Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cmpkgen | Structured version Visualization version GIF version |
Description: A compact space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
cmpkgen | ⊢ (𝐽 ∈ Comp → 𝐽 ∈ ran 𝑘Gen) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . 2 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | cmptop 22544 | . 2 ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) | |
3 | 2 | adantr 481 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → 𝐽 ∈ Top) |
4 | 1 | topopn 22053 | . . . . 5 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
5 | 3, 4 | syl 17 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → ∪ 𝐽 ∈ 𝐽) |
6 | simpr 485 | . . . . 5 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → 𝑥 ∈ ∪ 𝐽) | |
7 | 6 | snssd 4748 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → {𝑥} ⊆ ∪ 𝐽) |
8 | opnneiss 22267 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ ∪ 𝐽 ∈ 𝐽 ∧ {𝑥} ⊆ ∪ 𝐽) → ∪ 𝐽 ∈ ((nei‘𝐽)‘{𝑥})) | |
9 | 3, 5, 7, 8 | syl3anc 1370 | . . 3 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → ∪ 𝐽 ∈ ((nei‘𝐽)‘{𝑥})) |
10 | 1 | restid 17142 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝐽 ↾t ∪ 𝐽) = 𝐽) |
11 | 3, 10 | syl 17 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → (𝐽 ↾t ∪ 𝐽) = 𝐽) |
12 | simpl 483 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → 𝐽 ∈ Comp) | |
13 | 11, 12 | eqeltrd 2841 | . . 3 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → (𝐽 ↾t ∪ 𝐽) ∈ Comp) |
14 | oveq2 7279 | . . . . 5 ⊢ (𝑘 = ∪ 𝐽 → (𝐽 ↾t 𝑘) = (𝐽 ↾t ∪ 𝐽)) | |
15 | 14 | eleq1d 2825 | . . . 4 ⊢ (𝑘 = ∪ 𝐽 → ((𝐽 ↾t 𝑘) ∈ Comp ↔ (𝐽 ↾t ∪ 𝐽) ∈ Comp)) |
16 | 15 | rspcev 3561 | . . 3 ⊢ ((∪ 𝐽 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t ∪ 𝐽) ∈ Comp) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽 ↾t 𝑘) ∈ Comp) |
17 | 9, 13, 16 | syl2anc 584 | . 2 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽 ↾t 𝑘) ∈ Comp) |
18 | 1, 2, 17 | llycmpkgen2 22699 | 1 ⊢ (𝐽 ∈ Comp → 𝐽 ∈ ran 𝑘Gen) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∃wrex 3067 ⊆ wss 3892 {csn 4567 ∪ cuni 4845 ran crn 5591 ‘cfv 6432 (class class class)co 7271 ↾t crest 17129 Topctop 22040 neicnei 22246 Compccmp 22535 𝑘Genckgen 22682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-en 8717 df-fin 8720 df-fi 9148 df-rest 17131 df-topgen 17152 df-top 22041 df-topon 22058 df-bases 22094 df-ntr 22169 df-nei 22247 df-cmp 22536 df-kgen 22683 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |