MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpfii Structured version   Visualization version   GIF version

Theorem cmpfii 23418
Description: In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
cmpfii ((𝐽 ∈ Comp ∧ 𝑋 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑋)) → 𝑋 ≠ ∅)

Proof of Theorem cmpfii
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvex 6918 . . . . 5 (Clsd‘𝐽) ∈ V
21elpw2 5333 . . . 4 (𝑋 ∈ 𝒫 (Clsd‘𝐽) ↔ 𝑋 ⊆ (Clsd‘𝐽))
32biimpri 228 . . 3 (𝑋 ⊆ (Clsd‘𝐽) → 𝑋 ∈ 𝒫 (Clsd‘𝐽))
4 cmptop 23404 . . . . 5 (𝐽 ∈ Comp → 𝐽 ∈ Top)
5 cmpfi 23417 . . . . 5 (𝐽 ∈ Top → (𝐽 ∈ Comp ↔ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅)))
64, 5syl 17 . . . 4 (𝐽 ∈ Comp → (𝐽 ∈ Comp ↔ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅)))
76ibi 267 . . 3 (𝐽 ∈ Comp → ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅))
8 fveq2 6905 . . . . . . 7 (𝑥 = 𝑋 → (fi‘𝑥) = (fi‘𝑋))
98eleq2d 2826 . . . . . 6 (𝑥 = 𝑋 → (∅ ∈ (fi‘𝑥) ↔ ∅ ∈ (fi‘𝑋)))
109notbid 318 . . . . 5 (𝑥 = 𝑋 → (¬ ∅ ∈ (fi‘𝑥) ↔ ¬ ∅ ∈ (fi‘𝑋)))
11 inteq 4948 . . . . . 6 (𝑥 = 𝑋 𝑥 = 𝑋)
1211neeq1d 2999 . . . . 5 (𝑥 = 𝑋 → ( 𝑥 ≠ ∅ ↔ 𝑋 ≠ ∅))
1310, 12imbi12d 344 . . . 4 (𝑥 = 𝑋 → ((¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅) ↔ (¬ ∅ ∈ (fi‘𝑋) → 𝑋 ≠ ∅)))
1413rspcva 3619 . . 3 ((𝑋 ∈ 𝒫 (Clsd‘𝐽) ∧ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅)) → (¬ ∅ ∈ (fi‘𝑋) → 𝑋 ≠ ∅))
153, 7, 14syl2anr 597 . 2 ((𝐽 ∈ Comp ∧ 𝑋 ⊆ (Clsd‘𝐽)) → (¬ ∅ ∈ (fi‘𝑋) → 𝑋 ≠ ∅))
16153impia 1117 1 ((𝐽 ∈ Comp ∧ 𝑋 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑋)) → 𝑋 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  w3a 1086   = wceq 1539  wcel 2107  wne 2939  wral 3060  wss 3950  c0 4332  𝒫 cpw 4599   cint 4945  cfv 6560  ficfi 9451  Topctop 22900  Clsdccld 23025  Compccmp 23395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-om 7889  df-1o 8507  df-en 8987  df-dom 8988  df-fin 8990  df-fi 9452  df-top 22901  df-cld 23028  df-cmp 23396
This theorem is referenced by:  fclscmpi  24038  cmpfiiin  42713
  Copyright terms: Public domain W3C validator