MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evth2 Structured version   Visualization version   GIF version

Theorem evth2 23167
Description: The Extreme Value Theorem, minimum version. A continuous function from a nonempty compact topological space to the reals attains its minimum at some point in the domain. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
bndth.1 𝑋 = 𝐽
bndth.2 𝐾 = (topGen‘ran (,))
bndth.3 (𝜑𝐽 ∈ Comp)
bndth.4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
evth.5 (𝜑𝑋 ≠ ∅)
Assertion
Ref Expression
evth2 (𝜑 → ∃𝑥𝑋𝑦𝑋 (𝐹𝑥) ≤ (𝐹𝑦))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑦,𝐾   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝐽,𝑦
Allowed substitution hint:   𝐾(𝑥)

Proof of Theorem evth2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bndth.1 . . 3 𝑋 = 𝐽
2 bndth.2 . . 3 𝐾 = (topGen‘ran (,))
3 bndth.3 . . 3 (𝜑𝐽 ∈ Comp)
4 cmptop 21607 . . . . . 6 (𝐽 ∈ Comp → 𝐽 ∈ Top)
53, 4syl 17 . . . . 5 (𝜑𝐽 ∈ Top)
61toptopon 21129 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
75, 6sylib 210 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
8 bndth.4 . . . . . . 7 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
9 uniretop 22974 . . . . . . . . 9 ℝ = (topGen‘ran (,))
102unieqi 4680 . . . . . . . . 9 𝐾 = (topGen‘ran (,))
119, 10eqtr4i 2805 . . . . . . . 8 ℝ = 𝐾
121, 11cnf 21458 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶ℝ)
138, 12syl 17 . . . . . 6 (𝜑𝐹:𝑋⟶ℝ)
1413feqmptd 6509 . . . . 5 (𝜑𝐹 = (𝑧𝑋 ↦ (𝐹𝑧)))
1514, 8eqeltrrd 2860 . . . 4 (𝜑 → (𝑧𝑋 ↦ (𝐹𝑧)) ∈ (𝐽 Cn 𝐾))
16 retopon 22975 . . . . . 6 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
172, 16eqeltri 2855 . . . . 5 𝐾 ∈ (TopOn‘ℝ)
1817a1i 11 . . . 4 (𝜑𝐾 ∈ (TopOn‘ℝ))
19 eqid 2778 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2019cnfldtopon 22994 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
2120a1i 11 . . . . . . . 8 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
22 0cnd 10369 . . . . . . . 8 (𝜑 → 0 ∈ ℂ)
2318, 21, 22cnmptc 21874 . . . . . . 7 (𝜑 → (𝑦 ∈ ℝ ↦ 0) ∈ (𝐾 Cn (TopOpen‘ℂfld)))
2419tgioo2 23014 . . . . . . . . 9 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
252, 24eqtri 2802 . . . . . . . 8 𝐾 = ((TopOpen‘ℂfld) ↾t ℝ)
26 ax-resscn 10329 . . . . . . . . 9 ℝ ⊆ ℂ
2726a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℂ)
2821cnmptid 21873 . . . . . . . 8 (𝜑 → (𝑦 ∈ ℂ ↦ 𝑦) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
2925, 21, 27, 28cnmpt1res 21888 . . . . . . 7 (𝜑 → (𝑦 ∈ ℝ ↦ 𝑦) ∈ (𝐾 Cn (TopOpen‘ℂfld)))
3019subcn 23077 . . . . . . . 8 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
3130a1i 11 . . . . . . 7 (𝜑 → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
3218, 23, 29, 31cnmpt12f 21878 . . . . . 6 (𝜑 → (𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn (TopOpen‘ℂfld)))
33 df-neg 10609 . . . . . . . . . . 11 -𝑦 = (0 − 𝑦)
34 renegcl 10686 . . . . . . . . . . 11 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
3533, 34syl5eqelr 2864 . . . . . . . . . 10 (𝑦 ∈ ℝ → (0 − 𝑦) ∈ ℝ)
3635adantl 475 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (0 − 𝑦) ∈ ℝ)
3736fmpttd 6649 . . . . . . . 8 (𝜑 → (𝑦 ∈ ℝ ↦ (0 − 𝑦)):ℝ⟶ℝ)
3837frnd 6298 . . . . . . 7 (𝜑 → ran (𝑦 ∈ ℝ ↦ (0 − 𝑦)) ⊆ ℝ)
39 cnrest2 21498 . . . . . . 7 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑦 ∈ ℝ ↦ (0 − 𝑦)) ⊆ ℝ ∧ ℝ ⊆ ℂ) → ((𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn (TopOpen‘ℂfld)) ↔ (𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
4021, 38, 27, 39syl3anc 1439 . . . . . 6 (𝜑 → ((𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn (TopOpen‘ℂfld)) ↔ (𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
4132, 40mpbid 224 . . . . 5 (𝜑 → (𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn ((TopOpen‘ℂfld) ↾t ℝ)))
4225oveq2i 6933 . . . . 5 (𝐾 Cn 𝐾) = (𝐾 Cn ((TopOpen‘ℂfld) ↾t ℝ))
4341, 42syl6eleqr 2870 . . . 4 (𝜑 → (𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn 𝐾))
44 negeq 10614 . . . . 5 (𝑦 = (𝐹𝑧) → -𝑦 = -(𝐹𝑧))
4533, 44syl5eqr 2828 . . . 4 (𝑦 = (𝐹𝑧) → (0 − 𝑦) = -(𝐹𝑧))
467, 15, 18, 43, 45cnmpt11 21875 . . 3 (𝜑 → (𝑧𝑋 ↦ -(𝐹𝑧)) ∈ (𝐽 Cn 𝐾))
47 evth.5 . . 3 (𝜑𝑋 ≠ ∅)
481, 2, 3, 46, 47evth 23166 . 2 (𝜑 → ∃𝑥𝑋𝑦𝑋 ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑦) ≤ ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑥))
49 fveq2 6446 . . . . . . . . 9 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
5049negeqd 10616 . . . . . . . 8 (𝑧 = 𝑦 → -(𝐹𝑧) = -(𝐹𝑦))
51 eqid 2778 . . . . . . . 8 (𝑧𝑋 ↦ -(𝐹𝑧)) = (𝑧𝑋 ↦ -(𝐹𝑧))
52 negex 10620 . . . . . . . 8 -(𝐹𝑦) ∈ V
5350, 51, 52fvmpt 6542 . . . . . . 7 (𝑦𝑋 → ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑦) = -(𝐹𝑦))
5453adantl 475 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑦) = -(𝐹𝑦))
55 fveq2 6446 . . . . . . . . 9 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
5655negeqd 10616 . . . . . . . 8 (𝑧 = 𝑥 → -(𝐹𝑧) = -(𝐹𝑥))
57 negex 10620 . . . . . . . 8 -(𝐹𝑥) ∈ V
5856, 51, 57fvmpt 6542 . . . . . . 7 (𝑥𝑋 → ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑥) = -(𝐹𝑥))
5958ad2antlr 717 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑥) = -(𝐹𝑥))
6054, 59breq12d 4899 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → (((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑦) ≤ ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑥) ↔ -(𝐹𝑦) ≤ -(𝐹𝑥)))
6113ffvelrnda 6623 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℝ)
6261adantr 474 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → (𝐹𝑥) ∈ ℝ)
6313ffvelrnda 6623 . . . . . . 7 ((𝜑𝑦𝑋) → (𝐹𝑦) ∈ ℝ)
6463adantlr 705 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → (𝐹𝑦) ∈ ℝ)
6562, 64lenegd 10954 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → ((𝐹𝑥) ≤ (𝐹𝑦) ↔ -(𝐹𝑦) ≤ -(𝐹𝑥)))
6660, 65bitr4d 274 . . . 4 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → (((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑦) ≤ ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑥) ↔ (𝐹𝑥) ≤ (𝐹𝑦)))
6766ralbidva 3167 . . 3 ((𝜑𝑥𝑋) → (∀𝑦𝑋 ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑦) ≤ ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑥) ↔ ∀𝑦𝑋 (𝐹𝑥) ≤ (𝐹𝑦)))
6867rexbidva 3234 . 2 (𝜑 → (∃𝑥𝑋𝑦𝑋 ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑦) ≤ ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑥) ↔ ∃𝑥𝑋𝑦𝑋 (𝐹𝑥) ≤ (𝐹𝑦)))
6948, 68mpbid 224 1 (𝜑 → ∃𝑥𝑋𝑦𝑋 (𝐹𝑥) ≤ (𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  wne 2969  wral 3090  wrex 3091  wss 3792  c0 4141   cuni 4671   class class class wbr 4886  cmpt 4965  ran crn 5356  wf 6131  cfv 6135  (class class class)co 6922  cc 10270  cr 10271  0cc0 10272  cle 10412  cmin 10606  -cneg 10607  (,)cioo 12487  t crest 16467  TopOpenctopn 16468  topGenctg 16484  fldccnfld 20142  Topctop 21105  TopOnctopon 21122   Cn ccn 21436  Compccmp 21598   ×t ctx 21772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-fi 8605  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-icc 12494  df-fz 12644  df-fzo 12785  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-hom 16362  df-cco 16363  df-rest 16469  df-topn 16470  df-0g 16488  df-gsum 16489  df-topgen 16490  df-pt 16491  df-prds 16494  df-xrs 16548  df-qtop 16553  df-imas 16554  df-xps 16556  df-mre 16632  df-mrc 16633  df-acs 16635  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-submnd 17722  df-mulg 17928  df-cntz 18133  df-cmn 18581  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-cnfld 20143  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-cn 21439  df-cnp 21440  df-cmp 21599  df-tx 21774  df-hmeo 21967  df-xms 22533  df-ms 22534  df-tms 22535
This theorem is referenced by:  lebnumlem3  23170  evthicc  23663  ftalem3  25253  evth2f  40111  stoweidlem28  41176
  Copyright terms: Public domain W3C validator