Proof of Theorem cdlemkuu
Step | Hyp | Ref
| Expression |
1 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → (𝑆‘𝑑) = (𝑆‘𝐷)) |
2 | | cdlemk3.o2 |
. . . . . . . . 9
⊢ 𝑄 = (𝑆‘𝐷) |
3 | 1, 2 | eqtr4di 2797 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → (𝑆‘𝑑) = 𝑄) |
4 | 3 | fveq1d 6758 |
. . . . . . 7
⊢ (𝑑 = 𝐷 → ((𝑆‘𝑑)‘𝑃) = (𝑄‘𝑃)) |
5 | | cnveq 5771 |
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → ◡𝑑 = ◡𝐷) |
6 | 5 | coeq2d 5760 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → (𝑒 ∘ ◡𝑑) = (𝑒 ∘ ◡𝐷)) |
7 | 6 | fveq2d 6760 |
. . . . . . 7
⊢ (𝑑 = 𝐷 → (𝑅‘(𝑒 ∘ ◡𝑑)) = (𝑅‘(𝑒 ∘ ◡𝐷))) |
8 | 4, 7 | oveq12d 7273 |
. . . . . 6
⊢ (𝑑 = 𝐷 → (((𝑆‘𝑑)‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝑑))) = ((𝑄‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝐷)))) |
9 | 8 | oveq2d 7271 |
. . . . 5
⊢ (𝑑 = 𝐷 → ((𝑃 ∨ (𝑅‘𝑒)) ∧ (((𝑆‘𝑑)‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝑑)))) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ ((𝑄‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝐷))))) |
10 | 9 | eqeq2d 2749 |
. . . 4
⊢ (𝑑 = 𝐷 → ((𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ (((𝑆‘𝑑)‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝑑)))) ↔ (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ ((𝑄‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝐷)))))) |
11 | 10 | riotabidv 7214 |
. . 3
⊢ (𝑑 = 𝐷 → (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ (((𝑆‘𝑑)‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝑑))))) = (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ ((𝑄‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝐷)))))) |
12 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑒 = 𝐺 → (𝑅‘𝑒) = (𝑅‘𝐺)) |
13 | 12 | oveq2d 7271 |
. . . . . 6
⊢ (𝑒 = 𝐺 → (𝑃 ∨ (𝑅‘𝑒)) = (𝑃 ∨ (𝑅‘𝐺))) |
14 | | coeq1 5755 |
. . . . . . . 8
⊢ (𝑒 = 𝐺 → (𝑒 ∘ ◡𝐷) = (𝐺 ∘ ◡𝐷)) |
15 | 14 | fveq2d 6760 |
. . . . . . 7
⊢ (𝑒 = 𝐺 → (𝑅‘(𝑒 ∘ ◡𝐷)) = (𝑅‘(𝐺 ∘ ◡𝐷))) |
16 | 15 | oveq2d 7271 |
. . . . . 6
⊢ (𝑒 = 𝐺 → ((𝑄‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝐷))) = ((𝑄‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐷)))) |
17 | 13, 16 | oveq12d 7273 |
. . . . 5
⊢ (𝑒 = 𝐺 → ((𝑃 ∨ (𝑅‘𝑒)) ∧ ((𝑄‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝐷)))) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑄‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐷))))) |
18 | 17 | eqeq2d 2749 |
. . . 4
⊢ (𝑒 = 𝐺 → ((𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ ((𝑄‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝐷)))) ↔ (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑄‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐷)))))) |
19 | 18 | riotabidv 7214 |
. . 3
⊢ (𝑒 = 𝐺 → (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ ((𝑄‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝐷))))) = (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑄‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐷)))))) |
20 | | cdlemk3.u1 |
. . 3
⊢ 𝑌 = (𝑑 ∈ 𝑇, 𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ (((𝑆‘𝑑)‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝑑)))))) |
21 | | riotaex 7216 |
. . 3
⊢
(℩𝑗
∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑄‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐷))))) ∈ V |
22 | 11, 19, 20, 21 | ovmpo 7411 |
. 2
⊢ ((𝐷 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝐷𝑌𝐺) = (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑄‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐷)))))) |
23 | | cdlemk3.b |
. . . 4
⊢ 𝐵 = (Base‘𝐾) |
24 | | cdlemk3.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
25 | | cdlemk3.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
26 | | cdlemk3.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
27 | | cdlemk3.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
28 | | cdlemk3.t |
. . . 4
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
29 | | cdlemk3.r |
. . . 4
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
30 | | cdlemk3.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
31 | | cdlemk3.u2 |
. . . 4
⊢ 𝑍 = (𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ ((𝑄‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝐷)))))) |
32 | 23, 24, 25, 26, 27, 28, 29, 30, 31 | cdlemksv 38785 |
. . 3
⊢ (𝐺 ∈ 𝑇 → (𝑍‘𝐺) = (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑄‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐷)))))) |
33 | 32 | adantl 481 |
. 2
⊢ ((𝐷 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑍‘𝐺) = (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑄‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐷)))))) |
34 | 22, 33 | eqtr4d 2781 |
1
⊢ ((𝐷 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝐷𝑌𝐺) = (𝑍‘𝐺)) |