Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cmpkgen | Structured version Visualization version GIF version |
Description: A compact space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
cmpkgen | ⊢ (𝐽 ∈ Comp → 𝐽 ∈ ran 𝑘Gen) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | cmptop 22454 | . 2 ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) | |
3 | 2 | adantr 480 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → 𝐽 ∈ Top) |
4 | 1 | topopn 21963 | . . . . 5 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
5 | 3, 4 | syl 17 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → ∪ 𝐽 ∈ 𝐽) |
6 | simpr 484 | . . . . 5 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → 𝑥 ∈ ∪ 𝐽) | |
7 | 6 | snssd 4739 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → {𝑥} ⊆ ∪ 𝐽) |
8 | opnneiss 22177 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ ∪ 𝐽 ∈ 𝐽 ∧ {𝑥} ⊆ ∪ 𝐽) → ∪ 𝐽 ∈ ((nei‘𝐽)‘{𝑥})) | |
9 | 3, 5, 7, 8 | syl3anc 1369 | . . 3 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → ∪ 𝐽 ∈ ((nei‘𝐽)‘{𝑥})) |
10 | 1 | restid 17061 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝐽 ↾t ∪ 𝐽) = 𝐽) |
11 | 3, 10 | syl 17 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → (𝐽 ↾t ∪ 𝐽) = 𝐽) |
12 | simpl 482 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → 𝐽 ∈ Comp) | |
13 | 11, 12 | eqeltrd 2839 | . . 3 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → (𝐽 ↾t ∪ 𝐽) ∈ Comp) |
14 | oveq2 7263 | . . . . 5 ⊢ (𝑘 = ∪ 𝐽 → (𝐽 ↾t 𝑘) = (𝐽 ↾t ∪ 𝐽)) | |
15 | 14 | eleq1d 2823 | . . . 4 ⊢ (𝑘 = ∪ 𝐽 → ((𝐽 ↾t 𝑘) ∈ Comp ↔ (𝐽 ↾t ∪ 𝐽) ∈ Comp)) |
16 | 15 | rspcev 3552 | . . 3 ⊢ ((∪ 𝐽 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t ∪ 𝐽) ∈ Comp) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽 ↾t 𝑘) ∈ Comp) |
17 | 9, 13, 16 | syl2anc 583 | . 2 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽 ↾t 𝑘) ∈ Comp) |
18 | 1, 2, 17 | llycmpkgen2 22609 | 1 ⊢ (𝐽 ∈ Comp → 𝐽 ∈ ran 𝑘Gen) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ⊆ wss 3883 {csn 4558 ∪ cuni 4836 ran crn 5581 ‘cfv 6418 (class class class)co 7255 ↾t crest 17048 Topctop 21950 neicnei 22156 Compccmp 22445 𝑘Genckgen 22592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-en 8692 df-fin 8695 df-fi 9100 df-rest 17050 df-topgen 17071 df-top 21951 df-topon 21968 df-bases 22004 df-ntr 22079 df-nei 22157 df-cmp 22446 df-kgen 22593 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |