Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemkuu Structured version   Visualization version   GIF version

Theorem cdlemkuu 41014
Description: Convert between function and operation forms of 𝑌. TODO: Use operation form everywhere. (Contributed by NM, 6-Jul-2013.)
Hypotheses
Ref Expression
cdlemk3.b 𝐵 = (Base‘𝐾)
cdlemk3.l = (le‘𝐾)
cdlemk3.j = (join‘𝐾)
cdlemk3.m = (meet‘𝐾)
cdlemk3.a 𝐴 = (Atoms‘𝐾)
cdlemk3.h 𝐻 = (LHyp‘𝐾)
cdlemk3.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk3.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk3.s 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
cdlemk3.u1 𝑌 = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))
cdlemk3.o2 𝑄 = (𝑆𝐷)
cdlemk3.u2 𝑍 = (𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑄𝑃) (𝑅‘(𝑒𝐷))))))
Assertion
Ref Expression
cdlemkuu ((𝐷𝑇𝐺𝑇) → (𝐷𝑌𝐺) = (𝑍𝐺))
Distinct variable groups:   𝑒,𝑑,𝑓,𝑖,   ,𝑖   ,𝑑,𝑒,𝑓,𝑖   𝐴,𝑖   𝑗,𝑑,𝐷,𝑒,𝑓,𝑖   𝑓,𝐹,𝑖   𝐺,𝑑,𝑒,𝑗   𝑖,𝐻   𝑖,𝐾   𝑓,𝑁,𝑖   𝑃,𝑑,𝑒,𝑓,𝑖   𝑄,𝑑,𝑒   𝑅,𝑑,𝑒,𝑓,𝑖   𝑇,𝑑,𝑒,𝑓,𝑖   𝑊,𝑑,𝑒,𝑓,𝑖
Allowed substitution hints:   𝐴(𝑒,𝑓,𝑗,𝑑)   𝐵(𝑒,𝑓,𝑖,𝑗,𝑑)   𝑃(𝑗)   𝑄(𝑓,𝑖,𝑗)   𝑅(𝑗)   𝑆(𝑒,𝑓,𝑖,𝑗,𝑑)   𝑇(𝑗)   𝐹(𝑒,𝑗,𝑑)   𝐺(𝑓,𝑖)   𝐻(𝑒,𝑓,𝑗,𝑑)   (𝑗)   𝐾(𝑒,𝑓,𝑗,𝑑)   (𝑒,𝑓,𝑗,𝑑)   (𝑗)   𝑁(𝑒,𝑗,𝑑)   𝑊(𝑗)   𝑌(𝑒,𝑓,𝑖,𝑗,𝑑)   𝑍(𝑒,𝑓,𝑖,𝑗,𝑑)

Proof of Theorem cdlemkuu
StepHypRef Expression
1 fveq2 6828 . . . . . . . . 9 (𝑑 = 𝐷 → (𝑆𝑑) = (𝑆𝐷))
2 cdlemk3.o2 . . . . . . . . 9 𝑄 = (𝑆𝐷)
31, 2eqtr4di 2786 . . . . . . . 8 (𝑑 = 𝐷 → (𝑆𝑑) = 𝑄)
43fveq1d 6830 . . . . . . 7 (𝑑 = 𝐷 → ((𝑆𝑑)‘𝑃) = (𝑄𝑃))
5 cnveq 5817 . . . . . . . . 9 (𝑑 = 𝐷𝑑 = 𝐷)
65coeq2d 5806 . . . . . . . 8 (𝑑 = 𝐷 → (𝑒𝑑) = (𝑒𝐷))
76fveq2d 6832 . . . . . . 7 (𝑑 = 𝐷 → (𝑅‘(𝑒𝑑)) = (𝑅‘(𝑒𝐷)))
84, 7oveq12d 7370 . . . . . 6 (𝑑 = 𝐷 → (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))) = ((𝑄𝑃) (𝑅‘(𝑒𝐷))))
98oveq2d 7368 . . . . 5 (𝑑 = 𝐷 → ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑)))) = ((𝑃 (𝑅𝑒)) ((𝑄𝑃) (𝑅‘(𝑒𝐷)))))
109eqeq2d 2744 . . . 4 (𝑑 = 𝐷 → ((𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑)))) ↔ (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑄𝑃) (𝑅‘(𝑒𝐷))))))
1110riotabidv 7311 . . 3 (𝑑 = 𝐷 → (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))) = (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑄𝑃) (𝑅‘(𝑒𝐷))))))
12 fveq2 6828 . . . . . . 7 (𝑒 = 𝐺 → (𝑅𝑒) = (𝑅𝐺))
1312oveq2d 7368 . . . . . 6 (𝑒 = 𝐺 → (𝑃 (𝑅𝑒)) = (𝑃 (𝑅𝐺)))
14 coeq1 5801 . . . . . . . 8 (𝑒 = 𝐺 → (𝑒𝐷) = (𝐺𝐷))
1514fveq2d 6832 . . . . . . 7 (𝑒 = 𝐺 → (𝑅‘(𝑒𝐷)) = (𝑅‘(𝐺𝐷)))
1615oveq2d 7368 . . . . . 6 (𝑒 = 𝐺 → ((𝑄𝑃) (𝑅‘(𝑒𝐷))) = ((𝑄𝑃) (𝑅‘(𝐺𝐷))))
1713, 16oveq12d 7370 . . . . 5 (𝑒 = 𝐺 → ((𝑃 (𝑅𝑒)) ((𝑄𝑃) (𝑅‘(𝑒𝐷)))) = ((𝑃 (𝑅𝐺)) ((𝑄𝑃) (𝑅‘(𝐺𝐷)))))
1817eqeq2d 2744 . . . 4 (𝑒 = 𝐺 → ((𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑄𝑃) (𝑅‘(𝑒𝐷)))) ↔ (𝑗𝑃) = ((𝑃 (𝑅𝐺)) ((𝑄𝑃) (𝑅‘(𝐺𝐷))))))
1918riotabidv 7311 . . 3 (𝑒 = 𝐺 → (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑄𝑃) (𝑅‘(𝑒𝐷))))) = (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝐺)) ((𝑄𝑃) (𝑅‘(𝐺𝐷))))))
20 cdlemk3.u1 . . 3 𝑌 = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))
21 riotaex 7313 . . 3 (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝐺)) ((𝑄𝑃) (𝑅‘(𝐺𝐷))))) ∈ V
2211, 19, 20, 21ovmpo 7512 . 2 ((𝐷𝑇𝐺𝑇) → (𝐷𝑌𝐺) = (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝐺)) ((𝑄𝑃) (𝑅‘(𝐺𝐷))))))
23 cdlemk3.b . . . 4 𝐵 = (Base‘𝐾)
24 cdlemk3.l . . . 4 = (le‘𝐾)
25 cdlemk3.j . . . 4 = (join‘𝐾)
26 cdlemk3.a . . . 4 𝐴 = (Atoms‘𝐾)
27 cdlemk3.h . . . 4 𝐻 = (LHyp‘𝐾)
28 cdlemk3.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
29 cdlemk3.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
30 cdlemk3.m . . . 4 = (meet‘𝐾)
31 cdlemk3.u2 . . . 4 𝑍 = (𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑄𝑃) (𝑅‘(𝑒𝐷))))))
3223, 24, 25, 26, 27, 28, 29, 30, 31cdlemksv 40963 . . 3 (𝐺𝑇 → (𝑍𝐺) = (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝐺)) ((𝑄𝑃) (𝑅‘(𝐺𝐷))))))
3332adantl 481 . 2 ((𝐷𝑇𝐺𝑇) → (𝑍𝐺) = (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝐺)) ((𝑄𝑃) (𝑅‘(𝐺𝐷))))))
3422, 33eqtr4d 2771 1 ((𝐷𝑇𝐺𝑇) → (𝐷𝑌𝐺) = (𝑍𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cmpt 5174  ccnv 5618  ccom 5623  cfv 6486  crio 7308  (class class class)co 7352  cmpo 7354  Basecbs 17122  lecple 17170  joincjn 18219  meetcmee 18220  Atomscatm 39382  LHypclh 40103  LTrncltrn 40220  trLctrl 40277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357
This theorem is referenced by:  cdlemk31  41015  cdlemkuel-3  41017  cdlemkuv2-3N  41018  cdlemk18-3N  41019  cdlemk22-3  41020  cdlemkyu  41046
  Copyright terms: Public domain W3C validator