MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evth2 Structured version   Visualization version   GIF version

Theorem evth2 23565
Description: The Extreme Value Theorem, minimum version. A continuous function from a nonempty compact topological space to the reals attains its minimum at some point in the domain. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
bndth.1 𝑋 = 𝐽
bndth.2 𝐾 = (topGen‘ran (,))
bndth.3 (𝜑𝐽 ∈ Comp)
bndth.4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
evth.5 (𝜑𝑋 ≠ ∅)
Assertion
Ref Expression
evth2 (𝜑 → ∃𝑥𝑋𝑦𝑋 (𝐹𝑥) ≤ (𝐹𝑦))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑦,𝐾   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝐽,𝑦
Allowed substitution hint:   𝐾(𝑥)

Proof of Theorem evth2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bndth.1 . . 3 𝑋 = 𝐽
2 bndth.2 . . 3 𝐾 = (topGen‘ran (,))
3 bndth.3 . . 3 (𝜑𝐽 ∈ Comp)
4 cmptop 22000 . . . . . 6 (𝐽 ∈ Comp → 𝐽 ∈ Top)
53, 4syl 17 . . . . 5 (𝜑𝐽 ∈ Top)
61toptopon 21522 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
75, 6sylib 221 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
8 bndth.4 . . . . . . 7 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
9 uniretop 23368 . . . . . . . . 9 ℝ = (topGen‘ran (,))
102unieqi 4813 . . . . . . . . 9 𝐾 = (topGen‘ran (,))
119, 10eqtr4i 2824 . . . . . . . 8 ℝ = 𝐾
121, 11cnf 21851 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶ℝ)
138, 12syl 17 . . . . . 6 (𝜑𝐹:𝑋⟶ℝ)
1413feqmptd 6708 . . . . 5 (𝜑𝐹 = (𝑧𝑋 ↦ (𝐹𝑧)))
1514, 8eqeltrrd 2891 . . . 4 (𝜑 → (𝑧𝑋 ↦ (𝐹𝑧)) ∈ (𝐽 Cn 𝐾))
16 retopon 23369 . . . . . 6 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
172, 16eqeltri 2886 . . . . 5 𝐾 ∈ (TopOn‘ℝ)
1817a1i 11 . . . 4 (𝜑𝐾 ∈ (TopOn‘ℝ))
19 eqid 2798 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2019cnfldtopon 23388 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
2120a1i 11 . . . . . . . 8 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
22 0cnd 10623 . . . . . . . 8 (𝜑 → 0 ∈ ℂ)
2318, 21, 22cnmptc 22267 . . . . . . 7 (𝜑 → (𝑦 ∈ ℝ ↦ 0) ∈ (𝐾 Cn (TopOpen‘ℂfld)))
2419tgioo2 23408 . . . . . . . . 9 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
252, 24eqtri 2821 . . . . . . . 8 𝐾 = ((TopOpen‘ℂfld) ↾t ℝ)
26 ax-resscn 10583 . . . . . . . . 9 ℝ ⊆ ℂ
2726a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℂ)
2821cnmptid 22266 . . . . . . . 8 (𝜑 → (𝑦 ∈ ℂ ↦ 𝑦) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
2925, 21, 27, 28cnmpt1res 22281 . . . . . . 7 (𝜑 → (𝑦 ∈ ℝ ↦ 𝑦) ∈ (𝐾 Cn (TopOpen‘ℂfld)))
3019subcn 23471 . . . . . . . 8 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
3130a1i 11 . . . . . . 7 (𝜑 → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
3218, 23, 29, 31cnmpt12f 22271 . . . . . 6 (𝜑 → (𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn (TopOpen‘ℂfld)))
33 df-neg 10862 . . . . . . . . . . 11 -𝑦 = (0 − 𝑦)
34 renegcl 10938 . . . . . . . . . . 11 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
3533, 34eqeltrrid 2895 . . . . . . . . . 10 (𝑦 ∈ ℝ → (0 − 𝑦) ∈ ℝ)
3635adantl 485 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (0 − 𝑦) ∈ ℝ)
3736fmpttd 6856 . . . . . . . 8 (𝜑 → (𝑦 ∈ ℝ ↦ (0 − 𝑦)):ℝ⟶ℝ)
3837frnd 6494 . . . . . . 7 (𝜑 → ran (𝑦 ∈ ℝ ↦ (0 − 𝑦)) ⊆ ℝ)
39 cnrest2 21891 . . . . . . 7 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑦 ∈ ℝ ↦ (0 − 𝑦)) ⊆ ℝ ∧ ℝ ⊆ ℂ) → ((𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn (TopOpen‘ℂfld)) ↔ (𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
4021, 38, 27, 39syl3anc 1368 . . . . . 6 (𝜑 → ((𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn (TopOpen‘ℂfld)) ↔ (𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
4132, 40mpbid 235 . . . . 5 (𝜑 → (𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn ((TopOpen‘ℂfld) ↾t ℝ)))
4225oveq2i 7146 . . . . 5 (𝐾 Cn 𝐾) = (𝐾 Cn ((TopOpen‘ℂfld) ↾t ℝ))
4341, 42eleqtrrdi 2901 . . . 4 (𝜑 → (𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn 𝐾))
44 negeq 10867 . . . . 5 (𝑦 = (𝐹𝑧) → -𝑦 = -(𝐹𝑧))
4533, 44syl5eqr 2847 . . . 4 (𝑦 = (𝐹𝑧) → (0 − 𝑦) = -(𝐹𝑧))
467, 15, 18, 43, 45cnmpt11 22268 . . 3 (𝜑 → (𝑧𝑋 ↦ -(𝐹𝑧)) ∈ (𝐽 Cn 𝐾))
47 evth.5 . . 3 (𝜑𝑋 ≠ ∅)
481, 2, 3, 46, 47evth 23564 . 2 (𝜑 → ∃𝑥𝑋𝑦𝑋 ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑦) ≤ ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑥))
49 fveq2 6645 . . . . . . . . 9 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
5049negeqd 10869 . . . . . . . 8 (𝑧 = 𝑦 → -(𝐹𝑧) = -(𝐹𝑦))
51 eqid 2798 . . . . . . . 8 (𝑧𝑋 ↦ -(𝐹𝑧)) = (𝑧𝑋 ↦ -(𝐹𝑧))
52 negex 10873 . . . . . . . 8 -(𝐹𝑦) ∈ V
5350, 51, 52fvmpt 6745 . . . . . . 7 (𝑦𝑋 → ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑦) = -(𝐹𝑦))
5453adantl 485 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑦) = -(𝐹𝑦))
55 fveq2 6645 . . . . . . . . 9 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
5655negeqd 10869 . . . . . . . 8 (𝑧 = 𝑥 → -(𝐹𝑧) = -(𝐹𝑥))
57 negex 10873 . . . . . . . 8 -(𝐹𝑥) ∈ V
5856, 51, 57fvmpt 6745 . . . . . . 7 (𝑥𝑋 → ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑥) = -(𝐹𝑥))
5958ad2antlr 726 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑥) = -(𝐹𝑥))
6054, 59breq12d 5043 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → (((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑦) ≤ ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑥) ↔ -(𝐹𝑦) ≤ -(𝐹𝑥)))
6113ffvelrnda 6828 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℝ)
6261adantr 484 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → (𝐹𝑥) ∈ ℝ)
6313ffvelrnda 6828 . . . . . . 7 ((𝜑𝑦𝑋) → (𝐹𝑦) ∈ ℝ)
6463adantlr 714 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → (𝐹𝑦) ∈ ℝ)
6562, 64lenegd 11208 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → ((𝐹𝑥) ≤ (𝐹𝑦) ↔ -(𝐹𝑦) ≤ -(𝐹𝑥)))
6660, 65bitr4d 285 . . . 4 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → (((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑦) ≤ ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑥) ↔ (𝐹𝑥) ≤ (𝐹𝑦)))
6766ralbidva 3161 . . 3 ((𝜑𝑥𝑋) → (∀𝑦𝑋 ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑦) ≤ ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑥) ↔ ∀𝑦𝑋 (𝐹𝑥) ≤ (𝐹𝑦)))
6867rexbidva 3255 . 2 (𝜑 → (∃𝑥𝑋𝑦𝑋 ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑦) ≤ ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑥) ↔ ∃𝑥𝑋𝑦𝑋 (𝐹𝑥) ≤ (𝐹𝑦)))
6948, 68mpbid 235 1 (𝜑 → ∃𝑥𝑋𝑦𝑋 (𝐹𝑥) ≤ (𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  wss 3881  c0 4243   cuni 4800   class class class wbr 5030  cmpt 5110  ran crn 5520  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  cle 10665  cmin 10859  -cneg 10860  (,)cioo 12726  t crest 16686  TopOpenctopn 16687  topGenctg 16703  fldccnfld 20091  Topctop 21498  TopOnctopon 21515   Cn ccn 21829  Compccmp 21991   ×t ctx 22165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cn 21832  df-cnp 21833  df-cmp 21992  df-tx 22167  df-hmeo 22360  df-xms 22927  df-ms 22928  df-tms 22929
This theorem is referenced by:  lebnumlem3  23568  evthicc  24063  ftalem3  25660  evth2f  41644  stoweidlem28  42670
  Copyright terms: Public domain W3C validator