MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evth Structured version   Visualization version   GIF version

Theorem evth 25010
Description: The Extreme Value Theorem. A continuous function from a nonempty compact topological space to the reals attains its maximum at some point in the domain. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
bndth.1 𝑋 = 𝐽
bndth.2 𝐾 = (topGen‘ran (,))
bndth.3 (𝜑𝐽 ∈ Comp)
bndth.4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
evth.5 (𝜑𝑋 ≠ ∅)
Assertion
Ref Expression
evth (𝜑 → ∃𝑥𝑋𝑦𝑋 (𝐹𝑦) ≤ (𝐹𝑥))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑦,𝐾   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝐽,𝑦
Allowed substitution hint:   𝐾(𝑥)

Proof of Theorem evth
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bndth.1 . . . . 5 𝑋 = 𝐽
2 bndth.2 . . . . 5 𝐾 = (topGen‘ran (,))
3 bndth.3 . . . . . 6 (𝜑𝐽 ∈ Comp)
43adantr 480 . . . . 5 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → 𝐽 ∈ Comp)
5 cmptop 23424 . . . . . . . . . 10 (𝐽 ∈ Comp → 𝐽 ∈ Top)
64, 5syl 17 . . . . . . . . 9 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → 𝐽 ∈ Top)
71toptopon 22944 . . . . . . . . 9 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
86, 7sylib 218 . . . . . . . 8 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → 𝐽 ∈ (TopOn‘𝑋))
9 eqid 2740 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
109cnfldtopon 24824 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
1110a1i 11 . . . . . . . . 9 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
12 1cnd 11285 . . . . . . . . 9 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → 1 ∈ ℂ)
138, 11, 12cnmptc 23691 . . . . . . . 8 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → (𝑧𝑋 ↦ 1) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
14 bndth.4 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
15 uniretop 24804 . . . . . . . . . . . . . . . . . . 19 ℝ = (topGen‘ran (,))
162unieqi 4943 . . . . . . . . . . . . . . . . . . 19 𝐾 = (topGen‘ran (,))
1715, 16eqtr4i 2771 . . . . . . . . . . . . . . . . . 18 ℝ = 𝐾
181, 17cnf 23275 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶ℝ)
1914, 18syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝑋⟶ℝ)
2019frnd 6755 . . . . . . . . . . . . . . 15 (𝜑 → ran 𝐹 ⊆ ℝ)
2119fdmd 6757 . . . . . . . . . . . . . . . . 17 (𝜑 → dom 𝐹 = 𝑋)
22 evth.5 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ≠ ∅)
2321, 22eqnetrd 3014 . . . . . . . . . . . . . . . 16 (𝜑 → dom 𝐹 ≠ ∅)
24 dm0rn0 5949 . . . . . . . . . . . . . . . . 17 (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅)
2524necon3bii 2999 . . . . . . . . . . . . . . . 16 (dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅)
2623, 25sylib 218 . . . . . . . . . . . . . . 15 (𝜑 → ran 𝐹 ≠ ∅)
271, 2, 3, 14bndth 25009 . . . . . . . . . . . . . . . 16 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥)
2819ffnd 6748 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 Fn 𝑋)
29 breq1 5169 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝐹𝑦) → (𝑧𝑥 ↔ (𝐹𝑦) ≤ 𝑥))
3029ralrn 7122 . . . . . . . . . . . . . . . . . 18 (𝐹 Fn 𝑋 → (∀𝑧 ∈ ran 𝐹 𝑧𝑥 ↔ ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥))
3128, 30syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (∀𝑧 ∈ ran 𝐹 𝑧𝑥 ↔ ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥))
3231rexbidv 3185 . . . . . . . . . . . . . . . 16 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥))
3327, 32mpbird 257 . . . . . . . . . . . . . . 15 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑥)
3420, 26, 333jca 1128 . . . . . . . . . . . . . 14 (𝜑 → (ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑥))
35 suprcl 12255 . . . . . . . . . . . . . 14 ((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑥) → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
3634, 35syl 17 . . . . . . . . . . . . 13 (𝜑 → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
3736recnd 11318 . . . . . . . . . . . 12 (𝜑 → sup(ran 𝐹, ℝ, < ) ∈ ℂ)
3837adantr 480 . . . . . . . . . . 11 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → sup(ran 𝐹, ℝ, < ) ∈ ℂ)
398, 11, 38cnmptc 23691 . . . . . . . . . 10 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → (𝑧𝑋 ↦ sup(ran 𝐹, ℝ, < )) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
4019feqmptd 6990 . . . . . . . . . . . 12 (𝜑𝐹 = (𝑧𝑋 ↦ (𝐹𝑧)))
419cnfldtop 24825 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) ∈ Top
42 cnrest2r 23316 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ∈ Top → (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ)) ⊆ (𝐽 Cn (TopOpen‘ℂfld)))
4341, 42ax-mp 5 . . . . . . . . . . . . 13 (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ)) ⊆ (𝐽 Cn (TopOpen‘ℂfld))
449tgioo2 24844 . . . . . . . . . . . . . . . 16 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
452, 44eqtri 2768 . . . . . . . . . . . . . . 15 𝐾 = ((TopOpen‘ℂfld) ↾t ℝ)
4645oveq2i 7459 . . . . . . . . . . . . . 14 (𝐽 Cn 𝐾) = (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))
4714, 46eleqtrdi 2854 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ)))
4843, 47sselid 4006 . . . . . . . . . . . 12 (𝜑𝐹 ∈ (𝐽 Cn (TopOpen‘ℂfld)))
4940, 48eqeltrrd 2845 . . . . . . . . . . 11 (𝜑 → (𝑧𝑋 ↦ (𝐹𝑧)) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
5049adantr 480 . . . . . . . . . 10 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → (𝑧𝑋 ↦ (𝐹𝑧)) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
519subcn 24907 . . . . . . . . . . 11 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
5251a1i 11 . . . . . . . . . 10 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
538, 39, 50, 52cnmpt12f 23695 . . . . . . . . 9 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → (𝑧𝑋 ↦ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
5436ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑧𝑋) → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
55 ffvelcdm 7115 . . . . . . . . . . . . . . . . . 18 ((𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )}) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )}))
5655adantll 713 . . . . . . . . . . . . . . . . 17 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )}))
57 eldifsn 4811 . . . . . . . . . . . . . . . . 17 ((𝐹𝑧) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )}) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) ≠ sup(ran 𝐹, ℝ, < )))
5856, 57sylib 218 . . . . . . . . . . . . . . . 16 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑧𝑋) → ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) ≠ sup(ran 𝐹, ℝ, < )))
5958simpld 494 . . . . . . . . . . . . . . 15 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ℝ)
6054, 59resubcld 11718 . . . . . . . . . . . . . 14 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑧𝑋) → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)) ∈ ℝ)
6160recnd 11318 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑧𝑋) → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)) ∈ ℂ)
6254recnd 11318 . . . . . . . . . . . . . 14 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑧𝑋) → sup(ran 𝐹, ℝ, < ) ∈ ℂ)
6359recnd 11318 . . . . . . . . . . . . . 14 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ℂ)
6458simprd 495 . . . . . . . . . . . . . . 15 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑧𝑋) → (𝐹𝑧) ≠ sup(ran 𝐹, ℝ, < ))
6564necomd 3002 . . . . . . . . . . . . . 14 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑧𝑋) → sup(ran 𝐹, ℝ, < ) ≠ (𝐹𝑧))
6662, 63, 65subne0d 11656 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑧𝑋) → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)) ≠ 0)
67 eldifsn 4811 . . . . . . . . . . . . 13 ((sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)) ∈ (ℂ ∖ {0}) ↔ ((sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)) ∈ ℂ ∧ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)) ≠ 0))
6861, 66, 67sylanbrc 582 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑧𝑋) → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)) ∈ (ℂ ∖ {0}))
6968fmpttd 7149 . . . . . . . . . . 11 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → (𝑧𝑋 ↦ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))):𝑋⟶(ℂ ∖ {0}))
7069frnd 6755 . . . . . . . . . 10 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → ran (𝑧𝑋 ↦ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))) ⊆ (ℂ ∖ {0}))
71 difssd 4160 . . . . . . . . . 10 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → (ℂ ∖ {0}) ⊆ ℂ)
72 cnrest2 23315 . . . . . . . . . 10 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑧𝑋 ↦ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))) ⊆ (ℂ ∖ {0}) ∧ (ℂ ∖ {0}) ⊆ ℂ) → ((𝑧𝑋 ↦ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ (𝑧𝑋 ↦ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})))))
7311, 70, 71, 72syl3anc 1371 . . . . . . . . 9 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → ((𝑧𝑋 ↦ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ (𝑧𝑋 ↦ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})))))
7453, 73mpbid 232 . . . . . . . 8 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → (𝑧𝑋 ↦ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))))
75 eqid 2740 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})) = ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))
769, 75divcn 24911 . . . . . . . . 9 / ∈ (((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) Cn (TopOpen‘ℂfld))
7776a1i 11 . . . . . . . 8 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → / ∈ (((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) Cn (TopOpen‘ℂfld)))
788, 13, 74, 77cnmpt12f 23695 . . . . . . 7 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → (𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)))) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
7960, 66rereccld 12121 . . . . . . . . . 10 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑧𝑋) → (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))) ∈ ℝ)
8079fmpttd 7149 . . . . . . . . 9 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → (𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)))):𝑋⟶ℝ)
8180frnd 6755 . . . . . . . 8 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → ran (𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)))) ⊆ ℝ)
82 ax-resscn 11241 . . . . . . . . 9 ℝ ⊆ ℂ
8382a1i 11 . . . . . . . 8 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → ℝ ⊆ ℂ)
84 cnrest2 23315 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)))) ⊆ ℝ ∧ ℝ ⊆ ℂ) → ((𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)))) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ (𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)))) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
8511, 81, 83, 84syl3anc 1371 . . . . . . 7 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → ((𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)))) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ (𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)))) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
8678, 85mpbid 232 . . . . . 6 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → (𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)))) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ)))
8786, 46eleqtrrdi 2855 . . . . 5 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → (𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)))) ∈ (𝐽 Cn 𝐾))
881, 2, 4, 87bndth 25009 . . . 4 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → ∃𝑥 ∈ ℝ ∀𝑦𝑋 ((𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))))‘𝑦) ≤ 𝑥)
8936ad2antrr 725 . . . . . . . 8 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
90 simpr 484 . . . . . . . . . . 11 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
91 1re 11290 . . . . . . . . . . 11 1 ∈ ℝ
92 ifcl 4593 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 1 ∈ ℝ) → if(1 ≤ 𝑥, 𝑥, 1) ∈ ℝ)
9390, 91, 92sylancl 585 . . . . . . . . . 10 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → if(1 ≤ 𝑥, 𝑥, 1) ∈ ℝ)
94 0red 11293 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → 0 ∈ ℝ)
9591a1i 11 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℝ)
96 0lt1 11812 . . . . . . . . . . . . 13 0 < 1
9796a1i 11 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → 0 < 1)
98 max1 13247 . . . . . . . . . . . . 13 ((1 ∈ ℝ ∧ 𝑥 ∈ ℝ) → 1 ≤ if(1 ≤ 𝑥, 𝑥, 1))
9991, 90, 98sylancr 586 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → 1 ≤ if(1 ≤ 𝑥, 𝑥, 1))
10094, 95, 93, 97, 99ltletrd 11450 . . . . . . . . . . 11 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → 0 < if(1 ≤ 𝑥, 𝑥, 1))
101100gt0ne0d 11854 . . . . . . . . . 10 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → if(1 ≤ 𝑥, 𝑥, 1) ≠ 0)
10293, 101rereccld 12121 . . . . . . . . 9 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → (1 / if(1 ≤ 𝑥, 𝑥, 1)) ∈ ℝ)
10393, 100recgt0d 12229 . . . . . . . . 9 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → 0 < (1 / if(1 ≤ 𝑥, 𝑥, 1)))
104102, 103elrpd 13096 . . . . . . . 8 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → (1 / if(1 ≤ 𝑥, 𝑥, 1)) ∈ ℝ+)
10589, 104ltsubrpd 13131 . . . . . . 7 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1))) < sup(ran 𝐹, ℝ, < ))
10689, 102resubcld 11718 . . . . . . . 8 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1))) ∈ ℝ)
107106, 89ltnled 11437 . . . . . . 7 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → ((sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1))) < sup(ran 𝐹, ℝ, < ) ↔ ¬ sup(ran 𝐹, ℝ, < ) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
108105, 107mpbid 232 . . . . . 6 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → ¬ sup(ran 𝐹, ℝ, < ) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1))))
109 simprl 770 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → 𝑥 ∈ ℝ)
110 max2 13249 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ 𝑥 ∈ ℝ) → 𝑥 ≤ if(1 ≤ 𝑥, 𝑥, 1))
11191, 109, 110sylancr 586 . . . . . . . . . . 11 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → 𝑥 ≤ if(1 ≤ 𝑥, 𝑥, 1))
11236ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
113 ffvelcdm 7115 . . . . . . . . . . . . . . . . 17 ((𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )}) ∧ 𝑦𝑋) → (𝐹𝑦) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )}))
114113ad2ant2l 745 . . . . . . . . . . . . . . . 16 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → (𝐹𝑦) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )}))
115 eldifsn 4811 . . . . . . . . . . . . . . . 16 ((𝐹𝑦) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )}) ↔ ((𝐹𝑦) ∈ ℝ ∧ (𝐹𝑦) ≠ sup(ran 𝐹, ℝ, < )))
116114, 115sylib 218 . . . . . . . . . . . . . . 15 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → ((𝐹𝑦) ∈ ℝ ∧ (𝐹𝑦) ≠ sup(ran 𝐹, ℝ, < )))
117116simpld 494 . . . . . . . . . . . . . 14 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → (𝐹𝑦) ∈ ℝ)
118112, 117resubcld 11718 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦)) ∈ ℝ)
119 fnfvelrn 7114 . . . . . . . . . . . . . . . . . . 19 ((𝐹 Fn 𝑋𝑦𝑋) → (𝐹𝑦) ∈ ran 𝐹)
12028, 119sylan 579 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦𝑋) → (𝐹𝑦) ∈ ran 𝐹)
121 suprub 12256 . . . . . . . . . . . . . . . . . 18 (((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑥) ∧ (𝐹𝑦) ∈ ran 𝐹) → (𝐹𝑦) ≤ sup(ran 𝐹, ℝ, < ))
12234, 120, 121syl2an2r 684 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝑋) → (𝐹𝑦) ≤ sup(ran 𝐹, ℝ, < ))
123122ad2ant2rl 748 . . . . . . . . . . . . . . . 16 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → (𝐹𝑦) ≤ sup(ran 𝐹, ℝ, < ))
124116simprd 495 . . . . . . . . . . . . . . . . 17 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → (𝐹𝑦) ≠ sup(ran 𝐹, ℝ, < ))
125124necomd 3002 . . . . . . . . . . . . . . . 16 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → sup(ran 𝐹, ℝ, < ) ≠ (𝐹𝑦))
126117, 112, 123, 125leneltd 11444 . . . . . . . . . . . . . . 15 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → (𝐹𝑦) < sup(ran 𝐹, ℝ, < ))
127117, 112posdifd 11877 . . . . . . . . . . . . . . 15 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → ((𝐹𝑦) < sup(ran 𝐹, ℝ, < ) ↔ 0 < (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))))
128126, 127mpbid 232 . . . . . . . . . . . . . 14 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → 0 < (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦)))
129128gt0ne0d 11854 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦)) ≠ 0)
130118, 129rereccld 12121 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ∈ ℝ)
131109, 91, 92sylancl 585 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → if(1 ≤ 𝑥, 𝑥, 1) ∈ ℝ)
132 letr 11384 . . . . . . . . . . . 12 (((1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ if(1 ≤ 𝑥, 𝑥, 1) ∈ ℝ) → (((1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ≤ 𝑥𝑥 ≤ if(1 ≤ 𝑥, 𝑥, 1)) → (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ≤ if(1 ≤ 𝑥, 𝑥, 1)))
133130, 109, 131, 132syl3anc 1371 . . . . . . . . . . 11 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → (((1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ≤ 𝑥𝑥 ≤ if(1 ≤ 𝑥, 𝑥, 1)) → (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ≤ if(1 ≤ 𝑥, 𝑥, 1)))
134111, 133mpan2d 693 . . . . . . . . . 10 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → ((1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ≤ 𝑥 → (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ≤ if(1 ≤ 𝑥, 𝑥, 1)))
135 fveq2 6920 . . . . . . . . . . . . . . 15 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
136135oveq2d 7464 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)) = (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦)))
137136oveq2d 7464 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))) = (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))))
138 eqid 2740 . . . . . . . . . . . . 13 (𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)))) = (𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))))
139 ovex 7481 . . . . . . . . . . . . 13 (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ∈ V
140137, 138, 139fvmpt 7029 . . . . . . . . . . . 12 (𝑦𝑋 → ((𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))))‘𝑦) = (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))))
141140breq1d 5176 . . . . . . . . . . 11 (𝑦𝑋 → (((𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))))‘𝑦) ≤ 𝑥 ↔ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ≤ 𝑥))
142141ad2antll 728 . . . . . . . . . 10 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → (((𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))))‘𝑦) ≤ 𝑥 ↔ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ≤ 𝑥))
143102adantrr 716 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → (1 / if(1 ≤ 𝑥, 𝑥, 1)) ∈ ℝ)
144100adantrr 716 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → 0 < if(1 ≤ 𝑥, 𝑥, 1))
145131, 144recgt0d 12229 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → 0 < (1 / if(1 ≤ 𝑥, 𝑥, 1)))
146 lerec 12178 . . . . . . . . . . . 12 ((((1 / if(1 ≤ 𝑥, 𝑥, 1)) ∈ ℝ ∧ 0 < (1 / if(1 ≤ 𝑥, 𝑥, 1))) ∧ ((sup(ran 𝐹, ℝ, < ) − (𝐹𝑦)) ∈ ℝ ∧ 0 < (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦)))) → ((1 / if(1 ≤ 𝑥, 𝑥, 1)) ≤ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦)) ↔ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ≤ (1 / (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
147143, 145, 118, 128, 146syl22anc 838 . . . . . . . . . . 11 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → ((1 / if(1 ≤ 𝑥, 𝑥, 1)) ≤ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦)) ↔ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ≤ (1 / (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
148 lesub 11769 . . . . . . . . . . . 12 (((1 / if(1 ≤ 𝑥, 𝑥, 1)) ∈ ℝ ∧ sup(ran 𝐹, ℝ, < ) ∈ ℝ ∧ (𝐹𝑦) ∈ ℝ) → ((1 / if(1 ≤ 𝑥, 𝑥, 1)) ≤ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦)) ↔ (𝐹𝑦) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
149143, 112, 117, 148syl3anc 1371 . . . . . . . . . . 11 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → ((1 / if(1 ≤ 𝑥, 𝑥, 1)) ≤ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦)) ↔ (𝐹𝑦) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
150131recnd 11318 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → if(1 ≤ 𝑥, 𝑥, 1) ∈ ℂ)
151101adantrr 716 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → if(1 ≤ 𝑥, 𝑥, 1) ≠ 0)
152150, 151recrecd 12067 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → (1 / (1 / if(1 ≤ 𝑥, 𝑥, 1))) = if(1 ≤ 𝑥, 𝑥, 1))
153152breq2d 5178 . . . . . . . . . . 11 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → ((1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ≤ (1 / (1 / if(1 ≤ 𝑥, 𝑥, 1))) ↔ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ≤ if(1 ≤ 𝑥, 𝑥, 1)))
154147, 149, 1533bitr3d 309 . . . . . . . . . 10 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → ((𝐹𝑦) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1))) ↔ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ≤ if(1 ≤ 𝑥, 𝑥, 1)))
155134, 142, 1543imtr4d 294 . . . . . . . . 9 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → (((𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))))‘𝑦) ≤ 𝑥 → (𝐹𝑦) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
156155anassrs 467 . . . . . . . 8 ((((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) ∧ 𝑦𝑋) → (((𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))))‘𝑦) ≤ 𝑥 → (𝐹𝑦) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
157156ralimdva 3173 . . . . . . 7 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → (∀𝑦𝑋 ((𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))))‘𝑦) ≤ 𝑥 → ∀𝑦𝑋 (𝐹𝑦) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
15834ad2antrr 725 . . . . . . . . 9 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → (ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑥))
159 suprleub 12261 . . . . . . . . 9 (((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑥) ∧ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1))) ∈ ℝ) → (sup(ran 𝐹, ℝ, < ) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1))) ↔ ∀𝑧 ∈ ran 𝐹 𝑧 ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
160158, 106, 159syl2anc 583 . . . . . . . 8 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → (sup(ran 𝐹, ℝ, < ) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1))) ↔ ∀𝑧 ∈ ran 𝐹 𝑧 ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
16128ad2antrr 725 . . . . . . . . 9 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → 𝐹 Fn 𝑋)
162 breq1 5169 . . . . . . . . . 10 (𝑧 = (𝐹𝑦) → (𝑧 ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1))) ↔ (𝐹𝑦) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
163162ralrn 7122 . . . . . . . . 9 (𝐹 Fn 𝑋 → (∀𝑧 ∈ ran 𝐹 𝑧 ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1))) ↔ ∀𝑦𝑋 (𝐹𝑦) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
164161, 163syl 17 . . . . . . . 8 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → (∀𝑧 ∈ ran 𝐹 𝑧 ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1))) ↔ ∀𝑦𝑋 (𝐹𝑦) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
165160, 164bitrd 279 . . . . . . 7 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → (sup(ran 𝐹, ℝ, < ) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1))) ↔ ∀𝑦𝑋 (𝐹𝑦) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
166157, 165sylibrd 259 . . . . . 6 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → (∀𝑦𝑋 ((𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))))‘𝑦) ≤ 𝑥 → sup(ran 𝐹, ℝ, < ) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
167108, 166mtod 198 . . . . 5 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → ¬ ∀𝑦𝑋 ((𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))))‘𝑦) ≤ 𝑥)
168167nrexdv 3155 . . . 4 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → ¬ ∃𝑥 ∈ ℝ ∀𝑦𝑋 ((𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))))‘𝑦) ≤ 𝑥)
16988, 168pm2.65da 816 . . 3 (𝜑 → ¬ 𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )}))
170122ralrimiva 3152 . . . . . . . . 9 (𝜑 → ∀𝑦𝑋 (𝐹𝑦) ≤ sup(ran 𝐹, ℝ, < ))
171 breq2 5170 . . . . . . . . . 10 ((𝐹𝑥) = sup(ran 𝐹, ℝ, < ) → ((𝐹𝑦) ≤ (𝐹𝑥) ↔ (𝐹𝑦) ≤ sup(ran 𝐹, ℝ, < )))
172171ralbidv 3184 . . . . . . . . 9 ((𝐹𝑥) = sup(ran 𝐹, ℝ, < ) → (∀𝑦𝑋 (𝐹𝑦) ≤ (𝐹𝑥) ↔ ∀𝑦𝑋 (𝐹𝑦) ≤ sup(ran 𝐹, ℝ, < )))
173170, 172syl5ibrcom 247 . . . . . . . 8 (𝜑 → ((𝐹𝑥) = sup(ran 𝐹, ℝ, < ) → ∀𝑦𝑋 (𝐹𝑦) ≤ (𝐹𝑥)))
174173necon3bd 2960 . . . . . . 7 (𝜑 → (¬ ∀𝑦𝑋 (𝐹𝑦) ≤ (𝐹𝑥) → (𝐹𝑥) ≠ sup(ran 𝐹, ℝ, < )))
175174adantr 480 . . . . . 6 ((𝜑𝑥𝑋) → (¬ ∀𝑦𝑋 (𝐹𝑦) ≤ (𝐹𝑥) → (𝐹𝑥) ≠ sup(ran 𝐹, ℝ, < )))
17619ffvelcdmda 7118 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℝ)
177 eldifsn 4811 . . . . . . . 8 ((𝐹𝑥) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )}) ↔ ((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑥) ≠ sup(ran 𝐹, ℝ, < )))
178177baib 535 . . . . . . 7 ((𝐹𝑥) ∈ ℝ → ((𝐹𝑥) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )}) ↔ (𝐹𝑥) ≠ sup(ran 𝐹, ℝ, < )))
179176, 178syl 17 . . . . . 6 ((𝜑𝑥𝑋) → ((𝐹𝑥) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )}) ↔ (𝐹𝑥) ≠ sup(ran 𝐹, ℝ, < )))
180175, 179sylibrd 259 . . . . 5 ((𝜑𝑥𝑋) → (¬ ∀𝑦𝑋 (𝐹𝑦) ≤ (𝐹𝑥) → (𝐹𝑥) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )})))
181180ralimdva 3173 . . . 4 (𝜑 → (∀𝑥𝑋 ¬ ∀𝑦𝑋 (𝐹𝑦) ≤ (𝐹𝑥) → ∀𝑥𝑋 (𝐹𝑥) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )})))
182 ffnfv 7153 . . . . . 6 (𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )}) ↔ (𝐹 Fn 𝑋 ∧ ∀𝑥𝑋 (𝐹𝑥) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )})))
183182baib 535 . . . . 5 (𝐹 Fn 𝑋 → (𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )}) ↔ ∀𝑥𝑋 (𝐹𝑥) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )})))
18428, 183syl 17 . . . 4 (𝜑 → (𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )}) ↔ ∀𝑥𝑋 (𝐹𝑥) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )})))
185181, 184sylibrd 259 . . 3 (𝜑 → (∀𝑥𝑋 ¬ ∀𝑦𝑋 (𝐹𝑦) ≤ (𝐹𝑥) → 𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})))
186169, 185mtod 198 . 2 (𝜑 → ¬ ∀𝑥𝑋 ¬ ∀𝑦𝑋 (𝐹𝑦) ≤ (𝐹𝑥))
187 dfrex2 3079 . 2 (∃𝑥𝑋𝑦𝑋 (𝐹𝑦) ≤ (𝐹𝑥) ↔ ¬ ∀𝑥𝑋 ¬ ∀𝑦𝑋 (𝐹𝑦) ≤ (𝐹𝑥))
188186, 187sylibr 234 1 (𝜑 → ∃𝑥𝑋𝑦𝑋 (𝐹𝑦) ≤ (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  cdif 3973  wss 3976  c0 4352  ifcif 4548  {csn 4648   cuni 4931   class class class wbr 5166  cmpt 5249  dom cdm 5700  ran crn 5701   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  supcsup 9509  cc 11182  cr 11183  0cc0 11184  1c1 11185   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  (,)cioo 13407  t crest 17480  TopOpenctopn 17481  topGenctg 17497  fldccnfld 21387  Topctop 22920  TopOnctopon 22937   Cn ccn 23253  Compccmp 23415   ×t ctx 23589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cn 23256  df-cnp 23257  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-xms 24351  df-ms 24352  df-tms 24353
This theorem is referenced by:  evth2  25011  evthicc  25513  evthf  44927  cncmpmax  44932
  Copyright terms: Public domain W3C validator