MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evth2 Structured version   Visualization version   GIF version

Theorem evth2 23568
Description: The Extreme Value Theorem, minimum version. A continuous function from a nonempty compact topological space to the reals attains its minimum at some point in the domain. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
bndth.1 𝑋 = 𝐽
bndth.2 𝐾 = (topGen‘ran (,))
bndth.3 (𝜑𝐽 ∈ Comp)
bndth.4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
evth.5 (𝜑𝑋 ≠ ∅)
Assertion
Ref Expression
evth2 (𝜑 → ∃𝑥𝑋𝑦𝑋 (𝐹𝑥) ≤ (𝐹𝑦))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑦,𝐾   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝐽,𝑦
Allowed substitution hint:   𝐾(𝑥)

Proof of Theorem evth2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bndth.1 . . 3 𝑋 = 𝐽
2 bndth.2 . . 3 𝐾 = (topGen‘ran (,))
3 bndth.3 . . 3 (𝜑𝐽 ∈ Comp)
4 cmptop 22003 . . . . . 6 (𝐽 ∈ Comp → 𝐽 ∈ Top)
53, 4syl 17 . . . . 5 (𝜑𝐽 ∈ Top)
61toptopon 21525 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
75, 6sylib 221 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
8 bndth.4 . . . . . . 7 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
9 uniretop 23371 . . . . . . . . 9 ℝ = (topGen‘ran (,))
102unieqi 4837 . . . . . . . . 9 𝐾 = (topGen‘ran (,))
119, 10eqtr4i 2850 . . . . . . . 8 ℝ = 𝐾
121, 11cnf 21854 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶ℝ)
138, 12syl 17 . . . . . 6 (𝜑𝐹:𝑋⟶ℝ)
1413feqmptd 6724 . . . . 5 (𝜑𝐹 = (𝑧𝑋 ↦ (𝐹𝑧)))
1514, 8eqeltrrd 2917 . . . 4 (𝜑 → (𝑧𝑋 ↦ (𝐹𝑧)) ∈ (𝐽 Cn 𝐾))
16 retopon 23372 . . . . . 6 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
172, 16eqeltri 2912 . . . . 5 𝐾 ∈ (TopOn‘ℝ)
1817a1i 11 . . . 4 (𝜑𝐾 ∈ (TopOn‘ℝ))
19 eqid 2824 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2019cnfldtopon 23391 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
2120a1i 11 . . . . . . . 8 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
22 0cnd 10632 . . . . . . . 8 (𝜑 → 0 ∈ ℂ)
2318, 21, 22cnmptc 22270 . . . . . . 7 (𝜑 → (𝑦 ∈ ℝ ↦ 0) ∈ (𝐾 Cn (TopOpen‘ℂfld)))
2419tgioo2 23411 . . . . . . . . 9 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
252, 24eqtri 2847 . . . . . . . 8 𝐾 = ((TopOpen‘ℂfld) ↾t ℝ)
26 ax-resscn 10592 . . . . . . . . 9 ℝ ⊆ ℂ
2726a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℂ)
2821cnmptid 22269 . . . . . . . 8 (𝜑 → (𝑦 ∈ ℂ ↦ 𝑦) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
2925, 21, 27, 28cnmpt1res 22284 . . . . . . 7 (𝜑 → (𝑦 ∈ ℝ ↦ 𝑦) ∈ (𝐾 Cn (TopOpen‘ℂfld)))
3019subcn 23474 . . . . . . . 8 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
3130a1i 11 . . . . . . 7 (𝜑 → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
3218, 23, 29, 31cnmpt12f 22274 . . . . . 6 (𝜑 → (𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn (TopOpen‘ℂfld)))
33 df-neg 10871 . . . . . . . . . . 11 -𝑦 = (0 − 𝑦)
34 renegcl 10947 . . . . . . . . . . 11 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
3533, 34eqeltrrid 2921 . . . . . . . . . 10 (𝑦 ∈ ℝ → (0 − 𝑦) ∈ ℝ)
3635adantl 485 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (0 − 𝑦) ∈ ℝ)
3736fmpttd 6870 . . . . . . . 8 (𝜑 → (𝑦 ∈ ℝ ↦ (0 − 𝑦)):ℝ⟶ℝ)
3837frnd 6510 . . . . . . 7 (𝜑 → ran (𝑦 ∈ ℝ ↦ (0 − 𝑦)) ⊆ ℝ)
39 cnrest2 21894 . . . . . . 7 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑦 ∈ ℝ ↦ (0 − 𝑦)) ⊆ ℝ ∧ ℝ ⊆ ℂ) → ((𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn (TopOpen‘ℂfld)) ↔ (𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
4021, 38, 27, 39syl3anc 1368 . . . . . 6 (𝜑 → ((𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn (TopOpen‘ℂfld)) ↔ (𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
4132, 40mpbid 235 . . . . 5 (𝜑 → (𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn ((TopOpen‘ℂfld) ↾t ℝ)))
4225oveq2i 7160 . . . . 5 (𝐾 Cn 𝐾) = (𝐾 Cn ((TopOpen‘ℂfld) ↾t ℝ))
4341, 42eleqtrrdi 2927 . . . 4 (𝜑 → (𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn 𝐾))
44 negeq 10876 . . . . 5 (𝑦 = (𝐹𝑧) → -𝑦 = -(𝐹𝑧))
4533, 44syl5eqr 2873 . . . 4 (𝑦 = (𝐹𝑧) → (0 − 𝑦) = -(𝐹𝑧))
467, 15, 18, 43, 45cnmpt11 22271 . . 3 (𝜑 → (𝑧𝑋 ↦ -(𝐹𝑧)) ∈ (𝐽 Cn 𝐾))
47 evth.5 . . 3 (𝜑𝑋 ≠ ∅)
481, 2, 3, 46, 47evth 23567 . 2 (𝜑 → ∃𝑥𝑋𝑦𝑋 ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑦) ≤ ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑥))
49 fveq2 6661 . . . . . . . . 9 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
5049negeqd 10878 . . . . . . . 8 (𝑧 = 𝑦 → -(𝐹𝑧) = -(𝐹𝑦))
51 eqid 2824 . . . . . . . 8 (𝑧𝑋 ↦ -(𝐹𝑧)) = (𝑧𝑋 ↦ -(𝐹𝑧))
52 negex 10882 . . . . . . . 8 -(𝐹𝑦) ∈ V
5350, 51, 52fvmpt 6759 . . . . . . 7 (𝑦𝑋 → ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑦) = -(𝐹𝑦))
5453adantl 485 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑦) = -(𝐹𝑦))
55 fveq2 6661 . . . . . . . . 9 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
5655negeqd 10878 . . . . . . . 8 (𝑧 = 𝑥 → -(𝐹𝑧) = -(𝐹𝑥))
57 negex 10882 . . . . . . . 8 -(𝐹𝑥) ∈ V
5856, 51, 57fvmpt 6759 . . . . . . 7 (𝑥𝑋 → ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑥) = -(𝐹𝑥))
5958ad2antlr 726 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑥) = -(𝐹𝑥))
6054, 59breq12d 5065 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → (((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑦) ≤ ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑥) ↔ -(𝐹𝑦) ≤ -(𝐹𝑥)))
6113ffvelrnda 6842 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℝ)
6261adantr 484 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → (𝐹𝑥) ∈ ℝ)
6313ffvelrnda 6842 . . . . . . 7 ((𝜑𝑦𝑋) → (𝐹𝑦) ∈ ℝ)
6463adantlr 714 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → (𝐹𝑦) ∈ ℝ)
6562, 64lenegd 11217 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → ((𝐹𝑥) ≤ (𝐹𝑦) ↔ -(𝐹𝑦) ≤ -(𝐹𝑥)))
6660, 65bitr4d 285 . . . 4 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → (((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑦) ≤ ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑥) ↔ (𝐹𝑥) ≤ (𝐹𝑦)))
6766ralbidva 3191 . . 3 ((𝜑𝑥𝑋) → (∀𝑦𝑋 ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑦) ≤ ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑥) ↔ ∀𝑦𝑋 (𝐹𝑥) ≤ (𝐹𝑦)))
6867rexbidva 3288 . 2 (𝜑 → (∃𝑥𝑋𝑦𝑋 ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑦) ≤ ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑥) ↔ ∃𝑥𝑋𝑦𝑋 (𝐹𝑥) ≤ (𝐹𝑦)))
6948, 68mpbid 235 1 (𝜑 → ∃𝑥𝑋𝑦𝑋 (𝐹𝑥) ≤ (𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wne 3014  wral 3133  wrex 3134  wss 3919  c0 4276   cuni 4824   class class class wbr 5052  cmpt 5132  ran crn 5543  wf 6339  cfv 6343  (class class class)co 7149  cc 10533  cr 10534  0cc0 10535  cle 10674  cmin 10868  -cneg 10869  (,)cioo 12735  t crest 16694  TopOpenctopn 16695  topGenctg 16711  fldccnfld 20545  Topctop 21501  TopOnctopon 21518   Cn ccn 21832  Compccmp 21994   ×t ctx 22168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613  ax-mulf 10615
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-of 7403  df-om 7575  df-1st 7684  df-2nd 7685  df-supp 7827  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-er 8285  df-map 8404  df-ixp 8458  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-fsupp 8831  df-fi 8872  df-sup 8903  df-inf 8904  df-oi 8971  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-7 11702  df-8 11703  df-9 11704  df-n0 11895  df-z 11979  df-dec 12096  df-uz 12241  df-q 12346  df-rp 12387  df-xneg 12504  df-xadd 12505  df-xmul 12506  df-ioo 12739  df-icc 12742  df-fz 12895  df-fzo 13038  df-seq 13374  df-exp 13435  df-hash 13696  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cn 21835  df-cnp 21836  df-cmp 21995  df-tx 22170  df-hmeo 22363  df-xms 22930  df-ms 22931  df-tms 22932
This theorem is referenced by:  lebnumlem3  23571  evthicc  24066  ftalem3  25663  evth2f  41564  stoweidlem28  42596
  Copyright terms: Public domain W3C validator