![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > kgencmp | Structured version Visualization version GIF version |
Description: The compact generator topology is the same as the original topology on compact subspaces. (Contributed by Mario Carneiro, 20-Mar-2015.) |
Ref | Expression |
---|---|
kgencmp | ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝐽 ↾t 𝐾) = ((𝑘Gen‘𝐽) ↾t 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kgenftop 21763 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑘Gen‘𝐽) ∈ Top) | |
2 | 1 | adantr 474 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝑘Gen‘𝐽) ∈ Top) |
3 | kgenss 21766 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽)) | |
4 | 3 | adantr 474 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → 𝐽 ⊆ (𝑘Gen‘𝐽)) |
5 | ssrest 21399 | . . 3 ⊢ (((𝑘Gen‘𝐽) ∈ Top ∧ 𝐽 ⊆ (𝑘Gen‘𝐽)) → (𝐽 ↾t 𝐾) ⊆ ((𝑘Gen‘𝐽) ↾t 𝐾)) | |
6 | 2, 4, 5 | syl2anc 579 | . 2 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝐽 ↾t 𝐾) ⊆ ((𝑘Gen‘𝐽) ↾t 𝐾)) |
7 | cmptop 21618 | . . . . . 6 ⊢ ((𝐽 ↾t 𝐾) ∈ Comp → (𝐽 ↾t 𝐾) ∈ Top) | |
8 | 7 | adantl 475 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝐽 ↾t 𝐾) ∈ Top) |
9 | restrcl 21380 | . . . . . 6 ⊢ ((𝐽 ↾t 𝐾) ∈ Top → (𝐽 ∈ V ∧ 𝐾 ∈ V)) | |
10 | 9 | simprd 491 | . . . . 5 ⊢ ((𝐽 ↾t 𝐾) ∈ Top → 𝐾 ∈ V) |
11 | 8, 10 | syl 17 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → 𝐾 ∈ V) |
12 | restval 16484 | . . . 4 ⊢ (((𝑘Gen‘𝐽) ∈ Top ∧ 𝐾 ∈ V) → ((𝑘Gen‘𝐽) ↾t 𝐾) = ran (𝑥 ∈ (𝑘Gen‘𝐽) ↦ (𝑥 ∩ 𝐾))) | |
13 | 2, 11, 12 | syl2anc 579 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → ((𝑘Gen‘𝐽) ↾t 𝐾) = ran (𝑥 ∈ (𝑘Gen‘𝐽) ↦ (𝑥 ∩ 𝐾))) |
14 | simpr 479 | . . . . . 6 ⊢ (((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → 𝑥 ∈ (𝑘Gen‘𝐽)) | |
15 | simplr 759 | . . . . . 6 ⊢ (((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → (𝐽 ↾t 𝐾) ∈ Comp) | |
16 | kgeni 21760 | . . . . . 6 ⊢ ((𝑥 ∈ (𝑘Gen‘𝐽) ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝑥 ∩ 𝐾) ∈ (𝐽 ↾t 𝐾)) | |
17 | 14, 15, 16 | syl2anc 579 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → (𝑥 ∩ 𝐾) ∈ (𝐽 ↾t 𝐾)) |
18 | 17 | fmpttd 6651 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝑥 ∈ (𝑘Gen‘𝐽) ↦ (𝑥 ∩ 𝐾)):(𝑘Gen‘𝐽)⟶(𝐽 ↾t 𝐾)) |
19 | 18 | frnd 6300 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → ran (𝑥 ∈ (𝑘Gen‘𝐽) ↦ (𝑥 ∩ 𝐾)) ⊆ (𝐽 ↾t 𝐾)) |
20 | 13, 19 | eqsstrd 3858 | . 2 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → ((𝑘Gen‘𝐽) ↾t 𝐾) ⊆ (𝐽 ↾t 𝐾)) |
21 | 6, 20 | eqssd 3838 | 1 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝐽 ↾t 𝐾) = ((𝑘Gen‘𝐽) ↾t 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 Vcvv 3398 ∩ cin 3791 ⊆ wss 3792 ↦ cmpt 4967 ran crn 5358 ‘cfv 6137 (class class class)co 6924 ↾t crest 16478 Topctop 21116 Compccmp 21609 𝑘Genckgen 21756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-oadd 7849 df-er 8028 df-en 8244 df-fin 8247 df-fi 8607 df-rest 16480 df-topgen 16501 df-top 21117 df-topon 21134 df-bases 21169 df-cmp 21610 df-kgen 21757 |
This theorem is referenced by: kgencmp2 21769 kgenidm 21770 |
Copyright terms: Public domain | W3C validator |