| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmpkgen | Structured version Visualization version GIF version | ||
| Description: A compact space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| cmpkgen | ⊢ (𝐽 ∈ Comp → 𝐽 ∈ ran 𝑘Gen) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . 2 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | cmptop 23289 | . 2 ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) | |
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → 𝐽 ∈ Top) |
| 4 | 1 | topopn 22800 | . . . . 5 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → ∪ 𝐽 ∈ 𝐽) |
| 6 | simpr 484 | . . . . 5 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → 𝑥 ∈ ∪ 𝐽) | |
| 7 | 6 | snssd 4776 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → {𝑥} ⊆ ∪ 𝐽) |
| 8 | opnneiss 23012 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ ∪ 𝐽 ∈ 𝐽 ∧ {𝑥} ⊆ ∪ 𝐽) → ∪ 𝐽 ∈ ((nei‘𝐽)‘{𝑥})) | |
| 9 | 3, 5, 7, 8 | syl3anc 1373 | . . 3 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → ∪ 𝐽 ∈ ((nei‘𝐽)‘{𝑥})) |
| 10 | 1 | restid 17403 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝐽 ↾t ∪ 𝐽) = 𝐽) |
| 11 | 3, 10 | syl 17 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → (𝐽 ↾t ∪ 𝐽) = 𝐽) |
| 12 | simpl 482 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → 𝐽 ∈ Comp) | |
| 13 | 11, 12 | eqeltrd 2829 | . . 3 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → (𝐽 ↾t ∪ 𝐽) ∈ Comp) |
| 14 | oveq2 7398 | . . . . 5 ⊢ (𝑘 = ∪ 𝐽 → (𝐽 ↾t 𝑘) = (𝐽 ↾t ∪ 𝐽)) | |
| 15 | 14 | eleq1d 2814 | . . . 4 ⊢ (𝑘 = ∪ 𝐽 → ((𝐽 ↾t 𝑘) ∈ Comp ↔ (𝐽 ↾t ∪ 𝐽) ∈ Comp)) |
| 16 | 15 | rspcev 3591 | . . 3 ⊢ ((∪ 𝐽 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t ∪ 𝐽) ∈ Comp) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽 ↾t 𝑘) ∈ Comp) |
| 17 | 9, 13, 16 | syl2anc 584 | . 2 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽 ↾t 𝑘) ∈ Comp) |
| 18 | 1, 2, 17 | llycmpkgen2 23444 | 1 ⊢ (𝐽 ∈ Comp → 𝐽 ∈ ran 𝑘Gen) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 ⊆ wss 3917 {csn 4592 ∪ cuni 4874 ran crn 5642 ‘cfv 6514 (class class class)co 7390 ↾t crest 17390 Topctop 22787 neicnei 22991 Compccmp 23280 𝑘Genckgen 23427 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-en 8922 df-fin 8925 df-fi 9369 df-rest 17392 df-topgen 17413 df-top 22788 df-topon 22805 df-bases 22840 df-ntr 22914 df-nei 22992 df-cmp 23281 df-kgen 23428 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |