Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cidfn | Structured version Visualization version GIF version |
Description: The identity arrow operator is a function from objects to arrows. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
cidfn.b | ⊢ 𝐵 = (Base‘𝐶) |
cidfn.i | ⊢ 1 = (Id‘𝐶) |
Ref | Expression |
---|---|
cidfn | ⊢ (𝐶 ∈ Cat → 1 Fn 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotaex 7228 | . . 3 ⊢ (℩𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓)) ∈ V | |
2 | eqid 2738 | . . 3 ⊢ (𝑥 ∈ 𝐵 ↦ (℩𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓))) = (𝑥 ∈ 𝐵 ↦ (℩𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓))) | |
3 | 1, 2 | fnmpti 6568 | . 2 ⊢ (𝑥 ∈ 𝐵 ↦ (℩𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓))) Fn 𝐵 |
4 | cidfn.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
5 | eqid 2738 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
6 | eqid 2738 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
7 | id 22 | . . . 4 ⊢ (𝐶 ∈ Cat → 𝐶 ∈ Cat) | |
8 | cidfn.i | . . . 4 ⊢ 1 = (Id‘𝐶) | |
9 | 4, 5, 6, 7, 8 | cidfval 17395 | . . 3 ⊢ (𝐶 ∈ Cat → 1 = (𝑥 ∈ 𝐵 ↦ (℩𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓)))) |
10 | 9 | fneq1d 6518 | . 2 ⊢ (𝐶 ∈ Cat → ( 1 Fn 𝐵 ↔ (𝑥 ∈ 𝐵 ↦ (℩𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓))) Fn 𝐵)) |
11 | 3, 10 | mpbiri 257 | 1 ⊢ (𝐶 ∈ Cat → 1 Fn 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 〈cop 4567 ↦ cmpt 5156 Fn wfn 6421 ‘cfv 6426 ℩crio 7223 (class class class)co 7267 Basecbs 16922 Hom chom 16983 compcco 16984 Catccat 17383 Idccid 17384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pr 5350 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-id 5484 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-cid 17388 |
This theorem is referenced by: oppccatid 17440 fucidcl 17693 fucsect 17700 curfcl 17960 curf2ndf 17975 |
Copyright terms: Public domain | W3C validator |