MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmplem1 Structured version   Visualization version   GIF version

Theorem ptcmplem1 23789
Description: Lemma for ptcmp 23795. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
ptcmp.1 𝑆 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
ptcmp.2 𝑋 = X𝑛𝐴 (𝐹𝑛)
ptcmp.3 (𝜑𝐴𝑉)
ptcmp.4 (𝜑𝐹:𝐴⟶Comp)
ptcmp.5 (𝜑𝑋 ∈ (UFL ∩ dom card))
Assertion
Ref Expression
ptcmplem1 (𝜑 → (𝑋 = (ran 𝑆 ∪ {𝑋}) ∧ (∏t𝐹) = (topGen‘(fi‘(ran 𝑆 ∪ {𝑋})))))
Distinct variable groups:   𝑘,𝑛,𝑢,𝑤,𝐴   𝑆,𝑘,𝑛,𝑢   𝜑,𝑘,𝑛,𝑢   𝑘,𝑉,𝑛,𝑢,𝑤   𝑘,𝐹,𝑛,𝑢,𝑤   𝑘,𝑋,𝑛,𝑢,𝑤
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)

Proof of Theorem ptcmplem1
Dummy variables 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptcmp.3 . . . . . . 7 (𝜑𝐴𝑉)
2 ptcmp.4 . . . . . . . 8 (𝜑𝐹:𝐴⟶Comp)
32ffnd 6718 . . . . . . 7 (𝜑𝐹 Fn 𝐴)
4 eqid 2731 . . . . . . . 8 {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
54ptval 23307 . . . . . . 7 ((𝐴𝑉𝐹 Fn 𝐴) → (∏t𝐹) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
61, 3, 5syl2anc 583 . . . . . 6 (𝜑 → (∏t𝐹) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
7 cmptop 23132 . . . . . . . . . . 11 (𝑥 ∈ Comp → 𝑥 ∈ Top)
87ssriv 3986 . . . . . . . . . 10 Comp ⊆ Top
9 fss 6734 . . . . . . . . . 10 ((𝐹:𝐴⟶Comp ∧ Comp ⊆ Top) → 𝐹:𝐴⟶Top)
102, 8, 9sylancl 585 . . . . . . . . 9 (𝜑𝐹:𝐴⟶Top)
11 ptcmp.2 . . . . . . . . . 10 𝑋 = X𝑛𝐴 (𝐹𝑛)
124, 11ptbasfi 23318 . . . . . . . . 9 ((𝐴𝑉𝐹:𝐴⟶Top) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
131, 10, 12syl2anc 583 . . . . . . . 8 (𝜑 → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
14 uncom 4153 . . . . . . . . . 10 (ran 𝑆 ∪ {𝑋}) = ({𝑋} ∪ ran 𝑆)
15 ptcmp.1 . . . . . . . . . . . 12 𝑆 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
1615rneqi 5936 . . . . . . . . . . 11 ran 𝑆 = ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
1716uneq2i 4160 . . . . . . . . . 10 ({𝑋} ∪ ran 𝑆) = ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
1814, 17eqtri 2759 . . . . . . . . 9 (ran 𝑆 ∪ {𝑋}) = ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
1918fveq2i 6894 . . . . . . . 8 (fi‘(ran 𝑆 ∪ {𝑋})) = (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
2013, 19eqtr4di 2789 . . . . . . 7 (𝜑 → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = (fi‘(ran 𝑆 ∪ {𝑋})))
2120fveq2d 6895 . . . . . 6 (𝜑 → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}) = (topGen‘(fi‘(ran 𝑆 ∪ {𝑋}))))
226, 21eqtrd 2771 . . . . 5 (𝜑 → (∏t𝐹) = (topGen‘(fi‘(ran 𝑆 ∪ {𝑋}))))
2322unieqd 4922 . . . 4 (𝜑 (∏t𝐹) = (topGen‘(fi‘(ran 𝑆 ∪ {𝑋}))))
24 fibas 22713 . . . . 5 (fi‘(ran 𝑆 ∪ {𝑋})) ∈ TopBases
25 unitg 22703 . . . . 5 ((fi‘(ran 𝑆 ∪ {𝑋})) ∈ TopBases → (topGen‘(fi‘(ran 𝑆 ∪ {𝑋}))) = (fi‘(ran 𝑆 ∪ {𝑋})))
2624, 25ax-mp 5 . . . 4 (topGen‘(fi‘(ran 𝑆 ∪ {𝑋}))) = (fi‘(ran 𝑆 ∪ {𝑋}))
2723, 26eqtrdi 2787 . . 3 (𝜑 (∏t𝐹) = (fi‘(ran 𝑆 ∪ {𝑋})))
28 eqid 2731 . . . . . 6 (∏t𝐹) = (∏t𝐹)
2928ptuni 23331 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑛𝐴 (𝐹𝑛) = (∏t𝐹))
301, 10, 29syl2anc 583 . . . 4 (𝜑X𝑛𝐴 (𝐹𝑛) = (∏t𝐹))
3111, 30eqtrid 2783 . . 3 (𝜑𝑋 = (∏t𝐹))
32 ptcmp.5 . . . . . . 7 (𝜑𝑋 ∈ (UFL ∩ dom card))
3332pwexd 5377 . . . . . 6 (𝜑 → 𝒫 𝑋 ∈ V)
34 eqid 2731 . . . . . . . . . . . 12 (𝑤𝑋 ↦ (𝑤𝑘)) = (𝑤𝑋 ↦ (𝑤𝑘))
3534mptpreima 6237 . . . . . . . . . . 11 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) = {𝑤𝑋 ∣ (𝑤𝑘) ∈ 𝑢}
3635ssrab3 4080 . . . . . . . . . 10 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ⊆ 𝑋
3732adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘𝐴𝑢 ∈ (𝐹𝑘))) → 𝑋 ∈ (UFL ∩ dom card))
38 elpw2g 5344 . . . . . . . . . . 11 (𝑋 ∈ (UFL ∩ dom card) → (((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝒫 𝑋 ↔ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ⊆ 𝑋))
3937, 38syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝐴𝑢 ∈ (𝐹𝑘))) → (((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝒫 𝑋 ↔ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ⊆ 𝑋))
4036, 39mpbiri 258 . . . . . . . . 9 ((𝜑 ∧ (𝑘𝐴𝑢 ∈ (𝐹𝑘))) → ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝒫 𝑋)
4140ralrimivva 3199 . . . . . . . 8 (𝜑 → ∀𝑘𝐴𝑢 ∈ (𝐹𝑘)((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝒫 𝑋)
4215fmpox 8057 . . . . . . . 8 (∀𝑘𝐴𝑢 ∈ (𝐹𝑘)((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝒫 𝑋𝑆: 𝑘𝐴 ({𝑘} × (𝐹𝑘))⟶𝒫 𝑋)
4341, 42sylib 217 . . . . . . 7 (𝜑𝑆: 𝑘𝐴 ({𝑘} × (𝐹𝑘))⟶𝒫 𝑋)
4443frnd 6725 . . . . . 6 (𝜑 → ran 𝑆 ⊆ 𝒫 𝑋)
4533, 44ssexd 5324 . . . . 5 (𝜑 → ran 𝑆 ∈ V)
46 snex 5431 . . . . 5 {𝑋} ∈ V
47 unexg 7740 . . . . 5 ((ran 𝑆 ∈ V ∧ {𝑋} ∈ V) → (ran 𝑆 ∪ {𝑋}) ∈ V)
4845, 46, 47sylancl 585 . . . 4 (𝜑 → (ran 𝑆 ∪ {𝑋}) ∈ V)
49 fiuni 9429 . . . 4 ((ran 𝑆 ∪ {𝑋}) ∈ V → (ran 𝑆 ∪ {𝑋}) = (fi‘(ran 𝑆 ∪ {𝑋})))
5048, 49syl 17 . . 3 (𝜑 (ran 𝑆 ∪ {𝑋}) = (fi‘(ran 𝑆 ∪ {𝑋})))
5127, 31, 503eqtr4d 2781 . 2 (𝜑𝑋 = (ran 𝑆 ∪ {𝑋}))
5251, 22jca 511 1 (𝜑 → (𝑋 = (ran 𝑆 ∪ {𝑋}) ∧ (∏t𝐹) = (topGen‘(fi‘(ran 𝑆 ∪ {𝑋})))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wex 1780  wcel 2105  {cab 2708  wral 3060  wrex 3069  Vcvv 3473  cdif 3945  cun 3946  cin 3947  wss 3948  𝒫 cpw 4602  {csn 4628   cuni 4908   ciun 4997  cmpt 5231   × cxp 5674  ccnv 5675  dom cdm 5676  ran crn 5677  cima 5679   Fn wfn 6538  wf 6539  cfv 6543  cmpo 7414  Xcixp 8897  Fincfn 8945  ficfi 9411  cardccrd 9936  topGenctg 17390  tcpt 17391  Topctop 22628  TopBasesctb 22681  Compccmp 23123  UFLcufl 23637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-1o 8472  df-er 8709  df-ixp 8898  df-en 8946  df-dom 8947  df-fin 8949  df-fi 9412  df-topgen 17396  df-pt 17397  df-top 22629  df-bases 22682  df-cmp 23124
This theorem is referenced by:  ptcmplem5  23793
  Copyright terms: Public domain W3C validator