| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmpfii | Structured version Visualization version GIF version | ||
| Description: In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| Ref | Expression |
|---|---|
| cmpfii | ⊢ ((𝐽 ∈ Comp ∧ 𝑋 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑋)) → ∩ 𝑋 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6871 | . . . . 5 ⊢ (Clsd‘𝐽) ∈ V | |
| 2 | 1 | elpw2 5289 | . . . 4 ⊢ (𝑋 ∈ 𝒫 (Clsd‘𝐽) ↔ 𝑋 ⊆ (Clsd‘𝐽)) |
| 3 | 2 | biimpri 228 | . . 3 ⊢ (𝑋 ⊆ (Clsd‘𝐽) → 𝑋 ∈ 𝒫 (Clsd‘𝐽)) |
| 4 | cmptop 23282 | . . . . 5 ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) | |
| 5 | cmpfi 23295 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝐽 ∈ Comp ↔ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → ∩ 𝑥 ≠ ∅))) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝐽 ∈ Comp → (𝐽 ∈ Comp ↔ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → ∩ 𝑥 ≠ ∅))) |
| 7 | 6 | ibi 267 | . . 3 ⊢ (𝐽 ∈ Comp → ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → ∩ 𝑥 ≠ ∅)) |
| 8 | fveq2 6858 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (fi‘𝑥) = (fi‘𝑋)) | |
| 9 | 8 | eleq2d 2814 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (∅ ∈ (fi‘𝑥) ↔ ∅ ∈ (fi‘𝑋))) |
| 10 | 9 | notbid 318 | . . . . 5 ⊢ (𝑥 = 𝑋 → (¬ ∅ ∈ (fi‘𝑥) ↔ ¬ ∅ ∈ (fi‘𝑋))) |
| 11 | inteq 4913 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ∩ 𝑥 = ∩ 𝑋) | |
| 12 | 11 | neeq1d 2984 | . . . . 5 ⊢ (𝑥 = 𝑋 → (∩ 𝑥 ≠ ∅ ↔ ∩ 𝑋 ≠ ∅)) |
| 13 | 10, 12 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝑋 → ((¬ ∅ ∈ (fi‘𝑥) → ∩ 𝑥 ≠ ∅) ↔ (¬ ∅ ∈ (fi‘𝑋) → ∩ 𝑋 ≠ ∅))) |
| 14 | 13 | rspcva 3586 | . . 3 ⊢ ((𝑋 ∈ 𝒫 (Clsd‘𝐽) ∧ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → ∩ 𝑥 ≠ ∅)) → (¬ ∅ ∈ (fi‘𝑋) → ∩ 𝑋 ≠ ∅)) |
| 15 | 3, 7, 14 | syl2anr 597 | . 2 ⊢ ((𝐽 ∈ Comp ∧ 𝑋 ⊆ (Clsd‘𝐽)) → (¬ ∅ ∈ (fi‘𝑋) → ∩ 𝑋 ≠ ∅)) |
| 16 | 15 | 3impia 1117 | 1 ⊢ ((𝐽 ∈ Comp ∧ 𝑋 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑋)) → ∩ 𝑋 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ⊆ wss 3914 ∅c0 4296 𝒫 cpw 4563 ∩ cint 4910 ‘cfv 6511 ficfi 9361 Topctop 22780 Clsdccld 22903 Compccmp 23273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-om 7843 df-1o 8434 df-en 8919 df-dom 8920 df-fin 8922 df-fi 9362 df-top 22781 df-cld 22906 df-cmp 23274 |
| This theorem is referenced by: fclscmpi 23916 cmpfiiin 42685 |
| Copyright terms: Public domain | W3C validator |