MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpkgen Structured version   Visualization version   GIF version

Theorem cmpkgen 23445
Description: A compact space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
cmpkgen (𝐽 ∈ Comp → 𝐽 ∈ ran 𝑘Gen)

Proof of Theorem cmpkgen
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . 2 𝐽 = 𝐽
2 cmptop 23289 . 2 (𝐽 ∈ Comp → 𝐽 ∈ Top)
32adantr 480 . . . 4 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → 𝐽 ∈ Top)
41topopn 22800 . . . . 5 (𝐽 ∈ Top → 𝐽𝐽)
53, 4syl 17 . . . 4 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → 𝐽𝐽)
6 simpr 484 . . . . 5 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → 𝑥 𝐽)
76snssd 4776 . . . 4 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → {𝑥} ⊆ 𝐽)
8 opnneiss 23012 . . . 4 ((𝐽 ∈ Top ∧ 𝐽𝐽 ∧ {𝑥} ⊆ 𝐽) → 𝐽 ∈ ((nei‘𝐽)‘{𝑥}))
93, 5, 7, 8syl3anc 1373 . . 3 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → 𝐽 ∈ ((nei‘𝐽)‘{𝑥}))
101restid 17403 . . . . 5 (𝐽 ∈ Top → (𝐽t 𝐽) = 𝐽)
113, 10syl 17 . . . 4 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → (𝐽t 𝐽) = 𝐽)
12 simpl 482 . . . 4 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → 𝐽 ∈ Comp)
1311, 12eqeltrd 2829 . . 3 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → (𝐽t 𝐽) ∈ Comp)
14 oveq2 7398 . . . . 5 (𝑘 = 𝐽 → (𝐽t 𝑘) = (𝐽t 𝐽))
1514eleq1d 2814 . . . 4 (𝑘 = 𝐽 → ((𝐽t 𝑘) ∈ Comp ↔ (𝐽t 𝐽) ∈ Comp))
1615rspcev 3591 . . 3 (( 𝐽 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝐽) ∈ Comp) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽t 𝑘) ∈ Comp)
179, 13, 16syl2anc 584 . 2 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽t 𝑘) ∈ Comp)
181, 2, 17llycmpkgen2 23444 1 (𝐽 ∈ Comp → 𝐽 ∈ ran 𝑘Gen)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3054  wss 3917  {csn 4592   cuni 4874  ran crn 5642  cfv 6514  (class class class)co 7390  t crest 17390  Topctop 22787  neicnei 22991  Compccmp 23280  𝑘Genckgen 23427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-en 8922  df-fin 8925  df-fi 9369  df-rest 17392  df-topgen 17413  df-top 22788  df-topon 22805  df-bases 22840  df-ntr 22914  df-nei 22992  df-cmp 23281  df-kgen 23428
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator