MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cidval Structured version   Visualization version   GIF version

Theorem cidval 17638
Description: Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
cidfval.b 𝐵 = (Base‘𝐶)
cidfval.h 𝐻 = (Hom ‘𝐶)
cidfval.o · = (comp‘𝐶)
cidfval.c (𝜑𝐶 ∈ Cat)
cidfval.i 1 = (Id‘𝐶)
cidval.x (𝜑𝑋𝐵)
Assertion
Ref Expression
cidval (𝜑 → ( 1𝑋) = (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)))
Distinct variable groups:   𝑓,𝑔,𝑦,𝐵   𝐶,𝑓,𝑔,𝑦   · ,𝑓,𝑔,𝑦   𝑓,𝐻,𝑔,𝑦   𝜑,𝑓,𝑔,𝑦   𝑓,𝑋,𝑔,𝑦
Allowed substitution hints:   1 (𝑦,𝑓,𝑔)

Proof of Theorem cidval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cidfval.b . . 3 𝐵 = (Base‘𝐶)
2 cidfval.h . . 3 𝐻 = (Hom ‘𝐶)
3 cidfval.o . . 3 · = (comp‘𝐶)
4 cidfval.c . . 3 (𝜑𝐶 ∈ Cat)
5 cidfval.i . . 3 1 = (Id‘𝐶)
61, 2, 3, 4, 5cidfval 17637 . 2 (𝜑1 = (𝑥𝐵 ↦ (𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓))))
7 simpr 484 . . . 4 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
87, 7oveq12d 7405 . . 3 ((𝜑𝑥 = 𝑋) → (𝑥𝐻𝑥) = (𝑋𝐻𝑋))
97oveq2d 7403 . . . . . 6 ((𝜑𝑥 = 𝑋) → (𝑦𝐻𝑥) = (𝑦𝐻𝑋))
107opeq2d 4844 . . . . . . . . 9 ((𝜑𝑥 = 𝑋) → ⟨𝑦, 𝑥⟩ = ⟨𝑦, 𝑋⟩)
1110, 7oveq12d 7405 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → (⟨𝑦, 𝑥· 𝑥) = (⟨𝑦, 𝑋· 𝑋))
1211oveqd 7404 . . . . . . 7 ((𝜑𝑥 = 𝑋) → (𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = (𝑔(⟨𝑦, 𝑋· 𝑋)𝑓))
1312eqeq1d 2731 . . . . . 6 ((𝜑𝑥 = 𝑋) → ((𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ↔ (𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓))
149, 13raleqbidv 3319 . . . . 5 ((𝜑𝑥 = 𝑋) → (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ↔ ∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓))
157oveq1d 7402 . . . . . 6 ((𝜑𝑥 = 𝑋) → (𝑥𝐻𝑦) = (𝑋𝐻𝑦))
167, 7opeq12d 4845 . . . . . . . . 9 ((𝜑𝑥 = 𝑋) → ⟨𝑥, 𝑥⟩ = ⟨𝑋, 𝑋⟩)
1716oveq1d 7402 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → (⟨𝑥, 𝑥· 𝑦) = (⟨𝑋, 𝑋· 𝑦))
1817oveqd 7404 . . . . . . 7 ((𝜑𝑥 = 𝑋) → (𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = (𝑓(⟨𝑋, 𝑋· 𝑦)𝑔))
1918eqeq1d 2731 . . . . . 6 ((𝜑𝑥 = 𝑋) → ((𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓 ↔ (𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓))
2015, 19raleqbidv 3319 . . . . 5 ((𝜑𝑥 = 𝑋) → (∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓 ↔ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓))
2114, 20anbi12d 632 . . . 4 ((𝜑𝑥 = 𝑋) → ((∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ↔ (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)))
2221ralbidv 3156 . . 3 ((𝜑𝑥 = 𝑋) → (∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ↔ ∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)))
238, 22riotaeqbidv 7347 . 2 ((𝜑𝑥 = 𝑋) → (𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓)) = (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)))
24 cidval.x . 2 (𝜑𝑋𝐵)
25 riotaex 7348 . . 3 (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)) ∈ V
2625a1i 11 . 2 (𝜑 → (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)) ∈ V)
276, 23, 24, 26fvmptd 6975 1 (𝜑 → ( 1𝑋) = (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  cop 4595  cfv 6511  crio 7343  (class class class)co 7387  Basecbs 17179  Hom chom 17231  compcco 17232  Catccat 17625  Idccid 17626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-cid 17630
This theorem is referenced by:  catidcl  17643  catlid  17644  catrid  17645
  Copyright terms: Public domain W3C validator