MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evth2 Structured version   Visualization version   GIF version

Theorem evth2 24906
Description: The Extreme Value Theorem, minimum version. A continuous function from a nonempty compact topological space to the reals attains its minimum at some point in the domain. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
bndth.1 𝑋 = 𝐽
bndth.2 𝐾 = (topGen‘ran (,))
bndth.3 (𝜑𝐽 ∈ Comp)
bndth.4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
evth.5 (𝜑𝑋 ≠ ∅)
Assertion
Ref Expression
evth2 (𝜑 → ∃𝑥𝑋𝑦𝑋 (𝐹𝑥) ≤ (𝐹𝑦))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑦,𝐾   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝐽,𝑦
Allowed substitution hint:   𝐾(𝑥)

Proof of Theorem evth2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bndth.1 . . 3 𝑋 = 𝐽
2 bndth.2 . . 3 𝐾 = (topGen‘ran (,))
3 bndth.3 . . 3 (𝜑𝐽 ∈ Comp)
4 cmptop 23330 . . . . . 6 (𝐽 ∈ Comp → 𝐽 ∈ Top)
53, 4syl 17 . . . . 5 (𝜑𝐽 ∈ Top)
61toptopon 22852 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
75, 6sylib 218 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
8 bndth.4 . . . . . . 7 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
9 uniretop 24697 . . . . . . . . 9 ℝ = (topGen‘ran (,))
102unieqi 4872 . . . . . . . . 9 𝐾 = (topGen‘ran (,))
119, 10eqtr4i 2759 . . . . . . . 8 ℝ = 𝐾
121, 11cnf 23181 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶ℝ)
138, 12syl 17 . . . . . 6 (𝜑𝐹:𝑋⟶ℝ)
1413feqmptd 6899 . . . . 5 (𝜑𝐹 = (𝑧𝑋 ↦ (𝐹𝑧)))
1514, 8eqeltrrd 2834 . . . 4 (𝜑 → (𝑧𝑋 ↦ (𝐹𝑧)) ∈ (𝐽 Cn 𝐾))
16 retopon 24698 . . . . . 6 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
172, 16eqeltri 2829 . . . . 5 𝐾 ∈ (TopOn‘ℝ)
1817a1i 11 . . . 4 (𝜑𝐾 ∈ (TopOn‘ℝ))
19 eqid 2733 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2019cnfldtopon 24717 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
2120a1i 11 . . . . . . . 8 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
22 0cnd 11116 . . . . . . . 8 (𝜑 → 0 ∈ ℂ)
2318, 21, 22cnmptc 23597 . . . . . . 7 (𝜑 → (𝑦 ∈ ℝ ↦ 0) ∈ (𝐾 Cn (TopOpen‘ℂfld)))
24 tgioo4 24740 . . . . . . . . 9 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
252, 24eqtri 2756 . . . . . . . 8 𝐾 = ((TopOpen‘ℂfld) ↾t ℝ)
26 ax-resscn 11074 . . . . . . . . 9 ℝ ⊆ ℂ
2726a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℂ)
2821cnmptid 23596 . . . . . . . 8 (𝜑 → (𝑦 ∈ ℂ ↦ 𝑦) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
2925, 21, 27, 28cnmpt1res 23611 . . . . . . 7 (𝜑 → (𝑦 ∈ ℝ ↦ 𝑦) ∈ (𝐾 Cn (TopOpen‘ℂfld)))
3019subcn 24802 . . . . . . . 8 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
3130a1i 11 . . . . . . 7 (𝜑 → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
3218, 23, 29, 31cnmpt12f 23601 . . . . . 6 (𝜑 → (𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn (TopOpen‘ℂfld)))
33 df-neg 11358 . . . . . . . . . . 11 -𝑦 = (0 − 𝑦)
34 renegcl 11435 . . . . . . . . . . 11 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
3533, 34eqeltrrid 2838 . . . . . . . . . 10 (𝑦 ∈ ℝ → (0 − 𝑦) ∈ ℝ)
3635adantl 481 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (0 − 𝑦) ∈ ℝ)
3736fmpttd 7057 . . . . . . . 8 (𝜑 → (𝑦 ∈ ℝ ↦ (0 − 𝑦)):ℝ⟶ℝ)
3837frnd 6667 . . . . . . 7 (𝜑 → ran (𝑦 ∈ ℝ ↦ (0 − 𝑦)) ⊆ ℝ)
39 cnrest2 23221 . . . . . . 7 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑦 ∈ ℝ ↦ (0 − 𝑦)) ⊆ ℝ ∧ ℝ ⊆ ℂ) → ((𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn (TopOpen‘ℂfld)) ↔ (𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
4021, 38, 27, 39syl3anc 1373 . . . . . 6 (𝜑 → ((𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn (TopOpen‘ℂfld)) ↔ (𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
4132, 40mpbid 232 . . . . 5 (𝜑 → (𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn ((TopOpen‘ℂfld) ↾t ℝ)))
4225oveq2i 7366 . . . . 5 (𝐾 Cn 𝐾) = (𝐾 Cn ((TopOpen‘ℂfld) ↾t ℝ))
4341, 42eleqtrrdi 2844 . . . 4 (𝜑 → (𝑦 ∈ ℝ ↦ (0 − 𝑦)) ∈ (𝐾 Cn 𝐾))
44 negeq 11363 . . . . 5 (𝑦 = (𝐹𝑧) → -𝑦 = -(𝐹𝑧))
4533, 44eqtr3id 2782 . . . 4 (𝑦 = (𝐹𝑧) → (0 − 𝑦) = -(𝐹𝑧))
467, 15, 18, 43, 45cnmpt11 23598 . . 3 (𝜑 → (𝑧𝑋 ↦ -(𝐹𝑧)) ∈ (𝐽 Cn 𝐾))
47 evth.5 . . 3 (𝜑𝑋 ≠ ∅)
481, 2, 3, 46, 47evth 24905 . 2 (𝜑 → ∃𝑥𝑋𝑦𝑋 ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑦) ≤ ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑥))
49 fveq2 6831 . . . . . . . . 9 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
5049negeqd 11365 . . . . . . . 8 (𝑧 = 𝑦 → -(𝐹𝑧) = -(𝐹𝑦))
51 eqid 2733 . . . . . . . 8 (𝑧𝑋 ↦ -(𝐹𝑧)) = (𝑧𝑋 ↦ -(𝐹𝑧))
52 negex 11369 . . . . . . . 8 -(𝐹𝑦) ∈ V
5350, 51, 52fvmpt 6938 . . . . . . 7 (𝑦𝑋 → ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑦) = -(𝐹𝑦))
5453adantl 481 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑦) = -(𝐹𝑦))
55 fveq2 6831 . . . . . . . . 9 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
5655negeqd 11365 . . . . . . . 8 (𝑧 = 𝑥 → -(𝐹𝑧) = -(𝐹𝑥))
57 negex 11369 . . . . . . . 8 -(𝐹𝑥) ∈ V
5856, 51, 57fvmpt 6938 . . . . . . 7 (𝑥𝑋 → ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑥) = -(𝐹𝑥))
5958ad2antlr 727 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑥) = -(𝐹𝑥))
6054, 59breq12d 5108 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → (((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑦) ≤ ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑥) ↔ -(𝐹𝑦) ≤ -(𝐹𝑥)))
6113ffvelcdmda 7026 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℝ)
6261adantr 480 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → (𝐹𝑥) ∈ ℝ)
6313ffvelcdmda 7026 . . . . . . 7 ((𝜑𝑦𝑋) → (𝐹𝑦) ∈ ℝ)
6463adantlr 715 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → (𝐹𝑦) ∈ ℝ)
6562, 64lenegd 11707 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → ((𝐹𝑥) ≤ (𝐹𝑦) ↔ -(𝐹𝑦) ≤ -(𝐹𝑥)))
6660, 65bitr4d 282 . . . 4 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → (((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑦) ≤ ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑥) ↔ (𝐹𝑥) ≤ (𝐹𝑦)))
6766ralbidva 3154 . . 3 ((𝜑𝑥𝑋) → (∀𝑦𝑋 ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑦) ≤ ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑥) ↔ ∀𝑦𝑋 (𝐹𝑥) ≤ (𝐹𝑦)))
6867rexbidva 3155 . 2 (𝜑 → (∃𝑥𝑋𝑦𝑋 ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑦) ≤ ((𝑧𝑋 ↦ -(𝐹𝑧))‘𝑥) ↔ ∃𝑥𝑋𝑦𝑋 (𝐹𝑥) ≤ (𝐹𝑦)))
6948, 68mpbid 232 1 (𝜑 → ∃𝑥𝑋𝑦𝑋 (𝐹𝑥) ≤ (𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057  wss 3898  c0 4282   cuni 4860   class class class wbr 5095  cmpt 5176  ran crn 5622  wf 6485  cfv 6489  (class class class)co 7355  cc 11015  cr 11016  0cc0 11017  cle 11158  cmin 11355  -cneg 11356  (,)cioo 13252  t crest 17331  TopOpenctopn 17332  topGenctg 17348  fldccnfld 21300  Topctop 22828  TopOnctopon 22845   Cn ccn 23159  Compccmp 23321   ×t ctx 23495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-fi 9306  df-sup 9337  df-inf 9338  df-oi 9407  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-q 12853  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-ioo 13256  df-icc 13259  df-fz 13415  df-fzo 13562  df-seq 13916  df-exp 13976  df-hash 14245  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-starv 17183  df-sca 17184  df-vsca 17185  df-ip 17186  df-tset 17187  df-ple 17188  df-ds 17190  df-unif 17191  df-hom 17192  df-cco 17193  df-rest 17333  df-topn 17334  df-0g 17352  df-gsum 17353  df-topgen 17354  df-pt 17355  df-prds 17358  df-xrs 17414  df-qtop 17419  df-imas 17420  df-xps 17422  df-mre 17496  df-mrc 17497  df-acs 17499  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-submnd 18700  df-mulg 18989  df-cntz 19237  df-cmn 19702  df-psmet 21292  df-xmet 21293  df-met 21294  df-bl 21295  df-mopn 21296  df-cnfld 21301  df-top 22829  df-topon 22846  df-topsp 22868  df-bases 22881  df-cn 23162  df-cnp 23163  df-cmp 23322  df-tx 23497  df-hmeo 23690  df-xms 24255  df-ms 24256  df-tms 24257
This theorem is referenced by:  lebnumlem3  24909  evthicc  25407  ftalem3  27032  evth2f  45176  stoweidlem28  46188
  Copyright terms: Public domain W3C validator