| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cidfn | Structured version Visualization version GIF version | ||
| Description: The identity arrow operator is a function from objects to arrows. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| cidfn.b | ⊢ 𝐵 = (Base‘𝐶) |
| cidfn.i | ⊢ 1 = (Id‘𝐶) |
| Ref | Expression |
|---|---|
| cidfn | ⊢ (𝐶 ∈ Cat → 1 Fn 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotaex 7351 | . . 3 ⊢ (℩𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓)) ∈ V | |
| 2 | eqid 2730 | . . 3 ⊢ (𝑥 ∈ 𝐵 ↦ (℩𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓))) = (𝑥 ∈ 𝐵 ↦ (℩𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓))) | |
| 3 | 1, 2 | fnmpti 6664 | . 2 ⊢ (𝑥 ∈ 𝐵 ↦ (℩𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓))) Fn 𝐵 |
| 4 | cidfn.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 5 | eqid 2730 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 6 | eqid 2730 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 7 | id 22 | . . . 4 ⊢ (𝐶 ∈ Cat → 𝐶 ∈ Cat) | |
| 8 | cidfn.i | . . . 4 ⊢ 1 = (Id‘𝐶) | |
| 9 | 4, 5, 6, 7, 8 | cidfval 17644 | . . 3 ⊢ (𝐶 ∈ Cat → 1 = (𝑥 ∈ 𝐵 ↦ (℩𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓)))) |
| 10 | 9 | fneq1d 6614 | . 2 ⊢ (𝐶 ∈ Cat → ( 1 Fn 𝐵 ↔ (𝑥 ∈ 𝐵 ↦ (℩𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓))) Fn 𝐵)) |
| 11 | 3, 10 | mpbiri 258 | 1 ⊢ (𝐶 ∈ Cat → 1 Fn 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 〈cop 4598 ↦ cmpt 5191 Fn wfn 6509 ‘cfv 6514 ℩crio 7346 (class class class)co 7390 Basecbs 17186 Hom chom 17238 compcco 17239 Catccat 17632 Idccid 17633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-cid 17637 |
| This theorem is referenced by: oppccatid 17687 fucidcl 17937 fucsect 17944 curfcl 18200 curf2ndf 18215 fucoid 49341 |
| Copyright terms: Public domain | W3C validator |