MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpkgen Structured version   Visualization version   GIF version

Theorem cmpkgen 22162
Description: A compact space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
cmpkgen (𝐽 ∈ Comp → 𝐽 ∈ ran 𝑘Gen)

Proof of Theorem cmpkgen
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . 2 𝐽 = 𝐽
2 cmptop 22006 . 2 (𝐽 ∈ Comp → 𝐽 ∈ Top)
32adantr 484 . . . 4 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → 𝐽 ∈ Top)
41topopn 21517 . . . . 5 (𝐽 ∈ Top → 𝐽𝐽)
53, 4syl 17 . . . 4 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → 𝐽𝐽)
6 simpr 488 . . . . 5 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → 𝑥 𝐽)
76snssd 4727 . . . 4 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → {𝑥} ⊆ 𝐽)
8 opnneiss 21729 . . . 4 ((𝐽 ∈ Top ∧ 𝐽𝐽 ∧ {𝑥} ⊆ 𝐽) → 𝐽 ∈ ((nei‘𝐽)‘{𝑥}))
93, 5, 7, 8syl3anc 1368 . . 3 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → 𝐽 ∈ ((nei‘𝐽)‘{𝑥}))
101restid 16710 . . . . 5 (𝐽 ∈ Top → (𝐽t 𝐽) = 𝐽)
113, 10syl 17 . . . 4 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → (𝐽t 𝐽) = 𝐽)
12 simpl 486 . . . 4 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → 𝐽 ∈ Comp)
1311, 12eqeltrd 2916 . . 3 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → (𝐽t 𝐽) ∈ Comp)
14 oveq2 7158 . . . . 5 (𝑘 = 𝐽 → (𝐽t 𝑘) = (𝐽t 𝐽))
1514eleq1d 2900 . . . 4 (𝑘 = 𝐽 → ((𝐽t 𝑘) ∈ Comp ↔ (𝐽t 𝐽) ∈ Comp))
1615rspcev 3610 . . 3 (( 𝐽 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝐽) ∈ Comp) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽t 𝑘) ∈ Comp)
179, 13, 16syl2anc 587 . 2 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽t 𝑘) ∈ Comp)
181, 2, 17llycmpkgen2 22161 1 (𝐽 ∈ Comp → 𝐽 ∈ ran 𝑘Gen)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  wrex 3134  wss 3920  {csn 4551   cuni 4825  ran crn 5544  cfv 6344  (class class class)co 7150  t crest 16697  Topctop 21504  neicnei 21708  Compccmp 21997  𝑘Genckgen 22144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7456
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3483  df-sbc 3760  df-csb 3868  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-pss 3939  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-tp 4556  df-op 4558  df-uni 4826  df-int 4864  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7576  df-1st 7685  df-2nd 7686  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-oadd 8103  df-er 8286  df-en 8507  df-fin 8510  df-fi 8873  df-rest 16699  df-topgen 16720  df-top 21505  df-topon 21522  df-bases 21557  df-ntr 21631  df-nei 21709  df-cmp 21998  df-kgen 22145
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator