| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cidfval.b | . . 3
⊢ 𝐵 = (Base‘𝐶) | 
| 2 |  | cidfval.h | . . 3
⊢ 𝐻 = (Hom ‘𝐶) | 
| 3 |  | cidfval.o | . . 3
⊢  · =
(comp‘𝐶) | 
| 4 |  | cidfval.c | . . 3
⊢ (𝜑 → 𝐶 ∈ Cat) | 
| 5 |  | cidfval.i | . . 3
⊢  1 =
(Id‘𝐶) | 
| 6 | 1, 2, 3, 4, 5 | cidfval 17719 | . 2
⊢ (𝜑 → 1 = (𝑥 ∈ 𝐵 ↦ (℩𝑔 ∈ (𝑥𝐻𝑥)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(〈𝑦, 𝑥〉 · 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(〈𝑥, 𝑥〉 · 𝑦)𝑔) = 𝑓)))) | 
| 7 |  | simpr 484 | . . . 4
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | 
| 8 | 7, 7 | oveq12d 7449 | . . 3
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑥𝐻𝑥) = (𝑋𝐻𝑋)) | 
| 9 | 7 | oveq2d 7447 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑦𝐻𝑥) = (𝑦𝐻𝑋)) | 
| 10 | 7 | opeq2d 4880 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 〈𝑦, 𝑥〉 = 〈𝑦, 𝑋〉) | 
| 11 | 10, 7 | oveq12d 7449 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (〈𝑦, 𝑥〉 · 𝑥) = (〈𝑦, 𝑋〉 · 𝑋)) | 
| 12 | 11 | oveqd 7448 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑔(〈𝑦, 𝑥〉 · 𝑥)𝑓) = (𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓)) | 
| 13 | 12 | eqeq1d 2739 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ((𝑔(〈𝑦, 𝑥〉 · 𝑥)𝑓) = 𝑓 ↔ (𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓)) | 
| 14 | 9, 13 | raleqbidv 3346 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(〈𝑦, 𝑥〉 · 𝑥)𝑓) = 𝑓 ↔ ∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓)) | 
| 15 | 7 | oveq1d 7446 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑥𝐻𝑦) = (𝑋𝐻𝑦)) | 
| 16 | 7, 7 | opeq12d 4881 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 〈𝑥, 𝑥〉 = 〈𝑋, 𝑋〉) | 
| 17 | 16 | oveq1d 7446 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (〈𝑥, 𝑥〉 · 𝑦) = (〈𝑋, 𝑋〉 · 𝑦)) | 
| 18 | 17 | oveqd 7448 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑓(〈𝑥, 𝑥〉 · 𝑦)𝑔) = (𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔)) | 
| 19 | 18 | eqeq1d 2739 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ((𝑓(〈𝑥, 𝑥〉 · 𝑦)𝑔) = 𝑓 ↔ (𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓)) | 
| 20 | 15, 19 | raleqbidv 3346 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(〈𝑥, 𝑥〉 · 𝑦)𝑔) = 𝑓 ↔ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓)) | 
| 21 | 14, 20 | anbi12d 632 | . . . 4
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ((∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(〈𝑦, 𝑥〉 · 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(〈𝑥, 𝑥〉 · 𝑦)𝑔) = 𝑓) ↔ (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓))) | 
| 22 | 21 | ralbidv 3178 | . . 3
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(〈𝑦, 𝑥〉 · 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(〈𝑥, 𝑥〉 · 𝑦)𝑔) = 𝑓) ↔ ∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓))) | 
| 23 | 8, 22 | riotaeqbidv 7391 | . 2
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (℩𝑔 ∈ (𝑥𝐻𝑥)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(〈𝑦, 𝑥〉 · 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(〈𝑥, 𝑥〉 · 𝑦)𝑔) = 𝑓)) = (℩𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓))) | 
| 24 |  | cidval.x | . 2
⊢ (𝜑 → 𝑋 ∈ 𝐵) | 
| 25 |  | riotaex 7392 | . . 3
⊢
(℩𝑔
∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓)) ∈ V | 
| 26 | 25 | a1i 11 | . 2
⊢ (𝜑 → (℩𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓)) ∈ V) | 
| 27 | 6, 23, 24, 26 | fvmptd 7023 | 1
⊢ (𝜑 → ( 1 ‘𝑋) = (℩𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓))) |