MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopcmp Structured version   Visualization version   GIF version

Theorem qtopcmp 22605
Description: A quotient of a compact space is compact. (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypothesis
Ref Expression
qtopcmp.1 𝑋 = 𝐽
Assertion
Ref Expression
qtopcmp ((𝐽 ∈ Comp ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Comp)

Proof of Theorem qtopcmp
StepHypRef Expression
1 qtopcmp.1 . 2 𝑋 = 𝐽
2 cmptop 22292 . 2 (𝐽 ∈ Comp → 𝐽 ∈ Top)
3 eqid 2737 . . 3 (𝐽 qTop 𝐹) = (𝐽 qTop 𝐹)
43cncmp 22289 . 2 ((𝐽 ∈ Comp ∧ 𝐹:𝑋onto (𝐽 qTop 𝐹) ∧ 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) → (𝐽 qTop 𝐹) ∈ Comp)
51, 2, 4qtopcmplem 22604 1 ((𝐽 ∈ Comp ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110   cuni 4819   Fn wfn 6375  (class class class)co 7213   qTop cqtop 17008  Compccmp 22283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-1o 8202  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-fin 8630  df-qtop 17012  df-top 21791  df-topon 21808  df-cn 22124  df-cmp 22284
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator