MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmplem1 Structured version   Visualization version   GIF version

Theorem ptcmplem1 23946
Description: Lemma for ptcmp 23952. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
ptcmp.1 𝑆 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
ptcmp.2 𝑋 = X𝑛𝐴 (𝐹𝑛)
ptcmp.3 (𝜑𝐴𝑉)
ptcmp.4 (𝜑𝐹:𝐴⟶Comp)
ptcmp.5 (𝜑𝑋 ∈ (UFL ∩ dom card))
Assertion
Ref Expression
ptcmplem1 (𝜑 → (𝑋 = (ran 𝑆 ∪ {𝑋}) ∧ (∏t𝐹) = (topGen‘(fi‘(ran 𝑆 ∪ {𝑋})))))
Distinct variable groups:   𝑘,𝑛,𝑢,𝑤,𝐴   𝑆,𝑘,𝑛,𝑢   𝜑,𝑘,𝑛,𝑢   𝑘,𝑉,𝑛,𝑢,𝑤   𝑘,𝐹,𝑛,𝑢,𝑤   𝑘,𝑋,𝑛,𝑢,𝑤
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)

Proof of Theorem ptcmplem1
Dummy variables 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptcmp.3 . . . . . . 7 (𝜑𝐴𝑉)
2 ptcmp.4 . . . . . . . 8 (𝜑𝐹:𝐴⟶Comp)
32ffnd 6692 . . . . . . 7 (𝜑𝐹 Fn 𝐴)
4 eqid 2730 . . . . . . . 8 {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
54ptval 23464 . . . . . . 7 ((𝐴𝑉𝐹 Fn 𝐴) → (∏t𝐹) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
61, 3, 5syl2anc 584 . . . . . 6 (𝜑 → (∏t𝐹) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
7 cmptop 23289 . . . . . . . . . . 11 (𝑥 ∈ Comp → 𝑥 ∈ Top)
87ssriv 3953 . . . . . . . . . 10 Comp ⊆ Top
9 fss 6707 . . . . . . . . . 10 ((𝐹:𝐴⟶Comp ∧ Comp ⊆ Top) → 𝐹:𝐴⟶Top)
102, 8, 9sylancl 586 . . . . . . . . 9 (𝜑𝐹:𝐴⟶Top)
11 ptcmp.2 . . . . . . . . . 10 𝑋 = X𝑛𝐴 (𝐹𝑛)
124, 11ptbasfi 23475 . . . . . . . . 9 ((𝐴𝑉𝐹:𝐴⟶Top) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
131, 10, 12syl2anc 584 . . . . . . . 8 (𝜑 → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
14 uncom 4124 . . . . . . . . . 10 (ran 𝑆 ∪ {𝑋}) = ({𝑋} ∪ ran 𝑆)
15 ptcmp.1 . . . . . . . . . . . 12 𝑆 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
1615rneqi 5904 . . . . . . . . . . 11 ran 𝑆 = ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
1716uneq2i 4131 . . . . . . . . . 10 ({𝑋} ∪ ran 𝑆) = ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
1814, 17eqtri 2753 . . . . . . . . 9 (ran 𝑆 ∪ {𝑋}) = ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
1918fveq2i 6864 . . . . . . . 8 (fi‘(ran 𝑆 ∪ {𝑋})) = (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
2013, 19eqtr4di 2783 . . . . . . 7 (𝜑 → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = (fi‘(ran 𝑆 ∪ {𝑋})))
2120fveq2d 6865 . . . . . 6 (𝜑 → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}) = (topGen‘(fi‘(ran 𝑆 ∪ {𝑋}))))
226, 21eqtrd 2765 . . . . 5 (𝜑 → (∏t𝐹) = (topGen‘(fi‘(ran 𝑆 ∪ {𝑋}))))
2322unieqd 4887 . . . 4 (𝜑 (∏t𝐹) = (topGen‘(fi‘(ran 𝑆 ∪ {𝑋}))))
24 fibas 22871 . . . . 5 (fi‘(ran 𝑆 ∪ {𝑋})) ∈ TopBases
25 unitg 22861 . . . . 5 ((fi‘(ran 𝑆 ∪ {𝑋})) ∈ TopBases → (topGen‘(fi‘(ran 𝑆 ∪ {𝑋}))) = (fi‘(ran 𝑆 ∪ {𝑋})))
2624, 25ax-mp 5 . . . 4 (topGen‘(fi‘(ran 𝑆 ∪ {𝑋}))) = (fi‘(ran 𝑆 ∪ {𝑋}))
2723, 26eqtrdi 2781 . . 3 (𝜑 (∏t𝐹) = (fi‘(ran 𝑆 ∪ {𝑋})))
28 eqid 2730 . . . . . 6 (∏t𝐹) = (∏t𝐹)
2928ptuni 23488 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑛𝐴 (𝐹𝑛) = (∏t𝐹))
301, 10, 29syl2anc 584 . . . 4 (𝜑X𝑛𝐴 (𝐹𝑛) = (∏t𝐹))
3111, 30eqtrid 2777 . . 3 (𝜑𝑋 = (∏t𝐹))
32 ptcmp.5 . . . . . . 7 (𝜑𝑋 ∈ (UFL ∩ dom card))
3332pwexd 5337 . . . . . 6 (𝜑 → 𝒫 𝑋 ∈ V)
34 eqid 2730 . . . . . . . . . . . 12 (𝑤𝑋 ↦ (𝑤𝑘)) = (𝑤𝑋 ↦ (𝑤𝑘))
3534mptpreima 6214 . . . . . . . . . . 11 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) = {𝑤𝑋 ∣ (𝑤𝑘) ∈ 𝑢}
3635ssrab3 4048 . . . . . . . . . 10 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ⊆ 𝑋
3732adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘𝐴𝑢 ∈ (𝐹𝑘))) → 𝑋 ∈ (UFL ∩ dom card))
38 elpw2g 5291 . . . . . . . . . . 11 (𝑋 ∈ (UFL ∩ dom card) → (((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝒫 𝑋 ↔ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ⊆ 𝑋))
3937, 38syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝐴𝑢 ∈ (𝐹𝑘))) → (((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝒫 𝑋 ↔ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ⊆ 𝑋))
4036, 39mpbiri 258 . . . . . . . . 9 ((𝜑 ∧ (𝑘𝐴𝑢 ∈ (𝐹𝑘))) → ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝒫 𝑋)
4140ralrimivva 3181 . . . . . . . 8 (𝜑 → ∀𝑘𝐴𝑢 ∈ (𝐹𝑘)((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝒫 𝑋)
4215fmpox 8049 . . . . . . . 8 (∀𝑘𝐴𝑢 ∈ (𝐹𝑘)((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝒫 𝑋𝑆: 𝑘𝐴 ({𝑘} × (𝐹𝑘))⟶𝒫 𝑋)
4341, 42sylib 218 . . . . . . 7 (𝜑𝑆: 𝑘𝐴 ({𝑘} × (𝐹𝑘))⟶𝒫 𝑋)
4443frnd 6699 . . . . . 6 (𝜑 → ran 𝑆 ⊆ 𝒫 𝑋)
4533, 44ssexd 5282 . . . . 5 (𝜑 → ran 𝑆 ∈ V)
46 snex 5394 . . . . 5 {𝑋} ∈ V
47 unexg 7722 . . . . 5 ((ran 𝑆 ∈ V ∧ {𝑋} ∈ V) → (ran 𝑆 ∪ {𝑋}) ∈ V)
4845, 46, 47sylancl 586 . . . 4 (𝜑 → (ran 𝑆 ∪ {𝑋}) ∈ V)
49 fiuni 9386 . . . 4 ((ran 𝑆 ∪ {𝑋}) ∈ V → (ran 𝑆 ∪ {𝑋}) = (fi‘(ran 𝑆 ∪ {𝑋})))
5048, 49syl 17 . . 3 (𝜑 (ran 𝑆 ∪ {𝑋}) = (fi‘(ran 𝑆 ∪ {𝑋})))
5127, 31, 503eqtr4d 2775 . 2 (𝜑𝑋 = (ran 𝑆 ∪ {𝑋}))
5251, 22jca 511 1 (𝜑 → (𝑋 = (ran 𝑆 ∪ {𝑋}) ∧ (∏t𝐹) = (topGen‘(fi‘(ran 𝑆 ∪ {𝑋})))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2708  wral 3045  wrex 3054  Vcvv 3450  cdif 3914  cun 3915  cin 3916  wss 3917  𝒫 cpw 4566  {csn 4592   cuni 4874   ciun 4958  cmpt 5191   × cxp 5639  ccnv 5640  dom cdm 5641  ran crn 5642  cima 5644   Fn wfn 6509  wf 6510  cfv 6514  cmpo 7392  Xcixp 8873  Fincfn 8921  ficfi 9368  cardccrd 9895  topGenctg 17407  tcpt 17408  Topctop 22787  TopBasesctb 22839  Compccmp 23280  UFLcufl 23794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-1o 8437  df-2o 8438  df-ixp 8874  df-en 8922  df-dom 8923  df-fin 8925  df-fi 9369  df-topgen 17413  df-pt 17414  df-top 22788  df-bases 22840  df-cmp 23281
This theorem is referenced by:  ptcmplem5  23950
  Copyright terms: Public domain W3C validator