| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmpfii | Structured version Visualization version GIF version | ||
| Description: In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| Ref | Expression |
|---|---|
| cmpfii | ⊢ ((𝐽 ∈ Comp ∧ 𝑋 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑋)) → ∩ 𝑋 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6830 | . . . . 5 ⊢ (Clsd‘𝐽) ∈ V | |
| 2 | 1 | elpw2 5270 | . . . 4 ⊢ (𝑋 ∈ 𝒫 (Clsd‘𝐽) ↔ 𝑋 ⊆ (Clsd‘𝐽)) |
| 3 | 2 | biimpri 228 | . . 3 ⊢ (𝑋 ⊆ (Clsd‘𝐽) → 𝑋 ∈ 𝒫 (Clsd‘𝐽)) |
| 4 | cmptop 23303 | . . . . 5 ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) | |
| 5 | cmpfi 23316 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝐽 ∈ Comp ↔ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → ∩ 𝑥 ≠ ∅))) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝐽 ∈ Comp → (𝐽 ∈ Comp ↔ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → ∩ 𝑥 ≠ ∅))) |
| 7 | 6 | ibi 267 | . . 3 ⊢ (𝐽 ∈ Comp → ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → ∩ 𝑥 ≠ ∅)) |
| 8 | fveq2 6817 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (fi‘𝑥) = (fi‘𝑋)) | |
| 9 | 8 | eleq2d 2815 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (∅ ∈ (fi‘𝑥) ↔ ∅ ∈ (fi‘𝑋))) |
| 10 | 9 | notbid 318 | . . . . 5 ⊢ (𝑥 = 𝑋 → (¬ ∅ ∈ (fi‘𝑥) ↔ ¬ ∅ ∈ (fi‘𝑋))) |
| 11 | inteq 4898 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ∩ 𝑥 = ∩ 𝑋) | |
| 12 | 11 | neeq1d 2985 | . . . . 5 ⊢ (𝑥 = 𝑋 → (∩ 𝑥 ≠ ∅ ↔ ∩ 𝑋 ≠ ∅)) |
| 13 | 10, 12 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝑋 → ((¬ ∅ ∈ (fi‘𝑥) → ∩ 𝑥 ≠ ∅) ↔ (¬ ∅ ∈ (fi‘𝑋) → ∩ 𝑋 ≠ ∅))) |
| 14 | 13 | rspcva 3573 | . . 3 ⊢ ((𝑋 ∈ 𝒫 (Clsd‘𝐽) ∧ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → ∩ 𝑥 ≠ ∅)) → (¬ ∅ ∈ (fi‘𝑋) → ∩ 𝑋 ≠ ∅)) |
| 15 | 3, 7, 14 | syl2anr 597 | . 2 ⊢ ((𝐽 ∈ Comp ∧ 𝑋 ⊆ (Clsd‘𝐽)) → (¬ ∅ ∈ (fi‘𝑋) → ∩ 𝑋 ≠ ∅)) |
| 16 | 15 | 3impia 1117 | 1 ⊢ ((𝐽 ∈ Comp ∧ 𝑋 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑋)) → ∩ 𝑋 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 ∀wral 3045 ⊆ wss 3900 ∅c0 4281 𝒫 cpw 4548 ∩ cint 4895 ‘cfv 6477 ficfi 9289 Topctop 22801 Clsdccld 22924 Compccmp 23294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-om 7792 df-1o 8380 df-en 8865 df-dom 8866 df-fin 8868 df-fi 9290 df-top 22802 df-cld 22927 df-cmp 23295 |
| This theorem is referenced by: fclscmpi 23937 cmpfiiin 42709 |
| Copyright terms: Public domain | W3C validator |