Step | Hyp | Ref
| Expression |
1 | | bndth.1 |
. . . . 5
β’ π = βͺ
π½ |
2 | | bndth.2 |
. . . . 5
β’ πΎ = (topGenβran
(,)) |
3 | | bndth.3 |
. . . . . 6
β’ (π β π½ β Comp) |
4 | 3 | adantr 482 |
. . . . 5
β’ ((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β
π½ β
Comp) |
5 | | cmptop 22899 |
. . . . . . . . . 10
β’ (π½ β Comp β π½ β Top) |
6 | 4, 5 | syl 17 |
. . . . . . . . 9
β’ ((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β
π½ β
Top) |
7 | 1 | toptopon 22419 |
. . . . . . . . 9
β’ (π½ β Top β π½ β (TopOnβπ)) |
8 | 6, 7 | sylib 217 |
. . . . . . . 8
β’ ((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β
π½ β (TopOnβπ)) |
9 | | eqid 2733 |
. . . . . . . . . . 11
β’
(TopOpenββfld) =
(TopOpenββfld) |
10 | 9 | cnfldtopon 24299 |
. . . . . . . . . 10
β’
(TopOpenββfld) β
(TopOnββ) |
11 | 10 | a1i 11 |
. . . . . . . . 9
β’ ((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β
(TopOpenββfld) β
(TopOnββ)) |
12 | | 1cnd 11209 |
. . . . . . . . 9
β’ ((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β 1
β β) |
13 | 8, 11, 12 | cnmptc 23166 |
. . . . . . . 8
β’ ((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β
(π§ β π β¦ 1) β (π½ Cn
(TopOpenββfld))) |
14 | | bndth.4 |
. . . . . . . . . . . . . . . . 17
β’ (π β πΉ β (π½ Cn πΎ)) |
15 | | uniretop 24279 |
. . . . . . . . . . . . . . . . . . 19
β’ β =
βͺ (topGenβran (,)) |
16 | 2 | unieqi 4922 |
. . . . . . . . . . . . . . . . . . 19
β’ βͺ πΎ =
βͺ (topGenβran (,)) |
17 | 15, 16 | eqtr4i 2764 |
. . . . . . . . . . . . . . . . . 18
β’ β =
βͺ πΎ |
18 | 1, 17 | cnf 22750 |
. . . . . . . . . . . . . . . . 17
β’ (πΉ β (π½ Cn πΎ) β πΉ:πβΆβ) |
19 | 14, 18 | syl 17 |
. . . . . . . . . . . . . . . 16
β’ (π β πΉ:πβΆβ) |
20 | 19 | frnd 6726 |
. . . . . . . . . . . . . . 15
β’ (π β ran πΉ β β) |
21 | 19 | fdmd 6729 |
. . . . . . . . . . . . . . . . 17
β’ (π β dom πΉ = π) |
22 | | evth.5 |
. . . . . . . . . . . . . . . . 17
β’ (π β π β β
) |
23 | 21, 22 | eqnetrd 3009 |
. . . . . . . . . . . . . . . 16
β’ (π β dom πΉ β β
) |
24 | | dm0rn0 5925 |
. . . . . . . . . . . . . . . . 17
β’ (dom
πΉ = β
β ran
πΉ =
β
) |
25 | 24 | necon3bii 2994 |
. . . . . . . . . . . . . . . 16
β’ (dom
πΉ β β
β ran
πΉ β
β
) |
26 | 23, 25 | sylib 217 |
. . . . . . . . . . . . . . 15
β’ (π β ran πΉ β β
) |
27 | 1, 2, 3, 14 | bndth 24474 |
. . . . . . . . . . . . . . . 16
β’ (π β βπ₯ β β βπ¦ β π (πΉβπ¦) β€ π₯) |
28 | 19 | ffnd 6719 |
. . . . . . . . . . . . . . . . . 18
β’ (π β πΉ Fn π) |
29 | | breq1 5152 |
. . . . . . . . . . . . . . . . . . 19
β’ (π§ = (πΉβπ¦) β (π§ β€ π₯ β (πΉβπ¦) β€ π₯)) |
30 | 29 | ralrn 7090 |
. . . . . . . . . . . . . . . . . 18
β’ (πΉ Fn π β (βπ§ β ran πΉ π§ β€ π₯ β βπ¦ β π (πΉβπ¦) β€ π₯)) |
31 | 28, 30 | syl 17 |
. . . . . . . . . . . . . . . . 17
β’ (π β (βπ§ β ran πΉ π§ β€ π₯ β βπ¦ β π (πΉβπ¦) β€ π₯)) |
32 | 31 | rexbidv 3179 |
. . . . . . . . . . . . . . . 16
β’ (π β (βπ₯ β β βπ§ β ran πΉ π§ β€ π₯ β βπ₯ β β βπ¦ β π (πΉβπ¦) β€ π₯)) |
33 | 27, 32 | mpbird 257 |
. . . . . . . . . . . . . . 15
β’ (π β βπ₯ β β βπ§ β ran πΉ π§ β€ π₯) |
34 | 20, 26, 33 | 3jca 1129 |
. . . . . . . . . . . . . 14
β’ (π β (ran πΉ β β β§ ran πΉ β β
β§ βπ₯ β β βπ§ β ran πΉ π§ β€ π₯)) |
35 | | suprcl 12174 |
. . . . . . . . . . . . . 14
β’ ((ran
πΉ β β β§ ran
πΉ β β
β§
βπ₯ β β
βπ§ β ran πΉ π§ β€ π₯) β sup(ran πΉ, β, < ) β
β) |
36 | 34, 35 | syl 17 |
. . . . . . . . . . . . 13
β’ (π β sup(ran πΉ, β, < ) β
β) |
37 | 36 | recnd 11242 |
. . . . . . . . . . . 12
β’ (π β sup(ran πΉ, β, < ) β
β) |
38 | 37 | adantr 482 |
. . . . . . . . . . 11
β’ ((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β
sup(ran πΉ, β, < )
β β) |
39 | 8, 11, 38 | cnmptc 23166 |
. . . . . . . . . 10
β’ ((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β
(π§ β π β¦ sup(ran πΉ, β, < )) β (π½ Cn
(TopOpenββfld))) |
40 | 19 | feqmptd 6961 |
. . . . . . . . . . . 12
β’ (π β πΉ = (π§ β π β¦ (πΉβπ§))) |
41 | 9 | cnfldtop 24300 |
. . . . . . . . . . . . . 14
β’
(TopOpenββfld) β Top |
42 | | cnrest2r 22791 |
. . . . . . . . . . . . . 14
β’
((TopOpenββfld) β Top β (π½ Cn
((TopOpenββfld) βΎt β)) β
(π½ Cn
(TopOpenββfld))) |
43 | 41, 42 | ax-mp 5 |
. . . . . . . . . . . . 13
β’ (π½ Cn
((TopOpenββfld) βΎt β)) β
(π½ Cn
(TopOpenββfld)) |
44 | 9 | tgioo2 24319 |
. . . . . . . . . . . . . . . 16
β’
(topGenβran (,)) = ((TopOpenββfld)
βΎt β) |
45 | 2, 44 | eqtri 2761 |
. . . . . . . . . . . . . . 15
β’ πΎ =
((TopOpenββfld) βΎt
β) |
46 | 45 | oveq2i 7420 |
. . . . . . . . . . . . . 14
β’ (π½ Cn πΎ) = (π½ Cn ((TopOpenββfld)
βΎt β)) |
47 | 14, 46 | eleqtrdi 2844 |
. . . . . . . . . . . . 13
β’ (π β πΉ β (π½ Cn ((TopOpenββfld)
βΎt β))) |
48 | 43, 47 | sselid 3981 |
. . . . . . . . . . . 12
β’ (π β πΉ β (π½ Cn
(TopOpenββfld))) |
49 | 40, 48 | eqeltrrd 2835 |
. . . . . . . . . . 11
β’ (π β (π§ β π β¦ (πΉβπ§)) β (π½ Cn
(TopOpenββfld))) |
50 | 49 | adantr 482 |
. . . . . . . . . 10
β’ ((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β
(π§ β π β¦ (πΉβπ§)) β (π½ Cn
(TopOpenββfld))) |
51 | 9 | subcn 24382 |
. . . . . . . . . . 11
β’ β
β (((TopOpenββfld) Γt
(TopOpenββfld)) Cn
(TopOpenββfld)) |
52 | 51 | a1i 11 |
. . . . . . . . . 10
β’ ((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β
β β (((TopOpenββfld) Γt
(TopOpenββfld)) Cn
(TopOpenββfld))) |
53 | 8, 39, 50, 52 | cnmpt12f 23170 |
. . . . . . . . 9
β’ ((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β
(π§ β π β¦ (sup(ran πΉ, β, < ) β (πΉβπ§))) β (π½ Cn
(TopOpenββfld))) |
54 | 36 | ad2antrr 725 |
. . . . . . . . . . . . . . 15
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§ π§ β π) β sup(ran πΉ, β, < ) β
β) |
55 | | ffvelcdm 7084 |
. . . . . . . . . . . . . . . . . 18
β’ ((πΉ:πβΆ(β β {sup(ran πΉ, β, < )}) β§ π§ β π) β (πΉβπ§) β (β β {sup(ran πΉ, β, <
)})) |
56 | 55 | adantll 713 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§ π§ β π) β (πΉβπ§) β (β β {sup(ran πΉ, β, <
)})) |
57 | | eldifsn 4791 |
. . . . . . . . . . . . . . . . 17
β’ ((πΉβπ§) β (β β {sup(ran πΉ, β, < )}) β
((πΉβπ§) β β β§ (πΉβπ§) β sup(ran πΉ, β, < ))) |
58 | 56, 57 | sylib 217 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§ π§ β π) β ((πΉβπ§) β β β§ (πΉβπ§) β sup(ran πΉ, β, < ))) |
59 | 58 | simpld 496 |
. . . . . . . . . . . . . . 15
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§ π§ β π) β (πΉβπ§) β β) |
60 | 54, 59 | resubcld 11642 |
. . . . . . . . . . . . . 14
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§ π§ β π) β (sup(ran πΉ, β, < ) β (πΉβπ§)) β β) |
61 | 60 | recnd 11242 |
. . . . . . . . . . . . 13
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§ π§ β π) β (sup(ran πΉ, β, < ) β (πΉβπ§)) β β) |
62 | 54 | recnd 11242 |
. . . . . . . . . . . . . 14
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§ π§ β π) β sup(ran πΉ, β, < ) β
β) |
63 | 59 | recnd 11242 |
. . . . . . . . . . . . . 14
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§ π§ β π) β (πΉβπ§) β β) |
64 | 58 | simprd 497 |
. . . . . . . . . . . . . . 15
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§ π§ β π) β (πΉβπ§) β sup(ran πΉ, β, < )) |
65 | 64 | necomd 2997 |
. . . . . . . . . . . . . 14
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§ π§ β π) β sup(ran πΉ, β, < ) β (πΉβπ§)) |
66 | 62, 63, 65 | subne0d 11580 |
. . . . . . . . . . . . 13
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§ π§ β π) β (sup(ran πΉ, β, < ) β (πΉβπ§)) β 0) |
67 | | eldifsn 4791 |
. . . . . . . . . . . . 13
β’ ((sup(ran
πΉ, β, < ) β
(πΉβπ§)) β (β β {0}) β
((sup(ran πΉ, β, <
) β (πΉβπ§)) β β β§ (sup(ran
πΉ, β, < ) β
(πΉβπ§)) β 0)) |
68 | 61, 66, 67 | sylanbrc 584 |
. . . . . . . . . . . 12
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§ π§ β π) β (sup(ran πΉ, β, < ) β (πΉβπ§)) β (β β
{0})) |
69 | 68 | fmpttd 7115 |
. . . . . . . . . . 11
β’ ((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β
(π§ β π β¦ (sup(ran πΉ, β, < ) β (πΉβπ§))):πβΆ(β β
{0})) |
70 | 69 | frnd 6726 |
. . . . . . . . . 10
β’ ((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β ran
(π§ β π β¦ (sup(ran πΉ, β, < ) β (πΉβπ§))) β (β β
{0})) |
71 | | difssd 4133 |
. . . . . . . . . 10
β’ ((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β
(β β {0}) β β) |
72 | | cnrest2 22790 |
. . . . . . . . . 10
β’
(((TopOpenββfld) β (TopOnββ)
β§ ran (π§ β π β¦ (sup(ran πΉ, β, < ) β (πΉβπ§))) β (β β {0}) β§
(β β {0}) β β) β ((π§ β π β¦ (sup(ran πΉ, β, < ) β (πΉβπ§))) β (π½ Cn (TopOpenββfld))
β (π§ β π β¦ (sup(ran πΉ, β, < ) β (πΉβπ§))) β (π½ Cn ((TopOpenββfld)
βΎt (β β {0}))))) |
73 | 11, 70, 71, 72 | syl3anc 1372 |
. . . . . . . . 9
β’ ((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β
((π§ β π β¦ (sup(ran πΉ, β, < ) β (πΉβπ§))) β (π½ Cn (TopOpenββfld))
β (π§ β π β¦ (sup(ran πΉ, β, < ) β (πΉβπ§))) β (π½ Cn ((TopOpenββfld)
βΎt (β β {0}))))) |
74 | 53, 73 | mpbid 231 |
. . . . . . . 8
β’ ((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β
(π§ β π β¦ (sup(ran πΉ, β, < ) β (πΉβπ§))) β (π½ Cn ((TopOpenββfld)
βΎt (β β {0})))) |
75 | | eqid 2733 |
. . . . . . . . . 10
β’
((TopOpenββfld) βΎt (β
β {0})) = ((TopOpenββfld) βΎt
(β β {0})) |
76 | 9, 75 | divcn 24384 |
. . . . . . . . 9
β’ / β
(((TopOpenββfld) Γt
((TopOpenββfld) βΎt (β β
{0}))) Cn (TopOpenββfld)) |
77 | 76 | a1i 11 |
. . . . . . . 8
β’ ((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β /
β (((TopOpenββfld) Γt
((TopOpenββfld) βΎt (β β
{0}))) Cn (TopOpenββfld))) |
78 | 8, 13, 74, 77 | cnmpt12f 23170 |
. . . . . . 7
β’ ((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β
(π§ β π β¦ (1 / (sup(ran πΉ, β, < ) β (πΉβπ§)))) β (π½ Cn
(TopOpenββfld))) |
79 | 60, 66 | rereccld 12041 |
. . . . . . . . . 10
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§ π§ β π) β (1 / (sup(ran πΉ, β, < ) β (πΉβπ§))) β β) |
80 | 79 | fmpttd 7115 |
. . . . . . . . 9
β’ ((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β
(π§ β π β¦ (1 / (sup(ran πΉ, β, < ) β (πΉβπ§)))):πβΆβ) |
81 | 80 | frnd 6726 |
. . . . . . . 8
β’ ((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β ran
(π§ β π β¦ (1 / (sup(ran πΉ, β, < ) β (πΉβπ§)))) β β) |
82 | | ax-resscn 11167 |
. . . . . . . . 9
β’ β
β β |
83 | 82 | a1i 11 |
. . . . . . . 8
β’ ((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β
β β β) |
84 | | cnrest2 22790 |
. . . . . . . 8
β’
(((TopOpenββfld) β (TopOnββ)
β§ ran (π§ β π β¦ (1 / (sup(ran πΉ, β, < ) β (πΉβπ§)))) β β β§ β β
β) β ((π§ β
π β¦ (1 / (sup(ran
πΉ, β, < ) β
(πΉβπ§)))) β (π½ Cn (TopOpenββfld))
β (π§ β π β¦ (1 / (sup(ran πΉ, β, < ) β (πΉβπ§)))) β (π½ Cn ((TopOpenββfld)
βΎt β)))) |
85 | 11, 81, 83, 84 | syl3anc 1372 |
. . . . . . 7
β’ ((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β
((π§ β π β¦ (1 / (sup(ran πΉ, β, < ) β (πΉβπ§)))) β (π½ Cn (TopOpenββfld))
β (π§ β π β¦ (1 / (sup(ran πΉ, β, < ) β (πΉβπ§)))) β (π½ Cn ((TopOpenββfld)
βΎt β)))) |
86 | 78, 85 | mpbid 231 |
. . . . . 6
β’ ((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β
(π§ β π β¦ (1 / (sup(ran πΉ, β, < ) β (πΉβπ§)))) β (π½ Cn ((TopOpenββfld)
βΎt β))) |
87 | 86, 46 | eleqtrrdi 2845 |
. . . . 5
β’ ((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β
(π§ β π β¦ (1 / (sup(ran πΉ, β, < ) β (πΉβπ§)))) β (π½ Cn πΎ)) |
88 | 1, 2, 4, 87 | bndth 24474 |
. . . 4
β’ ((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β
βπ₯ β β
βπ¦ β π ((π§ β π β¦ (1 / (sup(ran πΉ, β, < ) β (πΉβπ§))))βπ¦) β€ π₯) |
89 | 36 | ad2antrr 725 |
. . . . . . . 8
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§ π₯ β β) β sup(ran
πΉ, β, < ) β
β) |
90 | | simpr 486 |
. . . . . . . . . . 11
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§ π₯ β β) β π₯ β
β) |
91 | | 1re 11214 |
. . . . . . . . . . 11
β’ 1 β
β |
92 | | ifcl 4574 |
. . . . . . . . . . 11
β’ ((π₯ β β β§ 1 β
β) β if(1 β€ π₯, π₯, 1) β β) |
93 | 90, 91, 92 | sylancl 587 |
. . . . . . . . . 10
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§ π₯ β β) β if(1
β€ π₯, π₯, 1) β β) |
94 | | 0red 11217 |
. . . . . . . . . . . 12
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§ π₯ β β) β 0 β
β) |
95 | 91 | a1i 11 |
. . . . . . . . . . . 12
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§ π₯ β β) β 1 β
β) |
96 | | 0lt1 11736 |
. . . . . . . . . . . . 13
β’ 0 <
1 |
97 | 96 | a1i 11 |
. . . . . . . . . . . 12
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§ π₯ β β) β 0 <
1) |
98 | | max1 13164 |
. . . . . . . . . . . . 13
β’ ((1
β β β§ π₯
β β) β 1 β€ if(1 β€ π₯, π₯, 1)) |
99 | 91, 90, 98 | sylancr 588 |
. . . . . . . . . . . 12
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§ π₯ β β) β 1 β€
if(1 β€ π₯, π₯, 1)) |
100 | 94, 95, 93, 97, 99 | ltletrd 11374 |
. . . . . . . . . . 11
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§ π₯ β β) β 0 <
if(1 β€ π₯, π₯, 1)) |
101 | 100 | gt0ne0d 11778 |
. . . . . . . . . 10
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§ π₯ β β) β if(1
β€ π₯, π₯, 1) β 0) |
102 | 93, 101 | rereccld 12041 |
. . . . . . . . 9
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§ π₯ β β) β (1 /
if(1 β€ π₯, π₯, 1)) β
β) |
103 | 93, 100 | recgt0d 12148 |
. . . . . . . . 9
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§ π₯ β β) β 0 <
(1 / if(1 β€ π₯, π₯, 1))) |
104 | 102, 103 | elrpd 13013 |
. . . . . . . 8
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§ π₯ β β) β (1 /
if(1 β€ π₯, π₯, 1)) β
β+) |
105 | 89, 104 | ltsubrpd 13048 |
. . . . . . 7
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§ π₯ β β) β (sup(ran
πΉ, β, < ) β
(1 / if(1 β€ π₯, π₯, 1))) < sup(ran πΉ, β, <
)) |
106 | 89, 102 | resubcld 11642 |
. . . . . . . 8
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§ π₯ β β) β (sup(ran
πΉ, β, < ) β
(1 / if(1 β€ π₯, π₯, 1))) β
β) |
107 | 106, 89 | ltnled 11361 |
. . . . . . 7
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§ π₯ β β) β
((sup(ran πΉ, β, <
) β (1 / if(1 β€ π₯,
π₯, 1))) < sup(ran πΉ, β, < ) β Β¬
sup(ran πΉ, β, < )
β€ (sup(ran πΉ, β,
< ) β (1 / if(1 β€ π₯, π₯, 1))))) |
108 | 105, 107 | mpbid 231 |
. . . . . 6
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§ π₯ β β) β Β¬
sup(ran πΉ, β, < )
β€ (sup(ran πΉ, β,
< ) β (1 / if(1 β€ π₯, π₯, 1)))) |
109 | | simprl 770 |
. . . . . . . . . . . 12
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§
(π₯ β β β§
π¦ β π)) β π₯ β β) |
110 | | max2 13166 |
. . . . . . . . . . . 12
β’ ((1
β β β§ π₯
β β) β π₯
β€ if(1 β€ π₯, π₯, 1)) |
111 | 91, 109, 110 | sylancr 588 |
. . . . . . . . . . 11
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§
(π₯ β β β§
π¦ β π)) β π₯ β€ if(1 β€ π₯, π₯, 1)) |
112 | 36 | ad2antrr 725 |
. . . . . . . . . . . . . 14
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§
(π₯ β β β§
π¦ β π)) β sup(ran πΉ, β, < ) β
β) |
113 | | ffvelcdm 7084 |
. . . . . . . . . . . . . . . . 17
β’ ((πΉ:πβΆ(β β {sup(ran πΉ, β, < )}) β§ π¦ β π) β (πΉβπ¦) β (β β {sup(ran πΉ, β, <
)})) |
114 | 113 | ad2ant2l 745 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§
(π₯ β β β§
π¦ β π)) β (πΉβπ¦) β (β β {sup(ran πΉ, β, <
)})) |
115 | | eldifsn 4791 |
. . . . . . . . . . . . . . . 16
β’ ((πΉβπ¦) β (β β {sup(ran πΉ, β, < )}) β
((πΉβπ¦) β β β§ (πΉβπ¦) β sup(ran πΉ, β, < ))) |
116 | 114, 115 | sylib 217 |
. . . . . . . . . . . . . . 15
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§
(π₯ β β β§
π¦ β π)) β ((πΉβπ¦) β β β§ (πΉβπ¦) β sup(ran πΉ, β, < ))) |
117 | 116 | simpld 496 |
. . . . . . . . . . . . . 14
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§
(π₯ β β β§
π¦ β π)) β (πΉβπ¦) β β) |
118 | 112, 117 | resubcld 11642 |
. . . . . . . . . . . . 13
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§
(π₯ β β β§
π¦ β π)) β (sup(ran πΉ, β, < ) β (πΉβπ¦)) β β) |
119 | | fnfvelrn 7083 |
. . . . . . . . . . . . . . . . . . 19
β’ ((πΉ Fn π β§ π¦ β π) β (πΉβπ¦) β ran πΉ) |
120 | 28, 119 | sylan 581 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ π¦ β π) β (πΉβπ¦) β ran πΉ) |
121 | | suprub 12175 |
. . . . . . . . . . . . . . . . . 18
β’ (((ran
πΉ β β β§ ran
πΉ β β
β§
βπ₯ β β
βπ§ β ran πΉ π§ β€ π₯) β§ (πΉβπ¦) β ran πΉ) β (πΉβπ¦) β€ sup(ran πΉ, β, < )) |
122 | 34, 120, 121 | syl2an2r 684 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π¦ β π) β (πΉβπ¦) β€ sup(ran πΉ, β, < )) |
123 | 122 | ad2ant2rl 748 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§
(π₯ β β β§
π¦ β π)) β (πΉβπ¦) β€ sup(ran πΉ, β, < )) |
124 | 116 | simprd 497 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§
(π₯ β β β§
π¦ β π)) β (πΉβπ¦) β sup(ran πΉ, β, < )) |
125 | 124 | necomd 2997 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§
(π₯ β β β§
π¦ β π)) β sup(ran πΉ, β, < ) β (πΉβπ¦)) |
126 | 117, 112,
123, 125 | leneltd 11368 |
. . . . . . . . . . . . . . 15
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§
(π₯ β β β§
π¦ β π)) β (πΉβπ¦) < sup(ran πΉ, β, < )) |
127 | 117, 112 | posdifd 11801 |
. . . . . . . . . . . . . . 15
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§
(π₯ β β β§
π¦ β π)) β ((πΉβπ¦) < sup(ran πΉ, β, < ) β 0 < (sup(ran
πΉ, β, < ) β
(πΉβπ¦)))) |
128 | 126, 127 | mpbid 231 |
. . . . . . . . . . . . . 14
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§
(π₯ β β β§
π¦ β π)) β 0 < (sup(ran πΉ, β, < ) β (πΉβπ¦))) |
129 | 128 | gt0ne0d 11778 |
. . . . . . . . . . . . 13
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§
(π₯ β β β§
π¦ β π)) β (sup(ran πΉ, β, < ) β (πΉβπ¦)) β 0) |
130 | 118, 129 | rereccld 12041 |
. . . . . . . . . . . 12
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§
(π₯ β β β§
π¦ β π)) β (1 / (sup(ran πΉ, β, < ) β (πΉβπ¦))) β β) |
131 | 109, 91, 92 | sylancl 587 |
. . . . . . . . . . . 12
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§
(π₯ β β β§
π¦ β π)) β if(1 β€ π₯, π₯, 1) β β) |
132 | | letr 11308 |
. . . . . . . . . . . 12
β’ (((1 /
(sup(ran πΉ, β, < )
β (πΉβπ¦))) β β β§ π₯ β β β§ if(1 β€
π₯, π₯, 1) β β) β (((1 / (sup(ran
πΉ, β, < ) β
(πΉβπ¦))) β€ π₯ β§ π₯ β€ if(1 β€ π₯, π₯, 1)) β (1 / (sup(ran πΉ, β, < ) β (πΉβπ¦))) β€ if(1 β€ π₯, π₯, 1))) |
133 | 130, 109,
131, 132 | syl3anc 1372 |
. . . . . . . . . . 11
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§
(π₯ β β β§
π¦ β π)) β (((1 / (sup(ran πΉ, β, < ) β (πΉβπ¦))) β€ π₯ β§ π₯ β€ if(1 β€ π₯, π₯, 1)) β (1 / (sup(ran πΉ, β, < ) β (πΉβπ¦))) β€ if(1 β€ π₯, π₯, 1))) |
134 | 111, 133 | mpan2d 693 |
. . . . . . . . . 10
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§
(π₯ β β β§
π¦ β π)) β ((1 / (sup(ran πΉ, β, < ) β (πΉβπ¦))) β€ π₯ β (1 / (sup(ran πΉ, β, < ) β (πΉβπ¦))) β€ if(1 β€ π₯, π₯, 1))) |
135 | | fveq2 6892 |
. . . . . . . . . . . . . . 15
β’ (π§ = π¦ β (πΉβπ§) = (πΉβπ¦)) |
136 | 135 | oveq2d 7425 |
. . . . . . . . . . . . . 14
β’ (π§ = π¦ β (sup(ran πΉ, β, < ) β (πΉβπ§)) = (sup(ran πΉ, β, < ) β (πΉβπ¦))) |
137 | 136 | oveq2d 7425 |
. . . . . . . . . . . . 13
β’ (π§ = π¦ β (1 / (sup(ran πΉ, β, < ) β (πΉβπ§))) = (1 / (sup(ran πΉ, β, < ) β (πΉβπ¦)))) |
138 | | eqid 2733 |
. . . . . . . . . . . . 13
β’ (π§ β π β¦ (1 / (sup(ran πΉ, β, < ) β (πΉβπ§)))) = (π§ β π β¦ (1 / (sup(ran πΉ, β, < ) β (πΉβπ§)))) |
139 | | ovex 7442 |
. . . . . . . . . . . . 13
β’ (1 /
(sup(ran πΉ, β, < )
β (πΉβπ¦))) β V |
140 | 137, 138,
139 | fvmpt 6999 |
. . . . . . . . . . . 12
β’ (π¦ β π β ((π§ β π β¦ (1 / (sup(ran πΉ, β, < ) β (πΉβπ§))))βπ¦) = (1 / (sup(ran πΉ, β, < ) β (πΉβπ¦)))) |
141 | 140 | breq1d 5159 |
. . . . . . . . . . 11
β’ (π¦ β π β (((π§ β π β¦ (1 / (sup(ran πΉ, β, < ) β (πΉβπ§))))βπ¦) β€ π₯ β (1 / (sup(ran πΉ, β, < ) β (πΉβπ¦))) β€ π₯)) |
142 | 141 | ad2antll 728 |
. . . . . . . . . 10
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§
(π₯ β β β§
π¦ β π)) β (((π§ β π β¦ (1 / (sup(ran πΉ, β, < ) β (πΉβπ§))))βπ¦) β€ π₯ β (1 / (sup(ran πΉ, β, < ) β (πΉβπ¦))) β€ π₯)) |
143 | 102 | adantrr 716 |
. . . . . . . . . . . 12
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§
(π₯ β β β§
π¦ β π)) β (1 / if(1 β€ π₯, π₯, 1)) β β) |
144 | 100 | adantrr 716 |
. . . . . . . . . . . . 13
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§
(π₯ β β β§
π¦ β π)) β 0 < if(1 β€ π₯, π₯, 1)) |
145 | 131, 144 | recgt0d 12148 |
. . . . . . . . . . . 12
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§
(π₯ β β β§
π¦ β π)) β 0 < (1 / if(1 β€ π₯, π₯, 1))) |
146 | | lerec 12097 |
. . . . . . . . . . . 12
β’ ((((1 /
if(1 β€ π₯, π₯, 1)) β β β§ 0
< (1 / if(1 β€ π₯,
π₯, 1))) β§ ((sup(ran
πΉ, β, < ) β
(πΉβπ¦)) β β β§ 0 < (sup(ran πΉ, β, < ) β (πΉβπ¦)))) β ((1 / if(1 β€ π₯, π₯, 1)) β€ (sup(ran πΉ, β, < ) β (πΉβπ¦)) β (1 / (sup(ran πΉ, β, < ) β (πΉβπ¦))) β€ (1 / (1 / if(1 β€ π₯, π₯, 1))))) |
147 | 143, 145,
118, 128, 146 | syl22anc 838 |
. . . . . . . . . . 11
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§
(π₯ β β β§
π¦ β π)) β ((1 / if(1 β€ π₯, π₯, 1)) β€ (sup(ran πΉ, β, < ) β (πΉβπ¦)) β (1 / (sup(ran πΉ, β, < ) β (πΉβπ¦))) β€ (1 / (1 / if(1 β€ π₯, π₯, 1))))) |
148 | | lesub 11693 |
. . . . . . . . . . . 12
β’ (((1 /
if(1 β€ π₯, π₯, 1)) β β β§
sup(ran πΉ, β, < )
β β β§ (πΉβπ¦) β β) β ((1 / if(1 β€
π₯, π₯, 1)) β€ (sup(ran πΉ, β, < ) β (πΉβπ¦)) β (πΉβπ¦) β€ (sup(ran πΉ, β, < ) β (1 / if(1 β€
π₯, π₯, 1))))) |
149 | 143, 112,
117, 148 | syl3anc 1372 |
. . . . . . . . . . 11
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§
(π₯ β β β§
π¦ β π)) β ((1 / if(1 β€ π₯, π₯, 1)) β€ (sup(ran πΉ, β, < ) β (πΉβπ¦)) β (πΉβπ¦) β€ (sup(ran πΉ, β, < ) β (1 / if(1 β€
π₯, π₯, 1))))) |
150 | 131 | recnd 11242 |
. . . . . . . . . . . . 13
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§
(π₯ β β β§
π¦ β π)) β if(1 β€ π₯, π₯, 1) β β) |
151 | 101 | adantrr 716 |
. . . . . . . . . . . . 13
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§
(π₯ β β β§
π¦ β π)) β if(1 β€ π₯, π₯, 1) β 0) |
152 | 150, 151 | recrecd 11987 |
. . . . . . . . . . . 12
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§
(π₯ β β β§
π¦ β π)) β (1 / (1 / if(1 β€ π₯, π₯, 1))) = if(1 β€ π₯, π₯, 1)) |
153 | 152 | breq2d 5161 |
. . . . . . . . . . 11
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§
(π₯ β β β§
π¦ β π)) β ((1 / (sup(ran πΉ, β, < ) β (πΉβπ¦))) β€ (1 / (1 / if(1 β€ π₯, π₯, 1))) β (1 / (sup(ran πΉ, β, < ) β (πΉβπ¦))) β€ if(1 β€ π₯, π₯, 1))) |
154 | 147, 149,
153 | 3bitr3d 309 |
. . . . . . . . . 10
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§
(π₯ β β β§
π¦ β π)) β ((πΉβπ¦) β€ (sup(ran πΉ, β, < ) β (1 / if(1 β€
π₯, π₯, 1))) β (1 / (sup(ran πΉ, β, < ) β (πΉβπ¦))) β€ if(1 β€ π₯, π₯, 1))) |
155 | 134, 142,
154 | 3imtr4d 294 |
. . . . . . . . 9
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§
(π₯ β β β§
π¦ β π)) β (((π§ β π β¦ (1 / (sup(ran πΉ, β, < ) β (πΉβπ§))))βπ¦) β€ π₯ β (πΉβπ¦) β€ (sup(ran πΉ, β, < ) β (1 / if(1 β€
π₯, π₯, 1))))) |
156 | 155 | anassrs 469 |
. . . . . . . 8
β’ ((((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§ π₯ β β) β§ π¦ β π) β (((π§ β π β¦ (1 / (sup(ran πΉ, β, < ) β (πΉβπ§))))βπ¦) β€ π₯ β (πΉβπ¦) β€ (sup(ran πΉ, β, < ) β (1 / if(1 β€
π₯, π₯, 1))))) |
157 | 156 | ralimdva 3168 |
. . . . . . 7
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§ π₯ β β) β
(βπ¦ β π ((π§ β π β¦ (1 / (sup(ran πΉ, β, < ) β (πΉβπ§))))βπ¦) β€ π₯ β βπ¦ β π (πΉβπ¦) β€ (sup(ran πΉ, β, < ) β (1 / if(1 β€
π₯, π₯, 1))))) |
158 | 34 | ad2antrr 725 |
. . . . . . . . 9
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§ π₯ β β) β (ran
πΉ β β β§ ran
πΉ β β
β§
βπ₯ β β
βπ§ β ran πΉ π§ β€ π₯)) |
159 | | suprleub 12180 |
. . . . . . . . 9
β’ (((ran
πΉ β β β§ ran
πΉ β β
β§
βπ₯ β β
βπ§ β ran πΉ π§ β€ π₯) β§ (sup(ran πΉ, β, < ) β (1 / if(1 β€
π₯, π₯, 1))) β β) β (sup(ran πΉ, β, < ) β€ (sup(ran
πΉ, β, < ) β
(1 / if(1 β€ π₯, π₯, 1))) β βπ§ β ran πΉ π§ β€ (sup(ran πΉ, β, < ) β (1 / if(1 β€
π₯, π₯, 1))))) |
160 | 158, 106,
159 | syl2anc 585 |
. . . . . . . 8
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§ π₯ β β) β (sup(ran
πΉ, β, < ) β€
(sup(ran πΉ, β, < )
β (1 / if(1 β€ π₯,
π₯, 1))) β
βπ§ β ran πΉ π§ β€ (sup(ran πΉ, β, < ) β (1 / if(1 β€
π₯, π₯, 1))))) |
161 | 28 | ad2antrr 725 |
. . . . . . . . 9
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§ π₯ β β) β πΉ Fn π) |
162 | | breq1 5152 |
. . . . . . . . . 10
β’ (π§ = (πΉβπ¦) β (π§ β€ (sup(ran πΉ, β, < ) β (1 / if(1 β€
π₯, π₯, 1))) β (πΉβπ¦) β€ (sup(ran πΉ, β, < ) β (1 / if(1 β€
π₯, π₯, 1))))) |
163 | 162 | ralrn 7090 |
. . . . . . . . 9
β’ (πΉ Fn π β (βπ§ β ran πΉ π§ β€ (sup(ran πΉ, β, < ) β (1 / if(1 β€
π₯, π₯, 1))) β βπ¦ β π (πΉβπ¦) β€ (sup(ran πΉ, β, < ) β (1 / if(1 β€
π₯, π₯, 1))))) |
164 | 161, 163 | syl 17 |
. . . . . . . 8
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§ π₯ β β) β
(βπ§ β ran πΉ π§ β€ (sup(ran πΉ, β, < ) β (1 / if(1 β€
π₯, π₯, 1))) β βπ¦ β π (πΉβπ¦) β€ (sup(ran πΉ, β, < ) β (1 / if(1 β€
π₯, π₯, 1))))) |
165 | 160, 164 | bitrd 279 |
. . . . . . 7
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§ π₯ β β) β (sup(ran
πΉ, β, < ) β€
(sup(ran πΉ, β, < )
β (1 / if(1 β€ π₯,
π₯, 1))) β
βπ¦ β π (πΉβπ¦) β€ (sup(ran πΉ, β, < ) β (1 / if(1 β€
π₯, π₯, 1))))) |
166 | 157, 165 | sylibrd 259 |
. . . . . 6
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§ π₯ β β) β
(βπ¦ β π ((π§ β π β¦ (1 / (sup(ran πΉ, β, < ) β (πΉβπ§))))βπ¦) β€ π₯ β sup(ran πΉ, β, < ) β€ (sup(ran πΉ, β, < ) β (1 /
if(1 β€ π₯, π₯, 1))))) |
167 | 108, 166 | mtod 197 |
. . . . 5
β’ (((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β§ π₯ β β) β Β¬
βπ¦ β π ((π§ β π β¦ (1 / (sup(ran πΉ, β, < ) β (πΉβπ§))))βπ¦) β€ π₯) |
168 | 167 | nrexdv 3150 |
. . . 4
β’ ((π β§ πΉ:πβΆ(β β {sup(ran πΉ, β, < )})) β
Β¬ βπ₯ β
β βπ¦ β
π ((π§ β π β¦ (1 / (sup(ran πΉ, β, < ) β (πΉβπ§))))βπ¦) β€ π₯) |
169 | 88, 168 | pm2.65da 816 |
. . 3
β’ (π β Β¬ πΉ:πβΆ(β β {sup(ran πΉ, β, <
)})) |
170 | 122 | ralrimiva 3147 |
. . . . . . . . 9
β’ (π β βπ¦ β π (πΉβπ¦) β€ sup(ran πΉ, β, < )) |
171 | | breq2 5153 |
. . . . . . . . . 10
β’ ((πΉβπ₯) = sup(ran πΉ, β, < ) β ((πΉβπ¦) β€ (πΉβπ₯) β (πΉβπ¦) β€ sup(ran πΉ, β, < ))) |
172 | 171 | ralbidv 3178 |
. . . . . . . . 9
β’ ((πΉβπ₯) = sup(ran πΉ, β, < ) β (βπ¦ β π (πΉβπ¦) β€ (πΉβπ₯) β βπ¦ β π (πΉβπ¦) β€ sup(ran πΉ, β, < ))) |
173 | 170, 172 | syl5ibrcom 246 |
. . . . . . . 8
β’ (π β ((πΉβπ₯) = sup(ran πΉ, β, < ) β βπ¦ β π (πΉβπ¦) β€ (πΉβπ₯))) |
174 | 173 | necon3bd 2955 |
. . . . . . 7
β’ (π β (Β¬ βπ¦ β π (πΉβπ¦) β€ (πΉβπ₯) β (πΉβπ₯) β sup(ran πΉ, β, < ))) |
175 | 174 | adantr 482 |
. . . . . 6
β’ ((π β§ π₯ β π) β (Β¬ βπ¦ β π (πΉβπ¦) β€ (πΉβπ₯) β (πΉβπ₯) β sup(ran πΉ, β, < ))) |
176 | 19 | ffvelcdmda 7087 |
. . . . . . 7
β’ ((π β§ π₯ β π) β (πΉβπ₯) β β) |
177 | | eldifsn 4791 |
. . . . . . . 8
β’ ((πΉβπ₯) β (β β {sup(ran πΉ, β, < )}) β
((πΉβπ₯) β β β§ (πΉβπ₯) β sup(ran πΉ, β, < ))) |
178 | 177 | baib 537 |
. . . . . . 7
β’ ((πΉβπ₯) β β β ((πΉβπ₯) β (β β {sup(ran πΉ, β, < )}) β
(πΉβπ₯) β sup(ran πΉ, β, < ))) |
179 | 176, 178 | syl 17 |
. . . . . 6
β’ ((π β§ π₯ β π) β ((πΉβπ₯) β (β β {sup(ran πΉ, β, < )}) β
(πΉβπ₯) β sup(ran πΉ, β, < ))) |
180 | 175, 179 | sylibrd 259 |
. . . . 5
β’ ((π β§ π₯ β π) β (Β¬ βπ¦ β π (πΉβπ¦) β€ (πΉβπ₯) β (πΉβπ₯) β (β β {sup(ran πΉ, β, <
)}))) |
181 | 180 | ralimdva 3168 |
. . . 4
β’ (π β (βπ₯ β π Β¬ βπ¦ β π (πΉβπ¦) β€ (πΉβπ₯) β βπ₯ β π (πΉβπ₯) β (β β {sup(ran πΉ, β, <
)}))) |
182 | | ffnfv 7118 |
. . . . . 6
β’ (πΉ:πβΆ(β β {sup(ran πΉ, β, < )}) β
(πΉ Fn π β§ βπ₯ β π (πΉβπ₯) β (β β {sup(ran πΉ, β, <
)}))) |
183 | 182 | baib 537 |
. . . . 5
β’ (πΉ Fn π β (πΉ:πβΆ(β β {sup(ran πΉ, β, < )}) β
βπ₯ β π (πΉβπ₯) β (β β {sup(ran πΉ, β, <
)}))) |
184 | 28, 183 | syl 17 |
. . . 4
β’ (π β (πΉ:πβΆ(β β {sup(ran πΉ, β, < )}) β
βπ₯ β π (πΉβπ₯) β (β β {sup(ran πΉ, β, <
)}))) |
185 | 181, 184 | sylibrd 259 |
. . 3
β’ (π β (βπ₯ β π Β¬ βπ¦ β π (πΉβπ¦) β€ (πΉβπ₯) β πΉ:πβΆ(β β {sup(ran πΉ, β, <
)}))) |
186 | 169, 185 | mtod 197 |
. 2
β’ (π β Β¬ βπ₯ β π Β¬ βπ¦ β π (πΉβπ¦) β€ (πΉβπ₯)) |
187 | | dfrex2 3074 |
. 2
β’
(βπ₯ β
π βπ¦ β π (πΉβπ¦) β€ (πΉβπ₯) β Β¬ βπ₯ β π Β¬ βπ¦ β π (πΉβπ¦) β€ (πΉβπ₯)) |
188 | 186, 187 | sylibr 233 |
1
β’ (π β βπ₯ β π βπ¦ β π (πΉβπ¦) β€ (πΉβπ₯)) |