MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cidfn Structured version   Visualization version   GIF version

Theorem cidfn 17737
Description: The identity arrow operator is a function from objects to arrows. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
cidfn.b 𝐵 = (Base‘𝐶)
cidfn.i 1 = (Id‘𝐶)
Assertion
Ref Expression
cidfn (𝐶 ∈ Cat → 1 Fn 𝐵)

Proof of Theorem cidfn
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 riotaex 7408 . . 3 (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓)) ∈ V
2 eqid 2740 . . 3 (𝑥𝐵 ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓))) = (𝑥𝐵 ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓)))
31, 2fnmpti 6723 . 2 (𝑥𝐵 ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓))) Fn 𝐵
4 cidfn.b . . . 4 𝐵 = (Base‘𝐶)
5 eqid 2740 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
6 eqid 2740 . . . 4 (comp‘𝐶) = (comp‘𝐶)
7 id 22 . . . 4 (𝐶 ∈ Cat → 𝐶 ∈ Cat)
8 cidfn.i . . . 4 1 = (Id‘𝐶)
94, 5, 6, 7, 8cidfval 17734 . . 3 (𝐶 ∈ Cat → 1 = (𝑥𝐵 ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓))))
109fneq1d 6672 . 2 (𝐶 ∈ Cat → ( 1 Fn 𝐵 ↔ (𝑥𝐵 ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓))) Fn 𝐵))
113, 10mpbiri 258 1 (𝐶 ∈ Cat → 1 Fn 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  cop 4654  cmpt 5249   Fn wfn 6568  cfv 6573  crio 7403  (class class class)co 7448  Basecbs 17258  Hom chom 17322  compcco 17323  Catccat 17722  Idccid 17723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-cid 17727
This theorem is referenced by:  oppccatid  17779  fucidcl  18035  fucsect  18042  curfcl  18302  curf2ndf  18317
  Copyright terms: Public domain W3C validator