Step | Hyp | Ref
| Expression |
1 | | bndth.1 |
. . 3
⊢ 𝑋 = ∪
𝐽 |
2 | | bndth.2 |
. . 3
⊢ 𝐾 = (topGen‘ran
(,)) |
3 | | bndth.3 |
. . 3
⊢ (𝜑 → 𝐽 ∈ Comp) |
4 | | cmptop 22546 |
. . . . . 6
⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) |
5 | 3, 4 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐽 ∈ Top) |
6 | 1 | toptopon 22066 |
. . . . 5
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
7 | 5, 6 | sylib 217 |
. . . 4
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
8 | | bndth.4 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
9 | | uniretop 23926 |
. . . . . . . . 9
⊢ ℝ =
∪ (topGen‘ran (,)) |
10 | 2 | unieqi 4852 |
. . . . . . . . 9
⊢ ∪ 𝐾 =
∪ (topGen‘ran (,)) |
11 | 9, 10 | eqtr4i 2769 |
. . . . . . . 8
⊢ ℝ =
∪ 𝐾 |
12 | 1, 11 | cnf 22397 |
. . . . . . 7
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶ℝ) |
13 | 8, 12 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐹:𝑋⟶ℝ) |
14 | 13 | feqmptd 6837 |
. . . . 5
⊢ (𝜑 → 𝐹 = (𝑧 ∈ 𝑋 ↦ (𝐹‘𝑧))) |
15 | 14, 8 | eqeltrrd 2840 |
. . . 4
⊢ (𝜑 → (𝑧 ∈ 𝑋 ↦ (𝐹‘𝑧)) ∈ (𝐽 Cn 𝐾)) |
16 | | retopon 23927 |
. . . . . 6
⊢
(topGen‘ran (,)) ∈ (TopOn‘ℝ) |
17 | 2, 16 | eqeltri 2835 |
. . . . 5
⊢ 𝐾 ∈
(TopOn‘ℝ) |
18 | 17 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐾 ∈
(TopOn‘ℝ)) |
19 | | eqid 2738 |
. . . . . . . . . 10
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
20 | 19 | cnfldtopon 23946 |
. . . . . . . . 9
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
21 | 20 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 →
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ)) |
22 | | 0cnd 10968 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
ℂ) |
23 | 18, 21, 22 | cnmptc 22813 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ ℝ ↦ 0) ∈ (𝐾 Cn
(TopOpen‘ℂfld))) |
24 | 19 | tgioo2 23966 |
. . . . . . . . 9
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
25 | 2, 24 | eqtri 2766 |
. . . . . . . 8
⊢ 𝐾 =
((TopOpen‘ℂfld) ↾t
ℝ) |
26 | | ax-resscn 10928 |
. . . . . . . . 9
⊢ ℝ
⊆ ℂ |
27 | 26 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ℝ ⊆
ℂ) |
28 | 21 | cnmptid 22812 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ ℂ ↦ 𝑦) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
29 | 25, 21, 27, 28 | cnmpt1res 22827 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ ℝ ↦ 𝑦) ∈ (𝐾 Cn
(TopOpen‘ℂfld))) |
30 | 19 | subcn 24029 |
. . . . . . . 8
⊢ −
∈ (((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) |
31 | 30 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → − ∈
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld))) |
32 | 18, 23, 29, 31 | cnmpt12f 22817 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn
(TopOpen‘ℂfld))) |
33 | | df-neg 11208 |
. . . . . . . . . . 11
⊢ -𝑦 = (0 − 𝑦) |
34 | | renegcl 11284 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℝ → -𝑦 ∈
ℝ) |
35 | 33, 34 | eqeltrrid 2844 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℝ → (0
− 𝑦) ∈
ℝ) |
36 | 35 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (0 − 𝑦) ∈
ℝ) |
37 | 36 | fmpttd 6989 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ ℝ ↦ (0 − 𝑦)):ℝ⟶ℝ) |
38 | 37 | frnd 6608 |
. . . . . . 7
⊢ (𝜑 → ran (𝑦 ∈ ℝ ↦ (0 − 𝑦)) ⊆
ℝ) |
39 | | cnrest2 22437 |
. . . . . . 7
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ ran (𝑦 ∈ ℝ
↦ (0 − 𝑦))
⊆ ℝ ∧ ℝ ⊆ ℂ) → ((𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn (TopOpen‘ℂfld))
↔ (𝑦 ∈ ℝ
↦ (0 − 𝑦))
∈ (𝐾 Cn
((TopOpen‘ℂfld) ↾t
ℝ)))) |
40 | 21, 38, 27, 39 | syl3anc 1370 |
. . . . . 6
⊢ (𝜑 → ((𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn (TopOpen‘ℂfld))
↔ (𝑦 ∈ ℝ
↦ (0 − 𝑦))
∈ (𝐾 Cn
((TopOpen‘ℂfld) ↾t
ℝ)))) |
41 | 32, 40 | mpbid 231 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn ((TopOpen‘ℂfld)
↾t ℝ))) |
42 | 25 | oveq2i 7286 |
. . . . 5
⊢ (𝐾 Cn 𝐾) = (𝐾 Cn ((TopOpen‘ℂfld)
↾t ℝ)) |
43 | 41, 42 | eleqtrrdi 2850 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn 𝐾)) |
44 | | negeq 11213 |
. . . . 5
⊢ (𝑦 = (𝐹‘𝑧) → -𝑦 = -(𝐹‘𝑧)) |
45 | 33, 44 | eqtr3id 2792 |
. . . 4
⊢ (𝑦 = (𝐹‘𝑧) → (0 − 𝑦) = -(𝐹‘𝑧)) |
46 | 7, 15, 18, 43, 45 | cnmpt11 22814 |
. . 3
⊢ (𝜑 → (𝑧 ∈ 𝑋 ↦ -(𝐹‘𝑧)) ∈ (𝐽 Cn 𝐾)) |
47 | | evth.5 |
. . 3
⊢ (𝜑 → 𝑋 ≠ ∅) |
48 | 1, 2, 3, 46, 47 | evth 24122 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑧 ∈ 𝑋 ↦ -(𝐹‘𝑧))‘𝑦) ≤ ((𝑧 ∈ 𝑋 ↦ -(𝐹‘𝑧))‘𝑥)) |
49 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑧 = 𝑦 → (𝐹‘𝑧) = (𝐹‘𝑦)) |
50 | 49 | negeqd 11215 |
. . . . . . . 8
⊢ (𝑧 = 𝑦 → -(𝐹‘𝑧) = -(𝐹‘𝑦)) |
51 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝑋 ↦ -(𝐹‘𝑧)) = (𝑧 ∈ 𝑋 ↦ -(𝐹‘𝑧)) |
52 | | negex 11219 |
. . . . . . . 8
⊢ -(𝐹‘𝑦) ∈ V |
53 | 50, 51, 52 | fvmpt 6875 |
. . . . . . 7
⊢ (𝑦 ∈ 𝑋 → ((𝑧 ∈ 𝑋 ↦ -(𝐹‘𝑧))‘𝑦) = -(𝐹‘𝑦)) |
54 | 53 | adantl 482 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝑧 ∈ 𝑋 ↦ -(𝐹‘𝑧))‘𝑦) = -(𝐹‘𝑦)) |
55 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) |
56 | 55 | negeqd 11215 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → -(𝐹‘𝑧) = -(𝐹‘𝑥)) |
57 | | negex 11219 |
. . . . . . . 8
⊢ -(𝐹‘𝑥) ∈ V |
58 | 56, 51, 57 | fvmpt 6875 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑋 → ((𝑧 ∈ 𝑋 ↦ -(𝐹‘𝑧))‘𝑥) = -(𝐹‘𝑥)) |
59 | 58 | ad2antlr 724 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝑧 ∈ 𝑋 ↦ -(𝐹‘𝑧))‘𝑥) = -(𝐹‘𝑥)) |
60 | 54, 59 | breq12d 5087 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (((𝑧 ∈ 𝑋 ↦ -(𝐹‘𝑧))‘𝑦) ≤ ((𝑧 ∈ 𝑋 ↦ -(𝐹‘𝑧))‘𝑥) ↔ -(𝐹‘𝑦) ≤ -(𝐹‘𝑥))) |
61 | 13 | ffvelrnda 6961 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ ℝ) |
62 | 61 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝐹‘𝑥) ∈ ℝ) |
63 | 13 | ffvelrnda 6961 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → (𝐹‘𝑦) ∈ ℝ) |
64 | 63 | adantlr 712 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝐹‘𝑦) ∈ ℝ) |
65 | 62, 64 | lenegd 11554 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝐹‘𝑥) ≤ (𝐹‘𝑦) ↔ -(𝐹‘𝑦) ≤ -(𝐹‘𝑥))) |
66 | 60, 65 | bitr4d 281 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (((𝑧 ∈ 𝑋 ↦ -(𝐹‘𝑧))‘𝑦) ≤ ((𝑧 ∈ 𝑋 ↦ -(𝐹‘𝑧))‘𝑥) ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
67 | 66 | ralbidva 3111 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (∀𝑦 ∈ 𝑋 ((𝑧 ∈ 𝑋 ↦ -(𝐹‘𝑧))‘𝑦) ≤ ((𝑧 ∈ 𝑋 ↦ -(𝐹‘𝑧))‘𝑥) ↔ ∀𝑦 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
68 | 67 | rexbidva 3225 |
. 2
⊢ (𝜑 → (∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑧 ∈ 𝑋 ↦ -(𝐹‘𝑧))‘𝑦) ≤ ((𝑧 ∈ 𝑋 ↦ -(𝐹‘𝑧))‘𝑥) ↔ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
69 | 48, 68 | mpbid 231 |
1
⊢ (𝜑 → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑦)) |