| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > kgencmp | Structured version Visualization version GIF version | ||
| Description: The compact generator topology is the same as the original topology on compact subspaces. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| Ref | Expression |
|---|---|
| kgencmp | ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝐽 ↾t 𝐾) = ((𝑘Gen‘𝐽) ↾t 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kgenftop 23443 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑘Gen‘𝐽) ∈ Top) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝑘Gen‘𝐽) ∈ Top) |
| 3 | kgenss 23446 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽)) | |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → 𝐽 ⊆ (𝑘Gen‘𝐽)) |
| 5 | ssrest 23079 | . . 3 ⊢ (((𝑘Gen‘𝐽) ∈ Top ∧ 𝐽 ⊆ (𝑘Gen‘𝐽)) → (𝐽 ↾t 𝐾) ⊆ ((𝑘Gen‘𝐽) ↾t 𝐾)) | |
| 6 | 2, 4, 5 | syl2anc 584 | . 2 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝐽 ↾t 𝐾) ⊆ ((𝑘Gen‘𝐽) ↾t 𝐾)) |
| 7 | cmptop 23298 | . . . . . 6 ⊢ ((𝐽 ↾t 𝐾) ∈ Comp → (𝐽 ↾t 𝐾) ∈ Top) | |
| 8 | 7 | adantl 481 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝐽 ↾t 𝐾) ∈ Top) |
| 9 | restrcl 23060 | . . . . . 6 ⊢ ((𝐽 ↾t 𝐾) ∈ Top → (𝐽 ∈ V ∧ 𝐾 ∈ V)) | |
| 10 | 9 | simprd 495 | . . . . 5 ⊢ ((𝐽 ↾t 𝐾) ∈ Top → 𝐾 ∈ V) |
| 11 | 8, 10 | syl 17 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → 𝐾 ∈ V) |
| 12 | restval 17348 | . . . 4 ⊢ (((𝑘Gen‘𝐽) ∈ Top ∧ 𝐾 ∈ V) → ((𝑘Gen‘𝐽) ↾t 𝐾) = ran (𝑥 ∈ (𝑘Gen‘𝐽) ↦ (𝑥 ∩ 𝐾))) | |
| 13 | 2, 11, 12 | syl2anc 584 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → ((𝑘Gen‘𝐽) ↾t 𝐾) = ran (𝑥 ∈ (𝑘Gen‘𝐽) ↦ (𝑥 ∩ 𝐾))) |
| 14 | simpr 484 | . . . . . 6 ⊢ (((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → 𝑥 ∈ (𝑘Gen‘𝐽)) | |
| 15 | simplr 768 | . . . . . 6 ⊢ (((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → (𝐽 ↾t 𝐾) ∈ Comp) | |
| 16 | kgeni 23440 | . . . . . 6 ⊢ ((𝑥 ∈ (𝑘Gen‘𝐽) ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝑥 ∩ 𝐾) ∈ (𝐽 ↾t 𝐾)) | |
| 17 | 14, 15, 16 | syl2anc 584 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → (𝑥 ∩ 𝐾) ∈ (𝐽 ↾t 𝐾)) |
| 18 | 17 | fmpttd 7053 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝑥 ∈ (𝑘Gen‘𝐽) ↦ (𝑥 ∩ 𝐾)):(𝑘Gen‘𝐽)⟶(𝐽 ↾t 𝐾)) |
| 19 | 18 | frnd 6664 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → ran (𝑥 ∈ (𝑘Gen‘𝐽) ↦ (𝑥 ∩ 𝐾)) ⊆ (𝐽 ↾t 𝐾)) |
| 20 | 13, 19 | eqsstrd 3972 | . 2 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → ((𝑘Gen‘𝐽) ↾t 𝐾) ⊆ (𝐽 ↾t 𝐾)) |
| 21 | 6, 20 | eqssd 3955 | 1 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝐽 ↾t 𝐾) = ((𝑘Gen‘𝐽) ↾t 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∩ cin 3904 ⊆ wss 3905 ↦ cmpt 5176 ran crn 5624 ‘cfv 6486 (class class class)co 7353 ↾t crest 17342 Topctop 22796 Compccmp 23289 𝑘Genckgen 23436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-en 8880 df-fin 8883 df-fi 9320 df-rest 17344 df-topgen 17365 df-top 22797 df-topon 22814 df-bases 22849 df-cmp 23290 df-kgen 23437 |
| This theorem is referenced by: kgencmp2 23449 kgenidm 23450 |
| Copyright terms: Public domain | W3C validator |