![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cmpfii | Structured version Visualization version GIF version |
Description: In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
cmpfii | ⊢ ((𝐽 ∈ Comp ∧ 𝑋 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑋)) → ∩ 𝑋 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6920 | . . . . 5 ⊢ (Clsd‘𝐽) ∈ V | |
2 | 1 | elpw2 5340 | . . . 4 ⊢ (𝑋 ∈ 𝒫 (Clsd‘𝐽) ↔ 𝑋 ⊆ (Clsd‘𝐽)) |
3 | 2 | biimpri 228 | . . 3 ⊢ (𝑋 ⊆ (Clsd‘𝐽) → 𝑋 ∈ 𝒫 (Clsd‘𝐽)) |
4 | cmptop 23419 | . . . . 5 ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) | |
5 | cmpfi 23432 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝐽 ∈ Comp ↔ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → ∩ 𝑥 ≠ ∅))) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝐽 ∈ Comp → (𝐽 ∈ Comp ↔ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → ∩ 𝑥 ≠ ∅))) |
7 | 6 | ibi 267 | . . 3 ⊢ (𝐽 ∈ Comp → ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → ∩ 𝑥 ≠ ∅)) |
8 | fveq2 6907 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (fi‘𝑥) = (fi‘𝑋)) | |
9 | 8 | eleq2d 2825 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (∅ ∈ (fi‘𝑥) ↔ ∅ ∈ (fi‘𝑋))) |
10 | 9 | notbid 318 | . . . . 5 ⊢ (𝑥 = 𝑋 → (¬ ∅ ∈ (fi‘𝑥) ↔ ¬ ∅ ∈ (fi‘𝑋))) |
11 | inteq 4954 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ∩ 𝑥 = ∩ 𝑋) | |
12 | 11 | neeq1d 2998 | . . . . 5 ⊢ (𝑥 = 𝑋 → (∩ 𝑥 ≠ ∅ ↔ ∩ 𝑋 ≠ ∅)) |
13 | 10, 12 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝑋 → ((¬ ∅ ∈ (fi‘𝑥) → ∩ 𝑥 ≠ ∅) ↔ (¬ ∅ ∈ (fi‘𝑋) → ∩ 𝑋 ≠ ∅))) |
14 | 13 | rspcva 3620 | . . 3 ⊢ ((𝑋 ∈ 𝒫 (Clsd‘𝐽) ∧ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → ∩ 𝑥 ≠ ∅)) → (¬ ∅ ∈ (fi‘𝑋) → ∩ 𝑋 ≠ ∅)) |
15 | 3, 7, 14 | syl2anr 597 | . 2 ⊢ ((𝐽 ∈ Comp ∧ 𝑋 ⊆ (Clsd‘𝐽)) → (¬ ∅ ∈ (fi‘𝑋) → ∩ 𝑋 ≠ ∅)) |
16 | 15 | 3impia 1116 | 1 ⊢ ((𝐽 ∈ Comp ∧ 𝑋 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑋)) → ∩ 𝑋 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 ⊆ wss 3963 ∅c0 4339 𝒫 cpw 4605 ∩ cint 4951 ‘cfv 6563 ficfi 9448 Topctop 22915 Clsdccld 23040 Compccmp 23410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-om 7888 df-1o 8505 df-en 8985 df-dom 8986 df-fin 8988 df-fi 9449 df-top 22916 df-cld 23043 df-cmp 23411 |
This theorem is referenced by: fclscmpi 24053 cmpfiiin 42685 |
Copyright terms: Public domain | W3C validator |