| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmpkgen | Structured version Visualization version GIF version | ||
| Description: A compact space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| cmpkgen | ⊢ (𝐽 ∈ Comp → 𝐽 ∈ ran 𝑘Gen) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . 2 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | cmptop 23311 | . 2 ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) | |
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → 𝐽 ∈ Top) |
| 4 | 1 | topopn 22822 | . . . . 5 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → ∪ 𝐽 ∈ 𝐽) |
| 6 | simpr 484 | . . . . 5 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → 𝑥 ∈ ∪ 𝐽) | |
| 7 | 6 | snssd 4760 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → {𝑥} ⊆ ∪ 𝐽) |
| 8 | opnneiss 23034 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ ∪ 𝐽 ∈ 𝐽 ∧ {𝑥} ⊆ ∪ 𝐽) → ∪ 𝐽 ∈ ((nei‘𝐽)‘{𝑥})) | |
| 9 | 3, 5, 7, 8 | syl3anc 1373 | . . 3 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → ∪ 𝐽 ∈ ((nei‘𝐽)‘{𝑥})) |
| 10 | 1 | restid 17339 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝐽 ↾t ∪ 𝐽) = 𝐽) |
| 11 | 3, 10 | syl 17 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → (𝐽 ↾t ∪ 𝐽) = 𝐽) |
| 12 | simpl 482 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → 𝐽 ∈ Comp) | |
| 13 | 11, 12 | eqeltrd 2833 | . . 3 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → (𝐽 ↾t ∪ 𝐽) ∈ Comp) |
| 14 | oveq2 7360 | . . . . 5 ⊢ (𝑘 = ∪ 𝐽 → (𝐽 ↾t 𝑘) = (𝐽 ↾t ∪ 𝐽)) | |
| 15 | 14 | eleq1d 2818 | . . . 4 ⊢ (𝑘 = ∪ 𝐽 → ((𝐽 ↾t 𝑘) ∈ Comp ↔ (𝐽 ↾t ∪ 𝐽) ∈ Comp)) |
| 16 | 15 | rspcev 3573 | . . 3 ⊢ ((∪ 𝐽 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t ∪ 𝐽) ∈ Comp) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽 ↾t 𝑘) ∈ Comp) |
| 17 | 9, 13, 16 | syl2anc 584 | . 2 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽 ↾t 𝑘) ∈ Comp) |
| 18 | 1, 2, 17 | llycmpkgen2 23466 | 1 ⊢ (𝐽 ∈ Comp → 𝐽 ∈ ran 𝑘Gen) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 ⊆ wss 3898 {csn 4575 ∪ cuni 4858 ran crn 5620 ‘cfv 6486 (class class class)co 7352 ↾t crest 17326 Topctop 22809 neicnei 23013 Compccmp 23302 𝑘Genckgen 23449 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-en 8876 df-fin 8879 df-fi 9302 df-rest 17328 df-topgen 17349 df-top 22810 df-topon 22827 df-bases 22862 df-ntr 22936 df-nei 23014 df-cmp 23303 df-kgen 23450 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |