MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpkgen Structured version   Visualization version   GIF version

Theorem cmpkgen 23464
Description: A compact space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
cmpkgen (𝐽 ∈ Comp → 𝐽 ∈ ran 𝑘Gen)

Proof of Theorem cmpkgen
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . 2 𝐽 = 𝐽
2 cmptop 23308 . 2 (𝐽 ∈ Comp → 𝐽 ∈ Top)
32adantr 480 . . . 4 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → 𝐽 ∈ Top)
41topopn 22819 . . . . 5 (𝐽 ∈ Top → 𝐽𝐽)
53, 4syl 17 . . . 4 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → 𝐽𝐽)
6 simpr 484 . . . . 5 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → 𝑥 𝐽)
76snssd 4761 . . . 4 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → {𝑥} ⊆ 𝐽)
8 opnneiss 23031 . . . 4 ((𝐽 ∈ Top ∧ 𝐽𝐽 ∧ {𝑥} ⊆ 𝐽) → 𝐽 ∈ ((nei‘𝐽)‘{𝑥}))
93, 5, 7, 8syl3anc 1373 . . 3 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → 𝐽 ∈ ((nei‘𝐽)‘{𝑥}))
101restid 17334 . . . . 5 (𝐽 ∈ Top → (𝐽t 𝐽) = 𝐽)
113, 10syl 17 . . . 4 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → (𝐽t 𝐽) = 𝐽)
12 simpl 482 . . . 4 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → 𝐽 ∈ Comp)
1311, 12eqeltrd 2831 . . 3 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → (𝐽t 𝐽) ∈ Comp)
14 oveq2 7354 . . . . 5 (𝑘 = 𝐽 → (𝐽t 𝑘) = (𝐽t 𝐽))
1514eleq1d 2816 . . . 4 (𝑘 = 𝐽 → ((𝐽t 𝑘) ∈ Comp ↔ (𝐽t 𝐽) ∈ Comp))
1615rspcev 3577 . . 3 (( 𝐽 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝐽) ∈ Comp) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽t 𝑘) ∈ Comp)
179, 13, 16syl2anc 584 . 2 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽t 𝑘) ∈ Comp)
181, 2, 17llycmpkgen2 23463 1 (𝐽 ∈ Comp → 𝐽 ∈ ran 𝑘Gen)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wrex 3056  wss 3902  {csn 4576   cuni 4859  ran crn 5617  cfv 6481  (class class class)co 7346  t crest 17321  Topctop 22806  neicnei 23010  Compccmp 23299  𝑘Genckgen 23446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-en 8870  df-fin 8873  df-fi 9295  df-rest 17323  df-topgen 17344  df-top 22807  df-topon 22824  df-bases 22859  df-ntr 22933  df-nei 23011  df-cmp 23300  df-kgen 23447
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator