MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpfii Structured version   Visualization version   GIF version

Theorem cmpfii 21432
Description: In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
cmpfii ((𝐽 ∈ Comp ∧ 𝑋 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑋)) → 𝑋 ≠ ∅)

Proof of Theorem cmpfii
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvex 6342 . . . . 5 (Clsd‘𝐽) ∈ V
21elpw2 4956 . . . 4 (𝑋 ∈ 𝒫 (Clsd‘𝐽) ↔ 𝑋 ⊆ (Clsd‘𝐽))
32biimpri 218 . . 3 (𝑋 ⊆ (Clsd‘𝐽) → 𝑋 ∈ 𝒫 (Clsd‘𝐽))
4 cmptop 21418 . . . . 5 (𝐽 ∈ Comp → 𝐽 ∈ Top)
5 cmpfi 21431 . . . . 5 (𝐽 ∈ Top → (𝐽 ∈ Comp ↔ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅)))
64, 5syl 17 . . . 4 (𝐽 ∈ Comp → (𝐽 ∈ Comp ↔ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅)))
76ibi 256 . . 3 (𝐽 ∈ Comp → ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅))
8 fveq2 6332 . . . . . . 7 (𝑥 = 𝑋 → (fi‘𝑥) = (fi‘𝑋))
98eleq2d 2835 . . . . . 6 (𝑥 = 𝑋 → (∅ ∈ (fi‘𝑥) ↔ ∅ ∈ (fi‘𝑋)))
109notbid 307 . . . . 5 (𝑥 = 𝑋 → (¬ ∅ ∈ (fi‘𝑥) ↔ ¬ ∅ ∈ (fi‘𝑋)))
11 inteq 4612 . . . . . 6 (𝑥 = 𝑋 𝑥 = 𝑋)
1211neeq1d 3001 . . . . 5 (𝑥 = 𝑋 → ( 𝑥 ≠ ∅ ↔ 𝑋 ≠ ∅))
1310, 12imbi12d 333 . . . 4 (𝑥 = 𝑋 → ((¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅) ↔ (¬ ∅ ∈ (fi‘𝑋) → 𝑋 ≠ ∅)))
1413rspcva 3456 . . 3 ((𝑋 ∈ 𝒫 (Clsd‘𝐽) ∧ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅)) → (¬ ∅ ∈ (fi‘𝑋) → 𝑋 ≠ ∅))
153, 7, 14syl2anr 576 . 2 ((𝐽 ∈ Comp ∧ 𝑋 ⊆ (Clsd‘𝐽)) → (¬ ∅ ∈ (fi‘𝑋) → 𝑋 ≠ ∅))
16153impia 1108 1 ((𝐽 ∈ Comp ∧ 𝑋 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑋)) → 𝑋 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  w3a 1070   = wceq 1630  wcel 2144  wne 2942  wral 3060  wss 3721  c0 4061  𝒫 cpw 4295   cint 4609  cfv 6031  ficfi 8471  Topctop 20917  Clsdccld 21040  Compccmp 21409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-2o 7713  df-oadd 7716  df-er 7895  df-map 8010  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-fi 8472  df-top 20918  df-cld 21043  df-cmp 21410
This theorem is referenced by:  fclscmpi  22052  cmpfiiin  37779
  Copyright terms: Public domain W3C validator