MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evth Structured version   Visualization version   GIF version

Theorem evth 23557
Description: The Extreme Value Theorem. A continuous function from a nonempty compact topological space to the reals attains its maximum at some point in the domain. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
bndth.1 𝑋 = 𝐽
bndth.2 𝐾 = (topGen‘ran (,))
bndth.3 (𝜑𝐽 ∈ Comp)
bndth.4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
evth.5 (𝜑𝑋 ≠ ∅)
Assertion
Ref Expression
evth (𝜑 → ∃𝑥𝑋𝑦𝑋 (𝐹𝑦) ≤ (𝐹𝑥))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑦,𝐾   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝐽,𝑦
Allowed substitution hint:   𝐾(𝑥)

Proof of Theorem evth
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bndth.1 . . . . 5 𝑋 = 𝐽
2 bndth.2 . . . . 5 𝐾 = (topGen‘ran (,))
3 bndth.3 . . . . . 6 (𝜑𝐽 ∈ Comp)
43adantr 483 . . . . 5 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → 𝐽 ∈ Comp)
5 cmptop 21997 . . . . . . . . . 10 (𝐽 ∈ Comp → 𝐽 ∈ Top)
64, 5syl 17 . . . . . . . . 9 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → 𝐽 ∈ Top)
71toptopon 21519 . . . . . . . . 9 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
86, 7sylib 220 . . . . . . . 8 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → 𝐽 ∈ (TopOn‘𝑋))
9 eqid 2821 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
109cnfldtopon 23385 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
1110a1i 11 . . . . . . . . 9 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
12 1cnd 10630 . . . . . . . . 9 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → 1 ∈ ℂ)
138, 11, 12cnmptc 22264 . . . . . . . 8 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → (𝑧𝑋 ↦ 1) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
14 bndth.4 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
15 uniretop 23365 . . . . . . . . . . . . . . . . . . 19 ℝ = (topGen‘ran (,))
162unieqi 4841 . . . . . . . . . . . . . . . . . . 19 𝐾 = (topGen‘ran (,))
1715, 16eqtr4i 2847 . . . . . . . . . . . . . . . . . 18 ℝ = 𝐾
181, 17cnf 21848 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶ℝ)
1914, 18syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝑋⟶ℝ)
2019frnd 6516 . . . . . . . . . . . . . . 15 (𝜑 → ran 𝐹 ⊆ ℝ)
2119fdmd 6518 . . . . . . . . . . . . . . . . 17 (𝜑 → dom 𝐹 = 𝑋)
22 evth.5 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ≠ ∅)
2321, 22eqnetrd 3083 . . . . . . . . . . . . . . . 16 (𝜑 → dom 𝐹 ≠ ∅)
24 dm0rn0 5790 . . . . . . . . . . . . . . . . 17 (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅)
2524necon3bii 3068 . . . . . . . . . . . . . . . 16 (dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅)
2623, 25sylib 220 . . . . . . . . . . . . . . 15 (𝜑 → ran 𝐹 ≠ ∅)
271, 2, 3, 14bndth 23556 . . . . . . . . . . . . . . . 16 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥)
2819ffnd 6510 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 Fn 𝑋)
29 breq1 5062 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝐹𝑦) → (𝑧𝑥 ↔ (𝐹𝑦) ≤ 𝑥))
3029ralrn 6849 . . . . . . . . . . . . . . . . . 18 (𝐹 Fn 𝑋 → (∀𝑧 ∈ ran 𝐹 𝑧𝑥 ↔ ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥))
3128, 30syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (∀𝑧 ∈ ran 𝐹 𝑧𝑥 ↔ ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥))
3231rexbidv 3297 . . . . . . . . . . . . . . . 16 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥))
3327, 32mpbird 259 . . . . . . . . . . . . . . 15 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑥)
3420, 26, 333jca 1124 . . . . . . . . . . . . . 14 (𝜑 → (ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑥))
35 suprcl 11595 . . . . . . . . . . . . . 14 ((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑥) → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
3634, 35syl 17 . . . . . . . . . . . . 13 (𝜑 → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
3736recnd 10663 . . . . . . . . . . . 12 (𝜑 → sup(ran 𝐹, ℝ, < ) ∈ ℂ)
3837adantr 483 . . . . . . . . . . 11 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → sup(ran 𝐹, ℝ, < ) ∈ ℂ)
398, 11, 38cnmptc 22264 . . . . . . . . . 10 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → (𝑧𝑋 ↦ sup(ran 𝐹, ℝ, < )) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
4019feqmptd 6728 . . . . . . . . . . . 12 (𝜑𝐹 = (𝑧𝑋 ↦ (𝐹𝑧)))
419cnfldtop 23386 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) ∈ Top
42 cnrest2r 21889 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ∈ Top → (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ)) ⊆ (𝐽 Cn (TopOpen‘ℂfld)))
4341, 42ax-mp 5 . . . . . . . . . . . . 13 (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ)) ⊆ (𝐽 Cn (TopOpen‘ℂfld))
449tgioo2 23405 . . . . . . . . . . . . . . . 16 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
452, 44eqtri 2844 . . . . . . . . . . . . . . 15 𝐾 = ((TopOpen‘ℂfld) ↾t ℝ)
4645oveq2i 7161 . . . . . . . . . . . . . 14 (𝐽 Cn 𝐾) = (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))
4714, 46eleqtrdi 2923 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ)))
4843, 47sseldi 3965 . . . . . . . . . . . 12 (𝜑𝐹 ∈ (𝐽 Cn (TopOpen‘ℂfld)))
4940, 48eqeltrrd 2914 . . . . . . . . . . 11 (𝜑 → (𝑧𝑋 ↦ (𝐹𝑧)) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
5049adantr 483 . . . . . . . . . 10 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → (𝑧𝑋 ↦ (𝐹𝑧)) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
519subcn 23468 . . . . . . . . . . 11 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
5251a1i 11 . . . . . . . . . 10 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
538, 39, 50, 52cnmpt12f 22268 . . . . . . . . 9 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → (𝑧𝑋 ↦ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
5436ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑧𝑋) → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
55 ffvelrn 6844 . . . . . . . . . . . . . . . . . 18 ((𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )}) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )}))
5655adantll 712 . . . . . . . . . . . . . . . . 17 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )}))
57 eldifsn 4713 . . . . . . . . . . . . . . . . 17 ((𝐹𝑧) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )}) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) ≠ sup(ran 𝐹, ℝ, < )))
5856, 57sylib 220 . . . . . . . . . . . . . . . 16 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑧𝑋) → ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) ≠ sup(ran 𝐹, ℝ, < )))
5958simpld 497 . . . . . . . . . . . . . . 15 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ℝ)
6054, 59resubcld 11062 . . . . . . . . . . . . . 14 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑧𝑋) → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)) ∈ ℝ)
6160recnd 10663 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑧𝑋) → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)) ∈ ℂ)
6254recnd 10663 . . . . . . . . . . . . . 14 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑧𝑋) → sup(ran 𝐹, ℝ, < ) ∈ ℂ)
6359recnd 10663 . . . . . . . . . . . . . 14 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ℂ)
6458simprd 498 . . . . . . . . . . . . . . 15 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑧𝑋) → (𝐹𝑧) ≠ sup(ran 𝐹, ℝ, < ))
6564necomd 3071 . . . . . . . . . . . . . 14 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑧𝑋) → sup(ran 𝐹, ℝ, < ) ≠ (𝐹𝑧))
6662, 63, 65subne0d 11000 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑧𝑋) → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)) ≠ 0)
67 eldifsn 4713 . . . . . . . . . . . . 13 ((sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)) ∈ (ℂ ∖ {0}) ↔ ((sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)) ∈ ℂ ∧ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)) ≠ 0))
6861, 66, 67sylanbrc 585 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑧𝑋) → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)) ∈ (ℂ ∖ {0}))
6968fmpttd 6874 . . . . . . . . . . 11 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → (𝑧𝑋 ↦ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))):𝑋⟶(ℂ ∖ {0}))
7069frnd 6516 . . . . . . . . . 10 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → ran (𝑧𝑋 ↦ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))) ⊆ (ℂ ∖ {0}))
71 difssd 4109 . . . . . . . . . 10 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → (ℂ ∖ {0}) ⊆ ℂ)
72 cnrest2 21888 . . . . . . . . . 10 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑧𝑋 ↦ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))) ⊆ (ℂ ∖ {0}) ∧ (ℂ ∖ {0}) ⊆ ℂ) → ((𝑧𝑋 ↦ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ (𝑧𝑋 ↦ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})))))
7311, 70, 71, 72syl3anc 1367 . . . . . . . . 9 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → ((𝑧𝑋 ↦ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ (𝑧𝑋 ↦ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})))))
7453, 73mpbid 234 . . . . . . . 8 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → (𝑧𝑋 ↦ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))))
75 eqid 2821 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})) = ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))
769, 75divcn 23470 . . . . . . . . 9 / ∈ (((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) Cn (TopOpen‘ℂfld))
7776a1i 11 . . . . . . . 8 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → / ∈ (((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) Cn (TopOpen‘ℂfld)))
788, 13, 74, 77cnmpt12f 22268 . . . . . . 7 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → (𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)))) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
7960, 66rereccld 11461 . . . . . . . . . 10 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑧𝑋) → (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))) ∈ ℝ)
8079fmpttd 6874 . . . . . . . . 9 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → (𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)))):𝑋⟶ℝ)
8180frnd 6516 . . . . . . . 8 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → ran (𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)))) ⊆ ℝ)
82 ax-resscn 10588 . . . . . . . . 9 ℝ ⊆ ℂ
8382a1i 11 . . . . . . . 8 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → ℝ ⊆ ℂ)
84 cnrest2 21888 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)))) ⊆ ℝ ∧ ℝ ⊆ ℂ) → ((𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)))) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ (𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)))) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
8511, 81, 83, 84syl3anc 1367 . . . . . . 7 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → ((𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)))) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ (𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)))) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
8678, 85mpbid 234 . . . . . 6 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → (𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)))) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ)))
8786, 46eleqtrrdi 2924 . . . . 5 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → (𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)))) ∈ (𝐽 Cn 𝐾))
881, 2, 4, 87bndth 23556 . . . 4 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → ∃𝑥 ∈ ℝ ∀𝑦𝑋 ((𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))))‘𝑦) ≤ 𝑥)
8936ad2antrr 724 . . . . . . . 8 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
90 simpr 487 . . . . . . . . . . 11 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
91 1re 10635 . . . . . . . . . . 11 1 ∈ ℝ
92 ifcl 4511 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 1 ∈ ℝ) → if(1 ≤ 𝑥, 𝑥, 1) ∈ ℝ)
9390, 91, 92sylancl 588 . . . . . . . . . 10 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → if(1 ≤ 𝑥, 𝑥, 1) ∈ ℝ)
94 0red 10638 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → 0 ∈ ℝ)
9591a1i 11 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℝ)
96 0lt1 11156 . . . . . . . . . . . . 13 0 < 1
9796a1i 11 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → 0 < 1)
98 max1 12572 . . . . . . . . . . . . 13 ((1 ∈ ℝ ∧ 𝑥 ∈ ℝ) → 1 ≤ if(1 ≤ 𝑥, 𝑥, 1))
9991, 90, 98sylancr 589 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → 1 ≤ if(1 ≤ 𝑥, 𝑥, 1))
10094, 95, 93, 97, 99ltletrd 10794 . . . . . . . . . . 11 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → 0 < if(1 ≤ 𝑥, 𝑥, 1))
101100gt0ne0d 11198 . . . . . . . . . 10 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → if(1 ≤ 𝑥, 𝑥, 1) ≠ 0)
10293, 101rereccld 11461 . . . . . . . . 9 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → (1 / if(1 ≤ 𝑥, 𝑥, 1)) ∈ ℝ)
10393, 100recgt0d 11568 . . . . . . . . 9 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → 0 < (1 / if(1 ≤ 𝑥, 𝑥, 1)))
104102, 103elrpd 12422 . . . . . . . 8 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → (1 / if(1 ≤ 𝑥, 𝑥, 1)) ∈ ℝ+)
10589, 104ltsubrpd 12457 . . . . . . 7 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1))) < sup(ran 𝐹, ℝ, < ))
10689, 102resubcld 11062 . . . . . . . 8 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1))) ∈ ℝ)
107106, 89ltnled 10781 . . . . . . 7 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → ((sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1))) < sup(ran 𝐹, ℝ, < ) ↔ ¬ sup(ran 𝐹, ℝ, < ) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
108105, 107mpbid 234 . . . . . 6 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → ¬ sup(ran 𝐹, ℝ, < ) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1))))
109 simprl 769 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → 𝑥 ∈ ℝ)
110 max2 12574 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ 𝑥 ∈ ℝ) → 𝑥 ≤ if(1 ≤ 𝑥, 𝑥, 1))
11191, 109, 110sylancr 589 . . . . . . . . . . 11 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → 𝑥 ≤ if(1 ≤ 𝑥, 𝑥, 1))
11236ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
113 ffvelrn 6844 . . . . . . . . . . . . . . . . 17 ((𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )}) ∧ 𝑦𝑋) → (𝐹𝑦) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )}))
114113ad2ant2l 744 . . . . . . . . . . . . . . . 16 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → (𝐹𝑦) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )}))
115 eldifsn 4713 . . . . . . . . . . . . . . . 16 ((𝐹𝑦) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )}) ↔ ((𝐹𝑦) ∈ ℝ ∧ (𝐹𝑦) ≠ sup(ran 𝐹, ℝ, < )))
116114, 115sylib 220 . . . . . . . . . . . . . . 15 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → ((𝐹𝑦) ∈ ℝ ∧ (𝐹𝑦) ≠ sup(ran 𝐹, ℝ, < )))
117116simpld 497 . . . . . . . . . . . . . 14 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → (𝐹𝑦) ∈ ℝ)
118112, 117resubcld 11062 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦)) ∈ ℝ)
119 fnfvelrn 6843 . . . . . . . . . . . . . . . . . . 19 ((𝐹 Fn 𝑋𝑦𝑋) → (𝐹𝑦) ∈ ran 𝐹)
12028, 119sylan 582 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦𝑋) → (𝐹𝑦) ∈ ran 𝐹)
121 suprub 11596 . . . . . . . . . . . . . . . . . 18 (((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑥) ∧ (𝐹𝑦) ∈ ran 𝐹) → (𝐹𝑦) ≤ sup(ran 𝐹, ℝ, < ))
12234, 120, 121syl2an2r 683 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝑋) → (𝐹𝑦) ≤ sup(ran 𝐹, ℝ, < ))
123122ad2ant2rl 747 . . . . . . . . . . . . . . . 16 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → (𝐹𝑦) ≤ sup(ran 𝐹, ℝ, < ))
124116simprd 498 . . . . . . . . . . . . . . . . 17 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → (𝐹𝑦) ≠ sup(ran 𝐹, ℝ, < ))
125124necomd 3071 . . . . . . . . . . . . . . . 16 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → sup(ran 𝐹, ℝ, < ) ≠ (𝐹𝑦))
126117, 112, 123, 125leneltd 10788 . . . . . . . . . . . . . . 15 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → (𝐹𝑦) < sup(ran 𝐹, ℝ, < ))
127117, 112posdifd 11221 . . . . . . . . . . . . . . 15 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → ((𝐹𝑦) < sup(ran 𝐹, ℝ, < ) ↔ 0 < (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))))
128126, 127mpbid 234 . . . . . . . . . . . . . 14 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → 0 < (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦)))
129128gt0ne0d 11198 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦)) ≠ 0)
130118, 129rereccld 11461 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ∈ ℝ)
131109, 91, 92sylancl 588 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → if(1 ≤ 𝑥, 𝑥, 1) ∈ ℝ)
132 letr 10728 . . . . . . . . . . . 12 (((1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ if(1 ≤ 𝑥, 𝑥, 1) ∈ ℝ) → (((1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ≤ 𝑥𝑥 ≤ if(1 ≤ 𝑥, 𝑥, 1)) → (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ≤ if(1 ≤ 𝑥, 𝑥, 1)))
133130, 109, 131, 132syl3anc 1367 . . . . . . . . . . 11 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → (((1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ≤ 𝑥𝑥 ≤ if(1 ≤ 𝑥, 𝑥, 1)) → (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ≤ if(1 ≤ 𝑥, 𝑥, 1)))
134111, 133mpan2d 692 . . . . . . . . . 10 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → ((1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ≤ 𝑥 → (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ≤ if(1 ≤ 𝑥, 𝑥, 1)))
135 fveq2 6665 . . . . . . . . . . . . . . 15 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
136135oveq2d 7166 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)) = (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦)))
137136oveq2d 7166 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))) = (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))))
138 eqid 2821 . . . . . . . . . . . . 13 (𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)))) = (𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))))
139 ovex 7183 . . . . . . . . . . . . 13 (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ∈ V
140137, 138, 139fvmpt 6763 . . . . . . . . . . . 12 (𝑦𝑋 → ((𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))))‘𝑦) = (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))))
141140breq1d 5069 . . . . . . . . . . 11 (𝑦𝑋 → (((𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))))‘𝑦) ≤ 𝑥 ↔ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ≤ 𝑥))
142141ad2antll 727 . . . . . . . . . 10 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → (((𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))))‘𝑦) ≤ 𝑥 ↔ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ≤ 𝑥))
143102adantrr 715 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → (1 / if(1 ≤ 𝑥, 𝑥, 1)) ∈ ℝ)
144100adantrr 715 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → 0 < if(1 ≤ 𝑥, 𝑥, 1))
145131, 144recgt0d 11568 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → 0 < (1 / if(1 ≤ 𝑥, 𝑥, 1)))
146 lerec 11517 . . . . . . . . . . . 12 ((((1 / if(1 ≤ 𝑥, 𝑥, 1)) ∈ ℝ ∧ 0 < (1 / if(1 ≤ 𝑥, 𝑥, 1))) ∧ ((sup(ran 𝐹, ℝ, < ) − (𝐹𝑦)) ∈ ℝ ∧ 0 < (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦)))) → ((1 / if(1 ≤ 𝑥, 𝑥, 1)) ≤ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦)) ↔ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ≤ (1 / (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
147143, 145, 118, 128, 146syl22anc 836 . . . . . . . . . . 11 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → ((1 / if(1 ≤ 𝑥, 𝑥, 1)) ≤ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦)) ↔ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ≤ (1 / (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
148 lesub 11113 . . . . . . . . . . . 12 (((1 / if(1 ≤ 𝑥, 𝑥, 1)) ∈ ℝ ∧ sup(ran 𝐹, ℝ, < ) ∈ ℝ ∧ (𝐹𝑦) ∈ ℝ) → ((1 / if(1 ≤ 𝑥, 𝑥, 1)) ≤ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦)) ↔ (𝐹𝑦) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
149143, 112, 117, 148syl3anc 1367 . . . . . . . . . . 11 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → ((1 / if(1 ≤ 𝑥, 𝑥, 1)) ≤ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦)) ↔ (𝐹𝑦) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
150131recnd 10663 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → if(1 ≤ 𝑥, 𝑥, 1) ∈ ℂ)
151101adantrr 715 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → if(1 ≤ 𝑥, 𝑥, 1) ≠ 0)
152150, 151recrecd 11407 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → (1 / (1 / if(1 ≤ 𝑥, 𝑥, 1))) = if(1 ≤ 𝑥, 𝑥, 1))
153152breq2d 5071 . . . . . . . . . . 11 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → ((1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ≤ (1 / (1 / if(1 ≤ 𝑥, 𝑥, 1))) ↔ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ≤ if(1 ≤ 𝑥, 𝑥, 1)))
154147, 149, 1533bitr3d 311 . . . . . . . . . 10 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → ((𝐹𝑦) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1))) ↔ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ≤ if(1 ≤ 𝑥, 𝑥, 1)))
155134, 142, 1543imtr4d 296 . . . . . . . . 9 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → (((𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))))‘𝑦) ≤ 𝑥 → (𝐹𝑦) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
156155anassrs 470 . . . . . . . 8 ((((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) ∧ 𝑦𝑋) → (((𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))))‘𝑦) ≤ 𝑥 → (𝐹𝑦) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
157156ralimdva 3177 . . . . . . 7 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → (∀𝑦𝑋 ((𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))))‘𝑦) ≤ 𝑥 → ∀𝑦𝑋 (𝐹𝑦) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
15834ad2antrr 724 . . . . . . . . 9 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → (ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑥))
159 suprleub 11601 . . . . . . . . 9 (((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑥) ∧ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1))) ∈ ℝ) → (sup(ran 𝐹, ℝ, < ) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1))) ↔ ∀𝑧 ∈ ran 𝐹 𝑧 ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
160158, 106, 159syl2anc 586 . . . . . . . 8 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → (sup(ran 𝐹, ℝ, < ) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1))) ↔ ∀𝑧 ∈ ran 𝐹 𝑧 ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
16128ad2antrr 724 . . . . . . . . 9 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → 𝐹 Fn 𝑋)
162 breq1 5062 . . . . . . . . . 10 (𝑧 = (𝐹𝑦) → (𝑧 ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1))) ↔ (𝐹𝑦) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
163162ralrn 6849 . . . . . . . . 9 (𝐹 Fn 𝑋 → (∀𝑧 ∈ ran 𝐹 𝑧 ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1))) ↔ ∀𝑦𝑋 (𝐹𝑦) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
164161, 163syl 17 . . . . . . . 8 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → (∀𝑧 ∈ ran 𝐹 𝑧 ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1))) ↔ ∀𝑦𝑋 (𝐹𝑦) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
165160, 164bitrd 281 . . . . . . 7 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → (sup(ran 𝐹, ℝ, < ) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1))) ↔ ∀𝑦𝑋 (𝐹𝑦) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
166157, 165sylibrd 261 . . . . . 6 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → (∀𝑦𝑋 ((𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))))‘𝑦) ≤ 𝑥 → sup(ran 𝐹, ℝ, < ) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
167108, 166mtod 200 . . . . 5 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → ¬ ∀𝑦𝑋 ((𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))))‘𝑦) ≤ 𝑥)
168167nrexdv 3270 . . . 4 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → ¬ ∃𝑥 ∈ ℝ ∀𝑦𝑋 ((𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))))‘𝑦) ≤ 𝑥)
16988, 168pm2.65da 815 . . 3 (𝜑 → ¬ 𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )}))
170122ralrimiva 3182 . . . . . . . . 9 (𝜑 → ∀𝑦𝑋 (𝐹𝑦) ≤ sup(ran 𝐹, ℝ, < ))
171 breq2 5063 . . . . . . . . . 10 ((𝐹𝑥) = sup(ran 𝐹, ℝ, < ) → ((𝐹𝑦) ≤ (𝐹𝑥) ↔ (𝐹𝑦) ≤ sup(ran 𝐹, ℝ, < )))
172171ralbidv 3197 . . . . . . . . 9 ((𝐹𝑥) = sup(ran 𝐹, ℝ, < ) → (∀𝑦𝑋 (𝐹𝑦) ≤ (𝐹𝑥) ↔ ∀𝑦𝑋 (𝐹𝑦) ≤ sup(ran 𝐹, ℝ, < )))
173170, 172syl5ibrcom 249 . . . . . . . 8 (𝜑 → ((𝐹𝑥) = sup(ran 𝐹, ℝ, < ) → ∀𝑦𝑋 (𝐹𝑦) ≤ (𝐹𝑥)))
174173necon3bd 3030 . . . . . . 7 (𝜑 → (¬ ∀𝑦𝑋 (𝐹𝑦) ≤ (𝐹𝑥) → (𝐹𝑥) ≠ sup(ran 𝐹, ℝ, < )))
175174adantr 483 . . . . . 6 ((𝜑𝑥𝑋) → (¬ ∀𝑦𝑋 (𝐹𝑦) ≤ (𝐹𝑥) → (𝐹𝑥) ≠ sup(ran 𝐹, ℝ, < )))
17619ffvelrnda 6846 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℝ)
177 eldifsn 4713 . . . . . . . 8 ((𝐹𝑥) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )}) ↔ ((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑥) ≠ sup(ran 𝐹, ℝ, < )))
178177baib 538 . . . . . . 7 ((𝐹𝑥) ∈ ℝ → ((𝐹𝑥) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )}) ↔ (𝐹𝑥) ≠ sup(ran 𝐹, ℝ, < )))
179176, 178syl 17 . . . . . 6 ((𝜑𝑥𝑋) → ((𝐹𝑥) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )}) ↔ (𝐹𝑥) ≠ sup(ran 𝐹, ℝ, < )))
180175, 179sylibrd 261 . . . . 5 ((𝜑𝑥𝑋) → (¬ ∀𝑦𝑋 (𝐹𝑦) ≤ (𝐹𝑥) → (𝐹𝑥) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )})))
181180ralimdva 3177 . . . 4 (𝜑 → (∀𝑥𝑋 ¬ ∀𝑦𝑋 (𝐹𝑦) ≤ (𝐹𝑥) → ∀𝑥𝑋 (𝐹𝑥) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )})))
182 ffnfv 6877 . . . . . 6 (𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )}) ↔ (𝐹 Fn 𝑋 ∧ ∀𝑥𝑋 (𝐹𝑥) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )})))
183182baib 538 . . . . 5 (𝐹 Fn 𝑋 → (𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )}) ↔ ∀𝑥𝑋 (𝐹𝑥) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )})))
18428, 183syl 17 . . . 4 (𝜑 → (𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )}) ↔ ∀𝑥𝑋 (𝐹𝑥) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )})))
185181, 184sylibrd 261 . . 3 (𝜑 → (∀𝑥𝑋 ¬ ∀𝑦𝑋 (𝐹𝑦) ≤ (𝐹𝑥) → 𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})))
186169, 185mtod 200 . 2 (𝜑 → ¬ ∀𝑥𝑋 ¬ ∀𝑦𝑋 (𝐹𝑦) ≤ (𝐹𝑥))
187 dfrex2 3239 . 2 (∃𝑥𝑋𝑦𝑋 (𝐹𝑦) ≤ (𝐹𝑥) ↔ ¬ ∀𝑥𝑋 ¬ ∀𝑦𝑋 (𝐹𝑦) ≤ (𝐹𝑥))
188186, 187sylibr 236 1 (𝜑 → ∃𝑥𝑋𝑦𝑋 (𝐹𝑦) ≤ (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  cdif 3933  wss 3936  c0 4291  ifcif 4467  {csn 4561   cuni 4832   class class class wbr 5059  cmpt 5139  dom cdm 5550  ran crn 5551   Fn wfn 6345  wf 6346  cfv 6350  (class class class)co 7150  supcsup 8898  cc 10529  cr 10530  0cc0 10531  1c1 10532   < clt 10669  cle 10670  cmin 10864   / cdiv 11291  (,)cioo 12732  t crest 16688  TopOpenctopn 16689  topGenctg 16705  fldccnfld 20539  Topctop 21495  TopOnctopon 21512   Cn ccn 21826  Compccmp 21988   ×t ctx 22162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-icc 12739  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-mulg 18219  df-cntz 18441  df-cmn 18902  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cn 21829  df-cnp 21830  df-cmp 21989  df-tx 22164  df-hmeo 22357  df-xms 22924  df-ms 22925  df-tms 22926
This theorem is referenced by:  evth2  23558  evthicc  24054  evthf  41277  cncmpmax  41282
  Copyright terms: Public domain W3C validator