MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpfii Structured version   Visualization version   GIF version

Theorem cmpfii 22260
Description: In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
cmpfii ((𝐽 ∈ Comp ∧ 𝑋 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑋)) → 𝑋 ≠ ∅)

Proof of Theorem cmpfii
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvex 6708 . . . . 5 (Clsd‘𝐽) ∈ V
21elpw2 5223 . . . 4 (𝑋 ∈ 𝒫 (Clsd‘𝐽) ↔ 𝑋 ⊆ (Clsd‘𝐽))
32biimpri 231 . . 3 (𝑋 ⊆ (Clsd‘𝐽) → 𝑋 ∈ 𝒫 (Clsd‘𝐽))
4 cmptop 22246 . . . . 5 (𝐽 ∈ Comp → 𝐽 ∈ Top)
5 cmpfi 22259 . . . . 5 (𝐽 ∈ Top → (𝐽 ∈ Comp ↔ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅)))
64, 5syl 17 . . . 4 (𝐽 ∈ Comp → (𝐽 ∈ Comp ↔ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅)))
76ibi 270 . . 3 (𝐽 ∈ Comp → ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅))
8 fveq2 6695 . . . . . . 7 (𝑥 = 𝑋 → (fi‘𝑥) = (fi‘𝑋))
98eleq2d 2816 . . . . . 6 (𝑥 = 𝑋 → (∅ ∈ (fi‘𝑥) ↔ ∅ ∈ (fi‘𝑋)))
109notbid 321 . . . . 5 (𝑥 = 𝑋 → (¬ ∅ ∈ (fi‘𝑥) ↔ ¬ ∅ ∈ (fi‘𝑋)))
11 inteq 4848 . . . . . 6 (𝑥 = 𝑋 𝑥 = 𝑋)
1211neeq1d 2991 . . . . 5 (𝑥 = 𝑋 → ( 𝑥 ≠ ∅ ↔ 𝑋 ≠ ∅))
1310, 12imbi12d 348 . . . 4 (𝑥 = 𝑋 → ((¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅) ↔ (¬ ∅ ∈ (fi‘𝑋) → 𝑋 ≠ ∅)))
1413rspcva 3525 . . 3 ((𝑋 ∈ 𝒫 (Clsd‘𝐽) ∧ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅)) → (¬ ∅ ∈ (fi‘𝑋) → 𝑋 ≠ ∅))
153, 7, 14syl2anr 600 . 2 ((𝐽 ∈ Comp ∧ 𝑋 ⊆ (Clsd‘𝐽)) → (¬ ∅ ∈ (fi‘𝑋) → 𝑋 ≠ ∅))
16153impia 1119 1 ((𝐽 ∈ Comp ∧ 𝑋 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑋)) → 𝑋 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  w3a 1089   = wceq 1543  wcel 2112  wne 2932  wral 3051  wss 3853  c0 4223  𝒫 cpw 4499   cint 4845  cfv 6358  ficfi 9004  Topctop 21744  Clsdccld 21867  Compccmp 22237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-om 7623  df-1o 8180  df-en 8605  df-fin 8608  df-fi 9005  df-top 21745  df-cld 21870  df-cmp 22238
This theorem is referenced by:  fclscmpi  22880  cmpfiiin  40163
  Copyright terms: Public domain W3C validator