| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cidfn | Structured version Visualization version GIF version | ||
| Description: The identity arrow operator is a function from objects to arrows. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| cidfn.b | ⊢ 𝐵 = (Base‘𝐶) |
| cidfn.i | ⊢ 1 = (Id‘𝐶) |
| Ref | Expression |
|---|---|
| cidfn | ⊢ (𝐶 ∈ Cat → 1 Fn 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotaex 7371 | . . 3 ⊢ (℩𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓)) ∈ V | |
| 2 | eqid 2736 | . . 3 ⊢ (𝑥 ∈ 𝐵 ↦ (℩𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓))) = (𝑥 ∈ 𝐵 ↦ (℩𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓))) | |
| 3 | 1, 2 | fnmpti 6686 | . 2 ⊢ (𝑥 ∈ 𝐵 ↦ (℩𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓))) Fn 𝐵 |
| 4 | cidfn.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 5 | eqid 2736 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 6 | eqid 2736 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 7 | id 22 | . . . 4 ⊢ (𝐶 ∈ Cat → 𝐶 ∈ Cat) | |
| 8 | cidfn.i | . . . 4 ⊢ 1 = (Id‘𝐶) | |
| 9 | 4, 5, 6, 7, 8 | cidfval 17693 | . . 3 ⊢ (𝐶 ∈ Cat → 1 = (𝑥 ∈ 𝐵 ↦ (℩𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓)))) |
| 10 | 9 | fneq1d 6636 | . 2 ⊢ (𝐶 ∈ Cat → ( 1 Fn 𝐵 ↔ (𝑥 ∈ 𝐵 ↦ (℩𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓))) Fn 𝐵)) |
| 11 | 3, 10 | mpbiri 258 | 1 ⊢ (𝐶 ∈ Cat → 1 Fn 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 〈cop 4612 ↦ cmpt 5206 Fn wfn 6531 ‘cfv 6536 ℩crio 7366 (class class class)co 7410 Basecbs 17233 Hom chom 17287 compcco 17288 Catccat 17681 Idccid 17682 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-cid 17686 |
| This theorem is referenced by: oppccatid 17736 fucidcl 17986 fucsect 17993 curfcl 18249 curf2ndf 18264 fucoid 49226 |
| Copyright terms: Public domain | W3C validator |