MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmplem1 Structured version   Visualization version   GIF version

Theorem ptcmplem1 22344
Description: Lemma for ptcmp 22350. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
ptcmp.1 𝑆 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
ptcmp.2 𝑋 = X𝑛𝐴 (𝐹𝑛)
ptcmp.3 (𝜑𝐴𝑉)
ptcmp.4 (𝜑𝐹:𝐴⟶Comp)
ptcmp.5 (𝜑𝑋 ∈ (UFL ∩ dom card))
Assertion
Ref Expression
ptcmplem1 (𝜑 → (𝑋 = (ran 𝑆 ∪ {𝑋}) ∧ (∏t𝐹) = (topGen‘(fi‘(ran 𝑆 ∪ {𝑋})))))
Distinct variable groups:   𝑘,𝑛,𝑢,𝑤,𝐴   𝑆,𝑘,𝑛,𝑢   𝜑,𝑘,𝑛,𝑢   𝑘,𝑉,𝑛,𝑢,𝑤   𝑘,𝐹,𝑛,𝑢,𝑤   𝑘,𝑋,𝑛,𝑢,𝑤
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)

Proof of Theorem ptcmplem1
Dummy variables 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptcmp.3 . . . . . . 7 (𝜑𝐴𝑉)
2 ptcmp.4 . . . . . . . 8 (𝜑𝐹:𝐴⟶Comp)
32ffnd 6383 . . . . . . 7 (𝜑𝐹 Fn 𝐴)
4 eqid 2795 . . . . . . . 8 {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
54ptval 21862 . . . . . . 7 ((𝐴𝑉𝐹 Fn 𝐴) → (∏t𝐹) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
61, 3, 5syl2anc 584 . . . . . 6 (𝜑 → (∏t𝐹) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
7 cmptop 21687 . . . . . . . . . . 11 (𝑥 ∈ Comp → 𝑥 ∈ Top)
87ssriv 3893 . . . . . . . . . 10 Comp ⊆ Top
9 fss 6395 . . . . . . . . . 10 ((𝐹:𝐴⟶Comp ∧ Comp ⊆ Top) → 𝐹:𝐴⟶Top)
102, 8, 9sylancl 586 . . . . . . . . 9 (𝜑𝐹:𝐴⟶Top)
11 ptcmp.2 . . . . . . . . . 10 𝑋 = X𝑛𝐴 (𝐹𝑛)
124, 11ptbasfi 21873 . . . . . . . . 9 ((𝐴𝑉𝐹:𝐴⟶Top) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
131, 10, 12syl2anc 584 . . . . . . . 8 (𝜑 → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
14 uncom 4050 . . . . . . . . . 10 (ran 𝑆 ∪ {𝑋}) = ({𝑋} ∪ ran 𝑆)
15 ptcmp.1 . . . . . . . . . . . 12 𝑆 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
1615rneqi 5689 . . . . . . . . . . 11 ran 𝑆 = ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
1716uneq2i 4057 . . . . . . . . . 10 ({𝑋} ∪ ran 𝑆) = ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
1814, 17eqtri 2819 . . . . . . . . 9 (ran 𝑆 ∪ {𝑋}) = ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
1918fveq2i 6541 . . . . . . . 8 (fi‘(ran 𝑆 ∪ {𝑋})) = (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
2013, 19syl6eqr 2849 . . . . . . 7 (𝜑 → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = (fi‘(ran 𝑆 ∪ {𝑋})))
2120fveq2d 6542 . . . . . 6 (𝜑 → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}) = (topGen‘(fi‘(ran 𝑆 ∪ {𝑋}))))
226, 21eqtrd 2831 . . . . 5 (𝜑 → (∏t𝐹) = (topGen‘(fi‘(ran 𝑆 ∪ {𝑋}))))
2322unieqd 4755 . . . 4 (𝜑 (∏t𝐹) = (topGen‘(fi‘(ran 𝑆 ∪ {𝑋}))))
24 fibas 21269 . . . . 5 (fi‘(ran 𝑆 ∪ {𝑋})) ∈ TopBases
25 unitg 21259 . . . . 5 ((fi‘(ran 𝑆 ∪ {𝑋})) ∈ TopBases → (topGen‘(fi‘(ran 𝑆 ∪ {𝑋}))) = (fi‘(ran 𝑆 ∪ {𝑋})))
2624, 25ax-mp 5 . . . 4 (topGen‘(fi‘(ran 𝑆 ∪ {𝑋}))) = (fi‘(ran 𝑆 ∪ {𝑋}))
2723, 26syl6eq 2847 . . 3 (𝜑 (∏t𝐹) = (fi‘(ran 𝑆 ∪ {𝑋})))
28 eqid 2795 . . . . . 6 (∏t𝐹) = (∏t𝐹)
2928ptuni 21886 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑛𝐴 (𝐹𝑛) = (∏t𝐹))
301, 10, 29syl2anc 584 . . . 4 (𝜑X𝑛𝐴 (𝐹𝑛) = (∏t𝐹))
3111, 30syl5eq 2843 . . 3 (𝜑𝑋 = (∏t𝐹))
32 ptcmp.5 . . . . . . 7 (𝜑𝑋 ∈ (UFL ∩ dom card))
3332pwexd 5171 . . . . . 6 (𝜑 → 𝒫 𝑋 ∈ V)
34 eqid 2795 . . . . . . . . . . . 12 (𝑤𝑋 ↦ (𝑤𝑘)) = (𝑤𝑋 ↦ (𝑤𝑘))
3534mptpreima 5967 . . . . . . . . . . 11 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) = {𝑤𝑋 ∣ (𝑤𝑘) ∈ 𝑢}
3635ssrab3 3978 . . . . . . . . . 10 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ⊆ 𝑋
3732adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘𝐴𝑢 ∈ (𝐹𝑘))) → 𝑋 ∈ (UFL ∩ dom card))
38 elpw2g 5138 . . . . . . . . . . 11 (𝑋 ∈ (UFL ∩ dom card) → (((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝒫 𝑋 ↔ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ⊆ 𝑋))
3937, 38syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝐴𝑢 ∈ (𝐹𝑘))) → (((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝒫 𝑋 ↔ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ⊆ 𝑋))
4036, 39mpbiri 259 . . . . . . . . 9 ((𝜑 ∧ (𝑘𝐴𝑢 ∈ (𝐹𝑘))) → ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝒫 𝑋)
4140ralrimivva 3158 . . . . . . . 8 (𝜑 → ∀𝑘𝐴𝑢 ∈ (𝐹𝑘)((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝒫 𝑋)
4215fmpox 7621 . . . . . . . 8 (∀𝑘𝐴𝑢 ∈ (𝐹𝑘)((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝒫 𝑋𝑆: 𝑘𝐴 ({𝑘} × (𝐹𝑘))⟶𝒫 𝑋)
4341, 42sylib 219 . . . . . . 7 (𝜑𝑆: 𝑘𝐴 ({𝑘} × (𝐹𝑘))⟶𝒫 𝑋)
4443frnd 6389 . . . . . 6 (𝜑 → ran 𝑆 ⊆ 𝒫 𝑋)
4533, 44ssexd 5119 . . . . 5 (𝜑 → ran 𝑆 ∈ V)
46 snex 5223 . . . . 5 {𝑋} ∈ V
47 unexg 7329 . . . . 5 ((ran 𝑆 ∈ V ∧ {𝑋} ∈ V) → (ran 𝑆 ∪ {𝑋}) ∈ V)
4845, 46, 47sylancl 586 . . . 4 (𝜑 → (ran 𝑆 ∪ {𝑋}) ∈ V)
49 fiuni 8738 . . . 4 ((ran 𝑆 ∪ {𝑋}) ∈ V → (ran 𝑆 ∪ {𝑋}) = (fi‘(ran 𝑆 ∪ {𝑋})))
5048, 49syl 17 . . 3 (𝜑 (ran 𝑆 ∪ {𝑋}) = (fi‘(ran 𝑆 ∪ {𝑋})))
5127, 31, 503eqtr4d 2841 . 2 (𝜑𝑋 = (ran 𝑆 ∪ {𝑋}))
5251, 22jca 512 1 (𝜑 → (𝑋 = (ran 𝑆 ∪ {𝑋}) ∧ (∏t𝐹) = (topGen‘(fi‘(ran 𝑆 ∪ {𝑋})))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wex 1761  wcel 2081  {cab 2775  wral 3105  wrex 3106  Vcvv 3437  cdif 3856  cun 3857  cin 3858  wss 3859  𝒫 cpw 4453  {csn 4472   cuni 4745   ciun 4825  cmpt 5041   × cxp 5441  ccnv 5442  dom cdm 5443  ran crn 5444  cima 5446   Fn wfn 6220  wf 6221  cfv 6225  cmpo 7018  Xcixp 8310  Fincfn 8357  ficfi 8720  cardccrd 9210  topGenctg 16540  tcpt 16541  Topctop 21185  TopBasesctb 21237  Compccmp 21678  UFLcufl 22192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-er 8139  df-ixp 8311  df-en 8358  df-dom 8359  df-fin 8361  df-fi 8721  df-topgen 16546  df-pt 16547  df-top 21186  df-bases 21238  df-cmp 21679
This theorem is referenced by:  ptcmplem5  22348
  Copyright terms: Public domain W3C validator