MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cidval Structured version   Visualization version   GIF version

Theorem cidval 17386
Description: Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
cidfval.b 𝐵 = (Base‘𝐶)
cidfval.h 𝐻 = (Hom ‘𝐶)
cidfval.o · = (comp‘𝐶)
cidfval.c (𝜑𝐶 ∈ Cat)
cidfval.i 1 = (Id‘𝐶)
cidval.x (𝜑𝑋𝐵)
Assertion
Ref Expression
cidval (𝜑 → ( 1𝑋) = (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)))
Distinct variable groups:   𝑓,𝑔,𝑦,𝐵   𝐶,𝑓,𝑔,𝑦   · ,𝑓,𝑔,𝑦   𝑓,𝐻,𝑔,𝑦   𝜑,𝑓,𝑔,𝑦   𝑓,𝑋,𝑔,𝑦
Allowed substitution hints:   1 (𝑦,𝑓,𝑔)

Proof of Theorem cidval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cidfval.b . . 3 𝐵 = (Base‘𝐶)
2 cidfval.h . . 3 𝐻 = (Hom ‘𝐶)
3 cidfval.o . . 3 · = (comp‘𝐶)
4 cidfval.c . . 3 (𝜑𝐶 ∈ Cat)
5 cidfval.i . . 3 1 = (Id‘𝐶)
61, 2, 3, 4, 5cidfval 17385 . 2 (𝜑1 = (𝑥𝐵 ↦ (𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓))))
7 simpr 485 . . . 4 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
87, 7oveq12d 7293 . . 3 ((𝜑𝑥 = 𝑋) → (𝑥𝐻𝑥) = (𝑋𝐻𝑋))
97oveq2d 7291 . . . . . 6 ((𝜑𝑥 = 𝑋) → (𝑦𝐻𝑥) = (𝑦𝐻𝑋))
107opeq2d 4811 . . . . . . . . 9 ((𝜑𝑥 = 𝑋) → ⟨𝑦, 𝑥⟩ = ⟨𝑦, 𝑋⟩)
1110, 7oveq12d 7293 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → (⟨𝑦, 𝑥· 𝑥) = (⟨𝑦, 𝑋· 𝑋))
1211oveqd 7292 . . . . . . 7 ((𝜑𝑥 = 𝑋) → (𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = (𝑔(⟨𝑦, 𝑋· 𝑋)𝑓))
1312eqeq1d 2740 . . . . . 6 ((𝜑𝑥 = 𝑋) → ((𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ↔ (𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓))
149, 13raleqbidv 3336 . . . . 5 ((𝜑𝑥 = 𝑋) → (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ↔ ∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓))
157oveq1d 7290 . . . . . 6 ((𝜑𝑥 = 𝑋) → (𝑥𝐻𝑦) = (𝑋𝐻𝑦))
167, 7opeq12d 4812 . . . . . . . . 9 ((𝜑𝑥 = 𝑋) → ⟨𝑥, 𝑥⟩ = ⟨𝑋, 𝑋⟩)
1716oveq1d 7290 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → (⟨𝑥, 𝑥· 𝑦) = (⟨𝑋, 𝑋· 𝑦))
1817oveqd 7292 . . . . . . 7 ((𝜑𝑥 = 𝑋) → (𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = (𝑓(⟨𝑋, 𝑋· 𝑦)𝑔))
1918eqeq1d 2740 . . . . . 6 ((𝜑𝑥 = 𝑋) → ((𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓 ↔ (𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓))
2015, 19raleqbidv 3336 . . . . 5 ((𝜑𝑥 = 𝑋) → (∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓 ↔ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓))
2114, 20anbi12d 631 . . . 4 ((𝜑𝑥 = 𝑋) → ((∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ↔ (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)))
2221ralbidv 3112 . . 3 ((𝜑𝑥 = 𝑋) → (∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ↔ ∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)))
238, 22riotaeqbidv 7235 . 2 ((𝜑𝑥 = 𝑋) → (𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓)) = (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)))
24 cidval.x . 2 (𝜑𝑋𝐵)
25 riotaex 7236 . . 3 (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)) ∈ V
2625a1i 11 . 2 (𝜑 → (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)) ∈ V)
276, 23, 24, 26fvmptd 6882 1 (𝜑 → ( 1𝑋) = (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  cop 4567  cfv 6433  crio 7231  (class class class)co 7275  Basecbs 16912  Hom chom 16973  compcco 16974  Catccat 17373  Idccid 17374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-cid 17378
This theorem is referenced by:  catidcl  17391  catlid  17392  catrid  17393
  Copyright terms: Public domain W3C validator