MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cidval Structured version   Visualization version   GIF version

Theorem cidval 17044
Description: Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
cidfval.b 𝐵 = (Base‘𝐶)
cidfval.h 𝐻 = (Hom ‘𝐶)
cidfval.o · = (comp‘𝐶)
cidfval.c (𝜑𝐶 ∈ Cat)
cidfval.i 1 = (Id‘𝐶)
cidval.x (𝜑𝑋𝐵)
Assertion
Ref Expression
cidval (𝜑 → ( 1𝑋) = (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)))
Distinct variable groups:   𝑓,𝑔,𝑦,𝐵   𝐶,𝑓,𝑔,𝑦   · ,𝑓,𝑔,𝑦   𝑓,𝐻,𝑔,𝑦   𝜑,𝑓,𝑔,𝑦   𝑓,𝑋,𝑔,𝑦
Allowed substitution hints:   1 (𝑦,𝑓,𝑔)

Proof of Theorem cidval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cidfval.b . . 3 𝐵 = (Base‘𝐶)
2 cidfval.h . . 3 𝐻 = (Hom ‘𝐶)
3 cidfval.o . . 3 · = (comp‘𝐶)
4 cidfval.c . . 3 (𝜑𝐶 ∈ Cat)
5 cidfval.i . . 3 1 = (Id‘𝐶)
61, 2, 3, 4, 5cidfval 17043 . 2 (𝜑1 = (𝑥𝐵 ↦ (𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓))))
7 simpr 488 . . . 4 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
87, 7oveq12d 7182 . . 3 ((𝜑𝑥 = 𝑋) → (𝑥𝐻𝑥) = (𝑋𝐻𝑋))
97oveq2d 7180 . . . . . 6 ((𝜑𝑥 = 𝑋) → (𝑦𝐻𝑥) = (𝑦𝐻𝑋))
107opeq2d 4765 . . . . . . . . 9 ((𝜑𝑥 = 𝑋) → ⟨𝑦, 𝑥⟩ = ⟨𝑦, 𝑋⟩)
1110, 7oveq12d 7182 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → (⟨𝑦, 𝑥· 𝑥) = (⟨𝑦, 𝑋· 𝑋))
1211oveqd 7181 . . . . . . 7 ((𝜑𝑥 = 𝑋) → (𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = (𝑔(⟨𝑦, 𝑋· 𝑋)𝑓))
1312eqeq1d 2740 . . . . . 6 ((𝜑𝑥 = 𝑋) → ((𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ↔ (𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓))
149, 13raleqbidv 3303 . . . . 5 ((𝜑𝑥 = 𝑋) → (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ↔ ∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓))
157oveq1d 7179 . . . . . 6 ((𝜑𝑥 = 𝑋) → (𝑥𝐻𝑦) = (𝑋𝐻𝑦))
167, 7opeq12d 4766 . . . . . . . . 9 ((𝜑𝑥 = 𝑋) → ⟨𝑥, 𝑥⟩ = ⟨𝑋, 𝑋⟩)
1716oveq1d 7179 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → (⟨𝑥, 𝑥· 𝑦) = (⟨𝑋, 𝑋· 𝑦))
1817oveqd 7181 . . . . . . 7 ((𝜑𝑥 = 𝑋) → (𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = (𝑓(⟨𝑋, 𝑋· 𝑦)𝑔))
1918eqeq1d 2740 . . . . . 6 ((𝜑𝑥 = 𝑋) → ((𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓 ↔ (𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓))
2015, 19raleqbidv 3303 . . . . 5 ((𝜑𝑥 = 𝑋) → (∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓 ↔ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓))
2114, 20anbi12d 634 . . . 4 ((𝜑𝑥 = 𝑋) → ((∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ↔ (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)))
2221ralbidv 3109 . . 3 ((𝜑𝑥 = 𝑋) → (∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ↔ ∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)))
238, 22riotaeqbidv 7124 . 2 ((𝜑𝑥 = 𝑋) → (𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓)) = (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)))
24 cidval.x . 2 (𝜑𝑋𝐵)
25 riotaex 7125 . . 3 (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)) ∈ V
2625a1i 11 . 2 (𝜑 → (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)) ∈ V)
276, 23, 24, 26fvmptd 6776 1 (𝜑 → ( 1𝑋) = (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2113  wral 3053  Vcvv 3397  cop 4519  cfv 6333  crio 7120  (class class class)co 7164  Basecbs 16579  Hom chom 16672  compcco 16673  Catccat 17031  Idccid 17032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pr 5293
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-cid 17036
This theorem is referenced by:  catidcl  17049  catlid  17050  catrid  17051
  Copyright terms: Public domain W3C validator