---|
| cdlemksel | ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹))) → (𝑆‘𝐺) ∈ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp13 1205 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹))) → 𝐺 ∈ 𝑇) | |
| 2 | cdlemk.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | cdlemk.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 4 | cdlemk.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 5 | cdlemk.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | cdlemk.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 7 | cdlemk.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 8 | cdlemk.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 9 | cdlemk.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 10 | cdlemk.s | . . . 4 ⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) | |
| 11 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | cdlemksv 40805 | . . 3 ⊢ (𝐺 ∈ 𝑇 → (𝑆‘𝐺) = (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))))) |
| 12 | 1, 11 | syl 17 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹))) → (𝑆‘𝐺) = (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))))) |
| 13 | eqid 2734 | . . 3 ⊢ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) = (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) | |
| 14 | 2, 3, 4, 5, 6, 7, 8, 9, 13 | cdlemki 40802 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹))) → (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) ∈ 𝑇) |
| 15 | 12, 14 | eqeltrd 2833 | 1 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹))) → (𝑆‘𝐺) ∈ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 class class class wbr 5123 ↦ cmpt 5205 I cid 5557 ◡ccnv 5664 ↾ cres 5667 ∘ ccom 5669 ‘cfv 6541 ℩crio 7369 (class class class)co 7413 Basecbs 17229 lecple 17280 joincjn 18327 meetcmee 18328 Atomscatm 39223 HLchlt 39310 LHypclh 39945 LTrncltrn 40062 trLctrl 40119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-riotaBAD 38913 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-undef 8280 df-map 8850 df-proset 18310 df-poset 18329 df-plt 18344 df-lub 18360 df-glb 18361 df-join 18362 df-meet 18363 df-p0 18439 df-p1 18440 df-lat 18446 df-clat 18513 df-oposet 39136 df-ol 39138 df-oml 39139 df-covers 39226 df-ats 39227 df-atl 39258 df-cvlat 39282 df-hlat 39311 df-llines 39459 df-lplanes 39460 df-lvols 39461 df-lines 39462 df-psubsp 39464 df-pmap 39465 df-padd 39757 df-lhyp 39949 df-laut 39950 df-ldil 40065 df-ltrn 40066 df-trl 40120 |
| This theorem is referenced by: cdlemksat 40807 cdlemksv2 40808 cdlemk12 40811 cdlemkoatnle 40812 |
| Copyright terms: Public domain | W3C validator |