MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpfii Structured version   Visualization version   GIF version

Theorem cmpfii 21430
Description: In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
cmpfii ((𝐽 ∈ Comp ∧ 𝑋 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑋)) → 𝑋 ≠ ∅)

Proof of Theorem cmpfii
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvex 6424 . . . . 5 (Clsd‘𝐽) ∈ V
21elpw2 5027 . . . 4 (𝑋 ∈ 𝒫 (Clsd‘𝐽) ↔ 𝑋 ⊆ (Clsd‘𝐽))
32biimpri 219 . . 3 (𝑋 ⊆ (Clsd‘𝐽) → 𝑋 ∈ 𝒫 (Clsd‘𝐽))
4 cmptop 21416 . . . . 5 (𝐽 ∈ Comp → 𝐽 ∈ Top)
5 cmpfi 21429 . . . . 5 (𝐽 ∈ Top → (𝐽 ∈ Comp ↔ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅)))
64, 5syl 17 . . . 4 (𝐽 ∈ Comp → (𝐽 ∈ Comp ↔ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅)))
76ibi 258 . . 3 (𝐽 ∈ Comp → ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅))
8 fveq2 6411 . . . . . . 7 (𝑥 = 𝑋 → (fi‘𝑥) = (fi‘𝑋))
98eleq2d 2878 . . . . . 6 (𝑥 = 𝑋 → (∅ ∈ (fi‘𝑥) ↔ ∅ ∈ (fi‘𝑋)))
109notbid 309 . . . . 5 (𝑥 = 𝑋 → (¬ ∅ ∈ (fi‘𝑥) ↔ ¬ ∅ ∈ (fi‘𝑋)))
11 inteq 4679 . . . . . 6 (𝑥 = 𝑋 𝑥 = 𝑋)
1211neeq1d 3044 . . . . 5 (𝑥 = 𝑋 → ( 𝑥 ≠ ∅ ↔ 𝑋 ≠ ∅))
1310, 12imbi12d 335 . . . 4 (𝑥 = 𝑋 → ((¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅) ↔ (¬ ∅ ∈ (fi‘𝑋) → 𝑋 ≠ ∅)))
1413rspcva 3507 . . 3 ((𝑋 ∈ 𝒫 (Clsd‘𝐽) ∧ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅)) → (¬ ∅ ∈ (fi‘𝑋) → 𝑋 ≠ ∅))
153, 7, 14syl2anr 586 . 2 ((𝐽 ∈ Comp ∧ 𝑋 ⊆ (Clsd‘𝐽)) → (¬ ∅ ∈ (fi‘𝑋) → 𝑋 ≠ ∅))
16153impia 1138 1 ((𝐽 ∈ Comp ∧ 𝑋 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑋)) → 𝑋 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  w3a 1100   = wceq 1637  wcel 2157  wne 2985  wral 3103  wss 3776  c0 4123  𝒫 cpw 4358   cint 4676  cfv 6104  ficfi 8558  Topctop 20915  Clsdccld 21038  Compccmp 21407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-sep 4982  ax-nul 4990  ax-pow 5042  ax-pr 5103  ax-un 7182
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2638  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ne 2986  df-ral 3108  df-rex 3109  df-reu 3110  df-rab 3112  df-v 3400  df-sbc 3641  df-csb 3736  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-pss 3792  df-nul 4124  df-if 4287  df-pw 4360  df-sn 4378  df-pr 4380  df-tp 4382  df-op 4384  df-uni 4638  df-int 4677  df-iun 4721  df-iin 4722  df-br 4852  df-opab 4914  df-mpt 4931  df-tr 4954  df-id 5226  df-eprel 5231  df-po 5239  df-so 5240  df-fr 5277  df-we 5279  df-xp 5324  df-rel 5325  df-cnv 5326  df-co 5327  df-dm 5328  df-rn 5329  df-res 5330  df-ima 5331  df-pred 5900  df-ord 5946  df-on 5947  df-lim 5948  df-suc 5949  df-iota 6067  df-fun 6106  df-fn 6107  df-f 6108  df-f1 6109  df-fo 6110  df-f1o 6111  df-fv 6112  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-om 7299  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-2o 7800  df-oadd 7803  df-er 7982  df-map 8097  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-fi 8559  df-top 20916  df-cld 21041  df-cmp 21408
This theorem is referenced by:  fclscmpi  22050  cmpfiiin  37763
  Copyright terms: Public domain W3C validator