MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpkgen Structured version   Visualization version   GIF version

Theorem cmpkgen 23454
Description: A compact space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
cmpkgen (𝐽 ∈ Comp → 𝐽 ∈ ran 𝑘Gen)

Proof of Theorem cmpkgen
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . 2 𝐽 = 𝐽
2 cmptop 23298 . 2 (𝐽 ∈ Comp → 𝐽 ∈ Top)
32adantr 480 . . . 4 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → 𝐽 ∈ Top)
41topopn 22809 . . . . 5 (𝐽 ∈ Top → 𝐽𝐽)
53, 4syl 17 . . . 4 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → 𝐽𝐽)
6 simpr 484 . . . . 5 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → 𝑥 𝐽)
76snssd 4763 . . . 4 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → {𝑥} ⊆ 𝐽)
8 opnneiss 23021 . . . 4 ((𝐽 ∈ Top ∧ 𝐽𝐽 ∧ {𝑥} ⊆ 𝐽) → 𝐽 ∈ ((nei‘𝐽)‘{𝑥}))
93, 5, 7, 8syl3anc 1373 . . 3 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → 𝐽 ∈ ((nei‘𝐽)‘{𝑥}))
101restid 17355 . . . . 5 (𝐽 ∈ Top → (𝐽t 𝐽) = 𝐽)
113, 10syl 17 . . . 4 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → (𝐽t 𝐽) = 𝐽)
12 simpl 482 . . . 4 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → 𝐽 ∈ Comp)
1311, 12eqeltrd 2828 . . 3 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → (𝐽t 𝐽) ∈ Comp)
14 oveq2 7361 . . . . 5 (𝑘 = 𝐽 → (𝐽t 𝑘) = (𝐽t 𝐽))
1514eleq1d 2813 . . . 4 (𝑘 = 𝐽 → ((𝐽t 𝑘) ∈ Comp ↔ (𝐽t 𝐽) ∈ Comp))
1615rspcev 3579 . . 3 (( 𝐽 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝐽) ∈ Comp) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽t 𝑘) ∈ Comp)
179, 13, 16syl2anc 584 . 2 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽t 𝑘) ∈ Comp)
181, 2, 17llycmpkgen2 23453 1 (𝐽 ∈ Comp → 𝐽 ∈ ran 𝑘Gen)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  wss 3905  {csn 4579   cuni 4861  ran crn 5624  cfv 6486  (class class class)co 7353  t crest 17342  Topctop 22796  neicnei 23000  Compccmp 23289  𝑘Genckgen 23436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-en 8880  df-fin 8883  df-fi 9320  df-rest 17344  df-topgen 17365  df-top 22797  df-topon 22814  df-bases 22849  df-ntr 22923  df-nei 23001  df-cmp 23290  df-kgen 23437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator