![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cmpkgen | Structured version Visualization version GIF version |
Description: A compact space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
cmpkgen | β’ (π½ β Comp β π½ β ran πGen) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . 2 β’ βͺ π½ = βͺ π½ | |
2 | cmptop 23119 | . 2 β’ (π½ β Comp β π½ β Top) | |
3 | 2 | adantr 481 | . . . 4 β’ ((π½ β Comp β§ π₯ β βͺ π½) β π½ β Top) |
4 | 1 | topopn 22628 | . . . . 5 β’ (π½ β Top β βͺ π½ β π½) |
5 | 3, 4 | syl 17 | . . . 4 β’ ((π½ β Comp β§ π₯ β βͺ π½) β βͺ π½ β π½) |
6 | simpr 485 | . . . . 5 β’ ((π½ β Comp β§ π₯ β βͺ π½) β π₯ β βͺ π½) | |
7 | 6 | snssd 4812 | . . . 4 β’ ((π½ β Comp β§ π₯ β βͺ π½) β {π₯} β βͺ π½) |
8 | opnneiss 22842 | . . . 4 β’ ((π½ β Top β§ βͺ π½ β π½ β§ {π₯} β βͺ π½) β βͺ π½ β ((neiβπ½)β{π₯})) | |
9 | 3, 5, 7, 8 | syl3anc 1371 | . . 3 β’ ((π½ β Comp β§ π₯ β βͺ π½) β βͺ π½ β ((neiβπ½)β{π₯})) |
10 | 1 | restid 17383 | . . . . 5 β’ (π½ β Top β (π½ βΎt βͺ π½) = π½) |
11 | 3, 10 | syl 17 | . . . 4 β’ ((π½ β Comp β§ π₯ β βͺ π½) β (π½ βΎt βͺ π½) = π½) |
12 | simpl 483 | . . . 4 β’ ((π½ β Comp β§ π₯ β βͺ π½) β π½ β Comp) | |
13 | 11, 12 | eqeltrd 2833 | . . 3 β’ ((π½ β Comp β§ π₯ β βͺ π½) β (π½ βΎt βͺ π½) β Comp) |
14 | oveq2 7419 | . . . . 5 β’ (π = βͺ π½ β (π½ βΎt π) = (π½ βΎt βͺ π½)) | |
15 | 14 | eleq1d 2818 | . . . 4 β’ (π = βͺ π½ β ((π½ βΎt π) β Comp β (π½ βΎt βͺ π½) β Comp)) |
16 | 15 | rspcev 3612 | . . 3 β’ ((βͺ π½ β ((neiβπ½)β{π₯}) β§ (π½ βΎt βͺ π½) β Comp) β βπ β ((neiβπ½)β{π₯})(π½ βΎt π) β Comp) |
17 | 9, 13, 16 | syl2anc 584 | . 2 β’ ((π½ β Comp β§ π₯ β βͺ π½) β βπ β ((neiβπ½)β{π₯})(π½ βΎt π) β Comp) |
18 | 1, 2, 17 | llycmpkgen2 23274 | 1 β’ (π½ β Comp β π½ β ran πGen) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βwrex 3070 β wss 3948 {csn 4628 βͺ cuni 4908 ran crn 5677 βcfv 6543 (class class class)co 7411 βΎt crest 17370 Topctop 22615 neicnei 22821 Compccmp 23110 πGenckgen 23257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-en 8942 df-fin 8945 df-fi 9408 df-rest 17372 df-topgen 17393 df-top 22616 df-topon 22633 df-bases 22669 df-ntr 22744 df-nei 22822 df-cmp 23111 df-kgen 23258 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |