| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > kgencmp | Structured version Visualization version GIF version | ||
| Description: The compact generator topology is the same as the original topology on compact subspaces. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| Ref | Expression |
|---|---|
| kgencmp | ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝐽 ↾t 𝐾) = ((𝑘Gen‘𝐽) ↾t 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kgenftop 23458 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑘Gen‘𝐽) ∈ Top) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝑘Gen‘𝐽) ∈ Top) |
| 3 | kgenss 23461 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽)) | |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → 𝐽 ⊆ (𝑘Gen‘𝐽)) |
| 5 | ssrest 23094 | . . 3 ⊢ (((𝑘Gen‘𝐽) ∈ Top ∧ 𝐽 ⊆ (𝑘Gen‘𝐽)) → (𝐽 ↾t 𝐾) ⊆ ((𝑘Gen‘𝐽) ↾t 𝐾)) | |
| 6 | 2, 4, 5 | syl2anc 584 | . 2 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝐽 ↾t 𝐾) ⊆ ((𝑘Gen‘𝐽) ↾t 𝐾)) |
| 7 | cmptop 23313 | . . . . . 6 ⊢ ((𝐽 ↾t 𝐾) ∈ Comp → (𝐽 ↾t 𝐾) ∈ Top) | |
| 8 | 7 | adantl 481 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝐽 ↾t 𝐾) ∈ Top) |
| 9 | restrcl 23075 | . . . . . 6 ⊢ ((𝐽 ↾t 𝐾) ∈ Top → (𝐽 ∈ V ∧ 𝐾 ∈ V)) | |
| 10 | 9 | simprd 495 | . . . . 5 ⊢ ((𝐽 ↾t 𝐾) ∈ Top → 𝐾 ∈ V) |
| 11 | 8, 10 | syl 17 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → 𝐾 ∈ V) |
| 12 | restval 17334 | . . . 4 ⊢ (((𝑘Gen‘𝐽) ∈ Top ∧ 𝐾 ∈ V) → ((𝑘Gen‘𝐽) ↾t 𝐾) = ran (𝑥 ∈ (𝑘Gen‘𝐽) ↦ (𝑥 ∩ 𝐾))) | |
| 13 | 2, 11, 12 | syl2anc 584 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → ((𝑘Gen‘𝐽) ↾t 𝐾) = ran (𝑥 ∈ (𝑘Gen‘𝐽) ↦ (𝑥 ∩ 𝐾))) |
| 14 | simpr 484 | . . . . . 6 ⊢ (((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → 𝑥 ∈ (𝑘Gen‘𝐽)) | |
| 15 | simplr 768 | . . . . . 6 ⊢ (((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → (𝐽 ↾t 𝐾) ∈ Comp) | |
| 16 | kgeni 23455 | . . . . . 6 ⊢ ((𝑥 ∈ (𝑘Gen‘𝐽) ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝑥 ∩ 𝐾) ∈ (𝐽 ↾t 𝐾)) | |
| 17 | 14, 15, 16 | syl2anc 584 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → (𝑥 ∩ 𝐾) ∈ (𝐽 ↾t 𝐾)) |
| 18 | 17 | fmpttd 7056 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝑥 ∈ (𝑘Gen‘𝐽) ↦ (𝑥 ∩ 𝐾)):(𝑘Gen‘𝐽)⟶(𝐽 ↾t 𝐾)) |
| 19 | 18 | frnd 6666 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → ran (𝑥 ∈ (𝑘Gen‘𝐽) ↦ (𝑥 ∩ 𝐾)) ⊆ (𝐽 ↾t 𝐾)) |
| 20 | 13, 19 | eqsstrd 3965 | . 2 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → ((𝑘Gen‘𝐽) ↾t 𝐾) ⊆ (𝐽 ↾t 𝐾)) |
| 21 | 6, 20 | eqssd 3948 | 1 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝐽 ↾t 𝐾) = ((𝑘Gen‘𝐽) ↾t 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∩ cin 3897 ⊆ wss 3898 ↦ cmpt 5176 ran crn 5622 ‘cfv 6488 (class class class)co 7354 ↾t crest 17328 Topctop 22811 Compccmp 23304 𝑘Genckgen 23451 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-en 8878 df-fin 8881 df-fi 9304 df-rest 17330 df-topgen 17351 df-top 22812 df-topon 22829 df-bases 22864 df-cmp 23305 df-kgen 23452 |
| This theorem is referenced by: kgencmp2 23464 kgenidm 23465 |
| Copyright terms: Public domain | W3C validator |