MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cidfn Structured version   Visualization version   GIF version

Theorem cidfn 17305
Description: The identity arrow operator is a function from objects to arrows. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
cidfn.b 𝐵 = (Base‘𝐶)
cidfn.i 1 = (Id‘𝐶)
Assertion
Ref Expression
cidfn (𝐶 ∈ Cat → 1 Fn 𝐵)

Proof of Theorem cidfn
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 riotaex 7216 . . 3 (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓)) ∈ V
2 eqid 2738 . . 3 (𝑥𝐵 ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓))) = (𝑥𝐵 ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓)))
31, 2fnmpti 6560 . 2 (𝑥𝐵 ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓))) Fn 𝐵
4 cidfn.b . . . 4 𝐵 = (Base‘𝐶)
5 eqid 2738 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
6 eqid 2738 . . . 4 (comp‘𝐶) = (comp‘𝐶)
7 id 22 . . . 4 (𝐶 ∈ Cat → 𝐶 ∈ Cat)
8 cidfn.i . . . 4 1 = (Id‘𝐶)
94, 5, 6, 7, 8cidfval 17302 . . 3 (𝐶 ∈ Cat → 1 = (𝑥𝐵 ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓))))
109fneq1d 6510 . 2 (𝐶 ∈ Cat → ( 1 Fn 𝐵 ↔ (𝑥𝐵 ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓))) Fn 𝐵))
113, 10mpbiri 257 1 (𝐶 ∈ Cat → 1 Fn 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  cop 4564  cmpt 5153   Fn wfn 6413  cfv 6418  crio 7211  (class class class)co 7255  Basecbs 16840  Hom chom 16899  compcco 16900  Catccat 17290  Idccid 17291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-cid 17295
This theorem is referenced by:  oppccatid  17347  fucidcl  17599  fucsect  17606  curfcl  17866  curf2ndf  17881
  Copyright terms: Public domain W3C validator