MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmplem1 Structured version   Visualization version   GIF version

Theorem ptcmplem1 23403
Description: Lemma for ptcmp 23409. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
ptcmp.1 𝑆 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
ptcmp.2 𝑋 = X𝑛𝐴 (𝐹𝑛)
ptcmp.3 (𝜑𝐴𝑉)
ptcmp.4 (𝜑𝐹:𝐴⟶Comp)
ptcmp.5 (𝜑𝑋 ∈ (UFL ∩ dom card))
Assertion
Ref Expression
ptcmplem1 (𝜑 → (𝑋 = (ran 𝑆 ∪ {𝑋}) ∧ (∏t𝐹) = (topGen‘(fi‘(ran 𝑆 ∪ {𝑋})))))
Distinct variable groups:   𝑘,𝑛,𝑢,𝑤,𝐴   𝑆,𝑘,𝑛,𝑢   𝜑,𝑘,𝑛,𝑢   𝑘,𝑉,𝑛,𝑢,𝑤   𝑘,𝐹,𝑛,𝑢,𝑤   𝑘,𝑋,𝑛,𝑢,𝑤
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)

Proof of Theorem ptcmplem1
Dummy variables 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptcmp.3 . . . . . . 7 (𝜑𝐴𝑉)
2 ptcmp.4 . . . . . . . 8 (𝜑𝐹:𝐴⟶Comp)
32ffnd 6669 . . . . . . 7 (𝜑𝐹 Fn 𝐴)
4 eqid 2736 . . . . . . . 8 {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
54ptval 22921 . . . . . . 7 ((𝐴𝑉𝐹 Fn 𝐴) → (∏t𝐹) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
61, 3, 5syl2anc 584 . . . . . 6 (𝜑 → (∏t𝐹) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
7 cmptop 22746 . . . . . . . . . . 11 (𝑥 ∈ Comp → 𝑥 ∈ Top)
87ssriv 3948 . . . . . . . . . 10 Comp ⊆ Top
9 fss 6685 . . . . . . . . . 10 ((𝐹:𝐴⟶Comp ∧ Comp ⊆ Top) → 𝐹:𝐴⟶Top)
102, 8, 9sylancl 586 . . . . . . . . 9 (𝜑𝐹:𝐴⟶Top)
11 ptcmp.2 . . . . . . . . . 10 𝑋 = X𝑛𝐴 (𝐹𝑛)
124, 11ptbasfi 22932 . . . . . . . . 9 ((𝐴𝑉𝐹:𝐴⟶Top) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
131, 10, 12syl2anc 584 . . . . . . . 8 (𝜑 → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
14 uncom 4113 . . . . . . . . . 10 (ran 𝑆 ∪ {𝑋}) = ({𝑋} ∪ ran 𝑆)
15 ptcmp.1 . . . . . . . . . . . 12 𝑆 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
1615rneqi 5892 . . . . . . . . . . 11 ran 𝑆 = ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
1716uneq2i 4120 . . . . . . . . . 10 ({𝑋} ∪ ran 𝑆) = ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
1814, 17eqtri 2764 . . . . . . . . 9 (ran 𝑆 ∪ {𝑋}) = ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
1918fveq2i 6845 . . . . . . . 8 (fi‘(ran 𝑆 ∪ {𝑋})) = (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
2013, 19eqtr4di 2794 . . . . . . 7 (𝜑 → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = (fi‘(ran 𝑆 ∪ {𝑋})))
2120fveq2d 6846 . . . . . 6 (𝜑 → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}) = (topGen‘(fi‘(ran 𝑆 ∪ {𝑋}))))
226, 21eqtrd 2776 . . . . 5 (𝜑 → (∏t𝐹) = (topGen‘(fi‘(ran 𝑆 ∪ {𝑋}))))
2322unieqd 4879 . . . 4 (𝜑 (∏t𝐹) = (topGen‘(fi‘(ran 𝑆 ∪ {𝑋}))))
24 fibas 22327 . . . . 5 (fi‘(ran 𝑆 ∪ {𝑋})) ∈ TopBases
25 unitg 22317 . . . . 5 ((fi‘(ran 𝑆 ∪ {𝑋})) ∈ TopBases → (topGen‘(fi‘(ran 𝑆 ∪ {𝑋}))) = (fi‘(ran 𝑆 ∪ {𝑋})))
2624, 25ax-mp 5 . . . 4 (topGen‘(fi‘(ran 𝑆 ∪ {𝑋}))) = (fi‘(ran 𝑆 ∪ {𝑋}))
2723, 26eqtrdi 2792 . . 3 (𝜑 (∏t𝐹) = (fi‘(ran 𝑆 ∪ {𝑋})))
28 eqid 2736 . . . . . 6 (∏t𝐹) = (∏t𝐹)
2928ptuni 22945 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑛𝐴 (𝐹𝑛) = (∏t𝐹))
301, 10, 29syl2anc 584 . . . 4 (𝜑X𝑛𝐴 (𝐹𝑛) = (∏t𝐹))
3111, 30eqtrid 2788 . . 3 (𝜑𝑋 = (∏t𝐹))
32 ptcmp.5 . . . . . . 7 (𝜑𝑋 ∈ (UFL ∩ dom card))
3332pwexd 5334 . . . . . 6 (𝜑 → 𝒫 𝑋 ∈ V)
34 eqid 2736 . . . . . . . . . . . 12 (𝑤𝑋 ↦ (𝑤𝑘)) = (𝑤𝑋 ↦ (𝑤𝑘))
3534mptpreima 6190 . . . . . . . . . . 11 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) = {𝑤𝑋 ∣ (𝑤𝑘) ∈ 𝑢}
3635ssrab3 4040 . . . . . . . . . 10 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ⊆ 𝑋
3732adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘𝐴𝑢 ∈ (𝐹𝑘))) → 𝑋 ∈ (UFL ∩ dom card))
38 elpw2g 5301 . . . . . . . . . . 11 (𝑋 ∈ (UFL ∩ dom card) → (((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝒫 𝑋 ↔ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ⊆ 𝑋))
3937, 38syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝐴𝑢 ∈ (𝐹𝑘))) → (((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝒫 𝑋 ↔ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ⊆ 𝑋))
4036, 39mpbiri 257 . . . . . . . . 9 ((𝜑 ∧ (𝑘𝐴𝑢 ∈ (𝐹𝑘))) → ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝒫 𝑋)
4140ralrimivva 3197 . . . . . . . 8 (𝜑 → ∀𝑘𝐴𝑢 ∈ (𝐹𝑘)((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝒫 𝑋)
4215fmpox 7999 . . . . . . . 8 (∀𝑘𝐴𝑢 ∈ (𝐹𝑘)((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝒫 𝑋𝑆: 𝑘𝐴 ({𝑘} × (𝐹𝑘))⟶𝒫 𝑋)
4341, 42sylib 217 . . . . . . 7 (𝜑𝑆: 𝑘𝐴 ({𝑘} × (𝐹𝑘))⟶𝒫 𝑋)
4443frnd 6676 . . . . . 6 (𝜑 → ran 𝑆 ⊆ 𝒫 𝑋)
4533, 44ssexd 5281 . . . . 5 (𝜑 → ran 𝑆 ∈ V)
46 snex 5388 . . . . 5 {𝑋} ∈ V
47 unexg 7683 . . . . 5 ((ran 𝑆 ∈ V ∧ {𝑋} ∈ V) → (ran 𝑆 ∪ {𝑋}) ∈ V)
4845, 46, 47sylancl 586 . . . 4 (𝜑 → (ran 𝑆 ∪ {𝑋}) ∈ V)
49 fiuni 9364 . . . 4 ((ran 𝑆 ∪ {𝑋}) ∈ V → (ran 𝑆 ∪ {𝑋}) = (fi‘(ran 𝑆 ∪ {𝑋})))
5048, 49syl 17 . . 3 (𝜑 (ran 𝑆 ∪ {𝑋}) = (fi‘(ran 𝑆 ∪ {𝑋})))
5127, 31, 503eqtr4d 2786 . 2 (𝜑𝑋 = (ran 𝑆 ∪ {𝑋}))
5251, 22jca 512 1 (𝜑 → (𝑋 = (ran 𝑆 ∪ {𝑋}) ∧ (∏t𝐹) = (topGen‘(fi‘(ran 𝑆 ∪ {𝑋})))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  {cab 2713  wral 3064  wrex 3073  Vcvv 3445  cdif 3907  cun 3908  cin 3909  wss 3910  𝒫 cpw 4560  {csn 4586   cuni 4865   ciun 4954  cmpt 5188   × cxp 5631  ccnv 5632  dom cdm 5633  ran crn 5634  cima 5636   Fn wfn 6491  wf 6492  cfv 6496  cmpo 7359  Xcixp 8835  Fincfn 8883  ficfi 9346  cardccrd 9871  topGenctg 17319  tcpt 17320  Topctop 22242  TopBasesctb 22295  Compccmp 22737  UFLcufl 23251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-1o 8412  df-er 8648  df-ixp 8836  df-en 8884  df-dom 8885  df-fin 8887  df-fi 9347  df-topgen 17325  df-pt 17326  df-top 22243  df-bases 22296  df-cmp 22738
This theorem is referenced by:  ptcmplem5  23407
  Copyright terms: Public domain W3C validator