MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmplem1 Structured version   Visualization version   GIF version

Theorem ptcmplem1 23111
Description: Lemma for ptcmp 23117. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
ptcmp.1 𝑆 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
ptcmp.2 𝑋 = X𝑛𝐴 (𝐹𝑛)
ptcmp.3 (𝜑𝐴𝑉)
ptcmp.4 (𝜑𝐹:𝐴⟶Comp)
ptcmp.5 (𝜑𝑋 ∈ (UFL ∩ dom card))
Assertion
Ref Expression
ptcmplem1 (𝜑 → (𝑋 = (ran 𝑆 ∪ {𝑋}) ∧ (∏t𝐹) = (topGen‘(fi‘(ran 𝑆 ∪ {𝑋})))))
Distinct variable groups:   𝑘,𝑛,𝑢,𝑤,𝐴   𝑆,𝑘,𝑛,𝑢   𝜑,𝑘,𝑛,𝑢   𝑘,𝑉,𝑛,𝑢,𝑤   𝑘,𝐹,𝑛,𝑢,𝑤   𝑘,𝑋,𝑛,𝑢,𝑤
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)

Proof of Theorem ptcmplem1
Dummy variables 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptcmp.3 . . . . . . 7 (𝜑𝐴𝑉)
2 ptcmp.4 . . . . . . . 8 (𝜑𝐹:𝐴⟶Comp)
32ffnd 6585 . . . . . . 7 (𝜑𝐹 Fn 𝐴)
4 eqid 2738 . . . . . . . 8 {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
54ptval 22629 . . . . . . 7 ((𝐴𝑉𝐹 Fn 𝐴) → (∏t𝐹) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
61, 3, 5syl2anc 583 . . . . . 6 (𝜑 → (∏t𝐹) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
7 cmptop 22454 . . . . . . . . . . 11 (𝑥 ∈ Comp → 𝑥 ∈ Top)
87ssriv 3921 . . . . . . . . . 10 Comp ⊆ Top
9 fss 6601 . . . . . . . . . 10 ((𝐹:𝐴⟶Comp ∧ Comp ⊆ Top) → 𝐹:𝐴⟶Top)
102, 8, 9sylancl 585 . . . . . . . . 9 (𝜑𝐹:𝐴⟶Top)
11 ptcmp.2 . . . . . . . . . 10 𝑋 = X𝑛𝐴 (𝐹𝑛)
124, 11ptbasfi 22640 . . . . . . . . 9 ((𝐴𝑉𝐹:𝐴⟶Top) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
131, 10, 12syl2anc 583 . . . . . . . 8 (𝜑 → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
14 uncom 4083 . . . . . . . . . 10 (ran 𝑆 ∪ {𝑋}) = ({𝑋} ∪ ran 𝑆)
15 ptcmp.1 . . . . . . . . . . . 12 𝑆 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
1615rneqi 5835 . . . . . . . . . . 11 ran 𝑆 = ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
1716uneq2i 4090 . . . . . . . . . 10 ({𝑋} ∪ ran 𝑆) = ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
1814, 17eqtri 2766 . . . . . . . . 9 (ran 𝑆 ∪ {𝑋}) = ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
1918fveq2i 6759 . . . . . . . 8 (fi‘(ran 𝑆 ∪ {𝑋})) = (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
2013, 19eqtr4di 2797 . . . . . . 7 (𝜑 → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = (fi‘(ran 𝑆 ∪ {𝑋})))
2120fveq2d 6760 . . . . . 6 (𝜑 → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}) = (topGen‘(fi‘(ran 𝑆 ∪ {𝑋}))))
226, 21eqtrd 2778 . . . . 5 (𝜑 → (∏t𝐹) = (topGen‘(fi‘(ran 𝑆 ∪ {𝑋}))))
2322unieqd 4850 . . . 4 (𝜑 (∏t𝐹) = (topGen‘(fi‘(ran 𝑆 ∪ {𝑋}))))
24 fibas 22035 . . . . 5 (fi‘(ran 𝑆 ∪ {𝑋})) ∈ TopBases
25 unitg 22025 . . . . 5 ((fi‘(ran 𝑆 ∪ {𝑋})) ∈ TopBases → (topGen‘(fi‘(ran 𝑆 ∪ {𝑋}))) = (fi‘(ran 𝑆 ∪ {𝑋})))
2624, 25ax-mp 5 . . . 4 (topGen‘(fi‘(ran 𝑆 ∪ {𝑋}))) = (fi‘(ran 𝑆 ∪ {𝑋}))
2723, 26eqtrdi 2795 . . 3 (𝜑 (∏t𝐹) = (fi‘(ran 𝑆 ∪ {𝑋})))
28 eqid 2738 . . . . . 6 (∏t𝐹) = (∏t𝐹)
2928ptuni 22653 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑛𝐴 (𝐹𝑛) = (∏t𝐹))
301, 10, 29syl2anc 583 . . . 4 (𝜑X𝑛𝐴 (𝐹𝑛) = (∏t𝐹))
3111, 30eqtrid 2790 . . 3 (𝜑𝑋 = (∏t𝐹))
32 ptcmp.5 . . . . . . 7 (𝜑𝑋 ∈ (UFL ∩ dom card))
3332pwexd 5297 . . . . . 6 (𝜑 → 𝒫 𝑋 ∈ V)
34 eqid 2738 . . . . . . . . . . . 12 (𝑤𝑋 ↦ (𝑤𝑘)) = (𝑤𝑋 ↦ (𝑤𝑘))
3534mptpreima 6130 . . . . . . . . . . 11 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) = {𝑤𝑋 ∣ (𝑤𝑘) ∈ 𝑢}
3635ssrab3 4011 . . . . . . . . . 10 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ⊆ 𝑋
3732adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘𝐴𝑢 ∈ (𝐹𝑘))) → 𝑋 ∈ (UFL ∩ dom card))
38 elpw2g 5263 . . . . . . . . . . 11 (𝑋 ∈ (UFL ∩ dom card) → (((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝒫 𝑋 ↔ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ⊆ 𝑋))
3937, 38syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝐴𝑢 ∈ (𝐹𝑘))) → (((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝒫 𝑋 ↔ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ⊆ 𝑋))
4036, 39mpbiri 257 . . . . . . . . 9 ((𝜑 ∧ (𝑘𝐴𝑢 ∈ (𝐹𝑘))) → ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝒫 𝑋)
4140ralrimivva 3114 . . . . . . . 8 (𝜑 → ∀𝑘𝐴𝑢 ∈ (𝐹𝑘)((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝒫 𝑋)
4215fmpox 7880 . . . . . . . 8 (∀𝑘𝐴𝑢 ∈ (𝐹𝑘)((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝒫 𝑋𝑆: 𝑘𝐴 ({𝑘} × (𝐹𝑘))⟶𝒫 𝑋)
4341, 42sylib 217 . . . . . . 7 (𝜑𝑆: 𝑘𝐴 ({𝑘} × (𝐹𝑘))⟶𝒫 𝑋)
4443frnd 6592 . . . . . 6 (𝜑 → ran 𝑆 ⊆ 𝒫 𝑋)
4533, 44ssexd 5243 . . . . 5 (𝜑 → ran 𝑆 ∈ V)
46 snex 5349 . . . . 5 {𝑋} ∈ V
47 unexg 7577 . . . . 5 ((ran 𝑆 ∈ V ∧ {𝑋} ∈ V) → (ran 𝑆 ∪ {𝑋}) ∈ V)
4845, 46, 47sylancl 585 . . . 4 (𝜑 → (ran 𝑆 ∪ {𝑋}) ∈ V)
49 fiuni 9117 . . . 4 ((ran 𝑆 ∪ {𝑋}) ∈ V → (ran 𝑆 ∪ {𝑋}) = (fi‘(ran 𝑆 ∪ {𝑋})))
5048, 49syl 17 . . 3 (𝜑 (ran 𝑆 ∪ {𝑋}) = (fi‘(ran 𝑆 ∪ {𝑋})))
5127, 31, 503eqtr4d 2788 . 2 (𝜑𝑋 = (ran 𝑆 ∪ {𝑋}))
5251, 22jca 511 1 (𝜑 → (𝑋 = (ran 𝑆 ∪ {𝑋}) ∧ (∏t𝐹) = (topGen‘(fi‘(ran 𝑆 ∪ {𝑋})))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wral 3063  wrex 3064  Vcvv 3422  cdif 3880  cun 3881  cin 3882  wss 3883  𝒫 cpw 4530  {csn 4558   cuni 4836   ciun 4921  cmpt 5153   × cxp 5578  ccnv 5579  dom cdm 5580  ran crn 5581  cima 5583   Fn wfn 6413  wf 6414  cfv 6418  cmpo 7257  Xcixp 8643  Fincfn 8691  ficfi 9099  cardccrd 9624  topGenctg 17065  tcpt 17066  Topctop 21950  TopBasesctb 22003  Compccmp 22445  UFLcufl 22959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-1o 8267  df-er 8456  df-ixp 8644  df-en 8692  df-dom 8693  df-fin 8695  df-fi 9100  df-topgen 17071  df-pt 17072  df-top 21951  df-bases 22004  df-cmp 22446
This theorem is referenced by:  ptcmplem5  23115
  Copyright terms: Public domain W3C validator