MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgencmp Structured version   Visualization version   GIF version

Theorem kgencmp 22474
Description: The compact generator topology is the same as the original topology on compact subspaces. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
kgencmp ((𝐽 ∈ Top ∧ (𝐽t 𝐾) ∈ Comp) → (𝐽t 𝐾) = ((𝑘Gen‘𝐽) ↾t 𝐾))

Proof of Theorem kgencmp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 kgenftop 22469 . . . 4 (𝐽 ∈ Top → (𝑘Gen‘𝐽) ∈ Top)
21adantr 484 . . 3 ((𝐽 ∈ Top ∧ (𝐽t 𝐾) ∈ Comp) → (𝑘Gen‘𝐽) ∈ Top)
3 kgenss 22472 . . . 4 (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽))
43adantr 484 . . 3 ((𝐽 ∈ Top ∧ (𝐽t 𝐾) ∈ Comp) → 𝐽 ⊆ (𝑘Gen‘𝐽))
5 ssrest 22105 . . 3 (((𝑘Gen‘𝐽) ∈ Top ∧ 𝐽 ⊆ (𝑘Gen‘𝐽)) → (𝐽t 𝐾) ⊆ ((𝑘Gen‘𝐽) ↾t 𝐾))
62, 4, 5syl2anc 587 . 2 ((𝐽 ∈ Top ∧ (𝐽t 𝐾) ∈ Comp) → (𝐽t 𝐾) ⊆ ((𝑘Gen‘𝐽) ↾t 𝐾))
7 cmptop 22324 . . . . . 6 ((𝐽t 𝐾) ∈ Comp → (𝐽t 𝐾) ∈ Top)
87adantl 485 . . . . 5 ((𝐽 ∈ Top ∧ (𝐽t 𝐾) ∈ Comp) → (𝐽t 𝐾) ∈ Top)
9 restrcl 22086 . . . . . 6 ((𝐽t 𝐾) ∈ Top → (𝐽 ∈ V ∧ 𝐾 ∈ V))
109simprd 499 . . . . 5 ((𝐽t 𝐾) ∈ Top → 𝐾 ∈ V)
118, 10syl 17 . . . 4 ((𝐽 ∈ Top ∧ (𝐽t 𝐾) ∈ Comp) → 𝐾 ∈ V)
12 restval 16964 . . . 4 (((𝑘Gen‘𝐽) ∈ Top ∧ 𝐾 ∈ V) → ((𝑘Gen‘𝐽) ↾t 𝐾) = ran (𝑥 ∈ (𝑘Gen‘𝐽) ↦ (𝑥𝐾)))
132, 11, 12syl2anc 587 . . 3 ((𝐽 ∈ Top ∧ (𝐽t 𝐾) ∈ Comp) → ((𝑘Gen‘𝐽) ↾t 𝐾) = ran (𝑥 ∈ (𝑘Gen‘𝐽) ↦ (𝑥𝐾)))
14 simpr 488 . . . . . 6 (((𝐽 ∈ Top ∧ (𝐽t 𝐾) ∈ Comp) ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → 𝑥 ∈ (𝑘Gen‘𝐽))
15 simplr 769 . . . . . 6 (((𝐽 ∈ Top ∧ (𝐽t 𝐾) ∈ Comp) ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → (𝐽t 𝐾) ∈ Comp)
16 kgeni 22466 . . . . . 6 ((𝑥 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝑥𝐾) ∈ (𝐽t 𝐾))
1714, 15, 16syl2anc 587 . . . . 5 (((𝐽 ∈ Top ∧ (𝐽t 𝐾) ∈ Comp) ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → (𝑥𝐾) ∈ (𝐽t 𝐾))
1817fmpttd 6954 . . . 4 ((𝐽 ∈ Top ∧ (𝐽t 𝐾) ∈ Comp) → (𝑥 ∈ (𝑘Gen‘𝐽) ↦ (𝑥𝐾)):(𝑘Gen‘𝐽)⟶(𝐽t 𝐾))
1918frnd 6575 . . 3 ((𝐽 ∈ Top ∧ (𝐽t 𝐾) ∈ Comp) → ran (𝑥 ∈ (𝑘Gen‘𝐽) ↦ (𝑥𝐾)) ⊆ (𝐽t 𝐾))
2013, 19eqsstrd 3956 . 2 ((𝐽 ∈ Top ∧ (𝐽t 𝐾) ∈ Comp) → ((𝑘Gen‘𝐽) ↾t 𝐾) ⊆ (𝐽t 𝐾))
216, 20eqssd 3935 1 ((𝐽 ∈ Top ∧ (𝐽t 𝐾) ∈ Comp) → (𝐽t 𝐾) = ((𝑘Gen‘𝐽) ↾t 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  Vcvv 3423  cin 3882  wss 3883  cmpt 5152  ran crn 5570  cfv 6401  (class class class)co 7235  t crest 16958  Topctop 21822  Compccmp 22315  𝑘Genckgen 22462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5196  ax-sep 5209  ax-nul 5216  ax-pow 5275  ax-pr 5339  ax-un 7545
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3425  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5153  df-tr 5179  df-id 5472  df-eprel 5478  df-po 5486  df-so 5487  df-fr 5527  df-we 5529  df-xp 5575  df-rel 5576  df-cnv 5577  df-co 5578  df-dm 5579  df-rn 5580  df-res 5581  df-ima 5582  df-ord 6237  df-on 6238  df-lim 6239  df-suc 6240  df-iota 6359  df-fun 6403  df-fn 6404  df-f 6405  df-f1 6406  df-fo 6407  df-f1o 6408  df-fv 6409  df-ov 7238  df-oprab 7239  df-mpo 7240  df-om 7667  df-1st 7783  df-2nd 7784  df-en 8651  df-fin 8654  df-fi 9057  df-rest 16960  df-topgen 16981  df-top 21823  df-topon 21840  df-bases 21875  df-cmp 22316  df-kgen 22463
This theorem is referenced by:  kgencmp2  22475  kgenidm  22476
  Copyright terms: Public domain W3C validator