MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evth2 Structured version   Visualization version   GIF version

Theorem evth2 24360
Description: The Extreme Value Theorem, minimum version. A continuous function from a nonempty compact topological space to the reals attains its minimum at some point in the domain. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
bndth.1 𝑋 = 𝐽
bndth.2 𝐾 = (topGen‘ran (,))
bndth.3 (𝜑𝐽 ∈ Comp)
bndth.4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
evth.5 (𝜑𝑋 ≠ ∅)
Assertion
Ref Expression
evth2 (𝜑 → ∃𝑥𝑋𝑦𝑋 (𝐹𝑥) ≤ (𝐹𝑦))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑦,𝐾   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝐽,𝑦
Allowed substitution hint:   𝐾(𝑥)

Proof of Theorem evth2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bndth.1 . . 3 𝑋 = 𝐽
2 bndth.2 . . 3 𝐾 = (topGen‘ran (,))
3 bndth.3 . . 3 (𝜑𝐽 ∈ Comp)
4 cmptop 22783 . . . . . 6 (𝐽 ∈ Comp → 𝐽 ∈ Top)
53, 4syl 17 . . . . 5 (𝜑𝐽 ∈ Top)
61toptopon 22303 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
75, 6sylib 217 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
8 bndth.4 . . . . . . 7 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
9 uniretop 24163 . . . . . . . . 9 ℝ = (topGen‘ran (,))
102unieqi 4883 . . . . . . . . 9 𝐾 = (topGen‘ran (,))
119, 10eqtr4i 2762 . . . . . . . 8 ℝ = 𝐾
121, 11cnf 22634 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶ℝ)
138, 12syl 17 . . . . . 6 (𝜑𝐹:𝑋⟶ℝ)
1413feqmptd 6915 . . . . 5 (𝜑𝐹 = (𝑧𝑋 ↦ (𝐹𝑧)))
1514, 8eqeltrrd 2833 . . . 4 (𝜑 → (𝑧𝑋 ↦ (𝐹𝑧)) ∈ (𝐽 Cn 𝐾))
16 retopon 24164 . . . . . 6 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
172, 16eqeltri 2828 . . . . 5 𝐾 ∈ (TopOn‘ℝ)
1817a1i 11 . . . 4 (𝜑𝐾 ∈ (TopOn‘ℝ))
19 eqid 2731 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2019cnfldtopon 24183 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
2120a1i 11 . . . . . . . 8 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
22 0cnd 11157 . . . . . . . 8 (𝜑 → 0 ∈ ℂ)
2318, 21, 22cnmptc 23050 . . . . . . 7 (𝜑 → (𝑦 ∈ ℝ ↦ 0) ∈ (𝐾 Cn (TopOpen‘ℂfld)))
2419tgioo2 24203 . . . . . . . . 9 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
252, 24eqtri 2759 . . . . . . . 8 𝐾 = ((TopOpen‘ℂfld) ↾t ℝ)
26 ax-resscn 11117 . . . . . . . . 9 ℝ ⊆ ℂ
2726a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℂ)
2821cnmptid 23049 . . . . . . . 8 (𝜑 → (𝑦 ∈ ℂ ↦ 𝑦) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
2925, 21, 27, 28cnmpt1res 23064 . . . . . . 7 (𝜑 → (𝑦 ∈ ℝ ↦ 𝑦) ∈ (𝐾 Cn (TopOpen‘ℂfld)))
3019subcn 24266 . . . . . . . 8 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
3130a1i 11 . . . . . . 7 (𝜑 → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
3218, 23, 29, 31cnmpt12f 23054 . . . . . 6 (𝜑 → (𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn (TopOpen‘ℂfld)))
33 df-neg 11397 . . . . . . . . . . 11 -𝑦 = (0 − 𝑦)
34 renegcl 11473 . . . . . . . . . . 11 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
3533, 34eqeltrrid 2837 . . . . . . . . . 10 (𝑦 ∈ ℝ → (0 − 𝑦) ∈ ℝ)
3635adantl 482 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (0 − 𝑦) ∈ ℝ)
3736fmpttd 7068 . . . . . . . 8 (𝜑 → (𝑦 ∈ ℝ ↦ (0 − 𝑦)):ℝ⟶ℝ)
3837frnd 6681 . . . . . . 7 (𝜑 → ran (𝑦 ∈ ℝ ↦ (0 − 𝑦)) ⊆ ℝ)
39 cnrest2 22674 . . . . . . 7 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑦 ∈ ℝ ↦ (0 − 𝑦)) ⊆ ℝ ∧ ℝ ⊆ ℂ) → ((𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn (TopOpen‘ℂfld)) ↔ (𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
4021, 38, 27, 39syl3anc 1371 . . . . . 6 (𝜑 → ((𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn (TopOpen‘ℂfld)) ↔ (𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
4132, 40mpbid 231 . . . . 5 (𝜑 → (𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn ((TopOpen‘ℂfld) ↾t ℝ)))
4225oveq2i 7373 . . . . 5 (𝐾 Cn 𝐾) = (𝐾 Cn ((TopOpen‘ℂfld) ↾t ℝ))
4341, 42eleqtrrdi 2843 . . . 4 (𝜑 → (𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn 𝐾))
44 negeq 11402 . . . . 5 (𝑦 = (𝐹𝑧) → -𝑦 = -(𝐹𝑧))
4533, 44eqtr3id 2785 . . . 4 (𝑦 = (𝐹𝑧) → (0 − 𝑦) = -(𝐹𝑧))
467, 15, 18, 43, 45cnmpt11 23051 . . 3 (𝜑 → (𝑧𝑋 ↦ -(𝐹𝑧)) ∈ (𝐽 Cn 𝐾))
47 evth.5 . . 3 (𝜑𝑋 ≠ ∅)
481, 2, 3, 46, 47evth 24359 . 2 (𝜑 → ∃𝑥𝑋𝑦𝑋 ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑦) ≤ ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑥))
49 fveq2 6847 . . . . . . . . 9 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
5049negeqd 11404 . . . . . . . 8 (𝑧 = 𝑦 → -(𝐹𝑧) = -(𝐹𝑦))
51 eqid 2731 . . . . . . . 8 (𝑧𝑋 ↦ -(𝐹𝑧)) = (𝑧𝑋 ↦ -(𝐹𝑧))
52 negex 11408 . . . . . . . 8 -(𝐹𝑦) ∈ V
5350, 51, 52fvmpt 6953 . . . . . . 7 (𝑦𝑋 → ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑦) = -(𝐹𝑦))
5453adantl 482 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑦) = -(𝐹𝑦))
55 fveq2 6847 . . . . . . . . 9 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
5655negeqd 11404 . . . . . . . 8 (𝑧 = 𝑥 → -(𝐹𝑧) = -(𝐹𝑥))
57 negex 11408 . . . . . . . 8 -(𝐹𝑥) ∈ V
5856, 51, 57fvmpt 6953 . . . . . . 7 (𝑥𝑋 → ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑥) = -(𝐹𝑥))
5958ad2antlr 725 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑥) = -(𝐹𝑥))
6054, 59breq12d 5123 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → (((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑦) ≤ ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑥) ↔ -(𝐹𝑦) ≤ -(𝐹𝑥)))
6113ffvelcdmda 7040 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℝ)
6261adantr 481 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → (𝐹𝑥) ∈ ℝ)
6313ffvelcdmda 7040 . . . . . . 7 ((𝜑𝑦𝑋) → (𝐹𝑦) ∈ ℝ)
6463adantlr 713 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → (𝐹𝑦) ∈ ℝ)
6562, 64lenegd 11743 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → ((𝐹𝑥) ≤ (𝐹𝑦) ↔ -(𝐹𝑦) ≤ -(𝐹𝑥)))
6660, 65bitr4d 281 . . . 4 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → (((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑦) ≤ ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑥) ↔ (𝐹𝑥) ≤ (𝐹𝑦)))
6766ralbidva 3168 . . 3 ((𝜑𝑥𝑋) → (∀𝑦𝑋 ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑦) ≤ ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑥) ↔ ∀𝑦𝑋 (𝐹𝑥) ≤ (𝐹𝑦)))
6867rexbidva 3169 . 2 (𝜑 → (∃𝑥𝑋𝑦𝑋 ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑦) ≤ ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑥) ↔ ∃𝑥𝑋𝑦𝑋 (𝐹𝑥) ≤ (𝐹𝑦)))
6948, 68mpbid 231 1 (𝜑 → ∃𝑥𝑋𝑦𝑋 (𝐹𝑥) ≤ (𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2939  wral 3060  wrex 3069  wss 3913  c0 4287   cuni 4870   class class class wbr 5110  cmpt 5193  ran crn 5639  wf 6497  cfv 6501  (class class class)co 7362  cc 11058  cr 11059  0cc0 11060  cle 11199  cmin 11394  -cneg 11395  (,)cioo 13274  t crest 17316  TopOpenctopn 17317  topGenctg 17333  fldccnfld 20833  Topctop 22279  TopOnctopon 22296   Cn ccn 22612  Compccmp 22774   ×t ctx 22948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137  ax-pre-sup 11138  ax-mulf 11140
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-iin 4962  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-om 7808  df-1st 7926  df-2nd 7927  df-supp 8098  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-er 8655  df-map 8774  df-ixp 8843  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-fsupp 9313  df-fi 9356  df-sup 9387  df-inf 9388  df-oi 9455  df-card 9884  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12423  df-z 12509  df-dec 12628  df-uz 12773  df-q 12883  df-rp 12925  df-xneg 13042  df-xadd 13043  df-xmul 13044  df-ioo 13278  df-icc 13281  df-fz 13435  df-fzo 13578  df-seq 13917  df-exp 13978  df-hash 14241  df-cj 14996  df-re 14997  df-im 14998  df-sqrt 15132  df-abs 15133  df-struct 17030  df-sets 17047  df-slot 17065  df-ndx 17077  df-base 17095  df-ress 17124  df-plusg 17160  df-mulr 17161  df-starv 17162  df-sca 17163  df-vsca 17164  df-ip 17165  df-tset 17166  df-ple 17167  df-ds 17169  df-unif 17170  df-hom 17171  df-cco 17172  df-rest 17318  df-topn 17319  df-0g 17337  df-gsum 17338  df-topgen 17339  df-pt 17340  df-prds 17343  df-xrs 17398  df-qtop 17403  df-imas 17404  df-xps 17406  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18511  df-sgrp 18560  df-mnd 18571  df-submnd 18616  df-mulg 18887  df-cntz 19111  df-cmn 19578  df-psmet 20825  df-xmet 20826  df-met 20827  df-bl 20828  df-mopn 20829  df-cnfld 20834  df-top 22280  df-topon 22297  df-topsp 22319  df-bases 22333  df-cn 22615  df-cnp 22616  df-cmp 22775  df-tx 22950  df-hmeo 23143  df-xms 23710  df-ms 23711  df-tms 23712
This theorem is referenced by:  lebnumlem3  24363  evthicc  24860  ftalem3  26461  evth2f  43342  stoweidlem28  44389
  Copyright terms: Public domain W3C validator