Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > kgencmp | Structured version Visualization version GIF version |
Description: The compact generator topology is the same as the original topology on compact subspaces. (Contributed by Mario Carneiro, 20-Mar-2015.) |
Ref | Expression |
---|---|
kgencmp | ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝐽 ↾t 𝐾) = ((𝑘Gen‘𝐽) ↾t 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kgenftop 22469 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑘Gen‘𝐽) ∈ Top) | |
2 | 1 | adantr 484 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝑘Gen‘𝐽) ∈ Top) |
3 | kgenss 22472 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽)) | |
4 | 3 | adantr 484 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → 𝐽 ⊆ (𝑘Gen‘𝐽)) |
5 | ssrest 22105 | . . 3 ⊢ (((𝑘Gen‘𝐽) ∈ Top ∧ 𝐽 ⊆ (𝑘Gen‘𝐽)) → (𝐽 ↾t 𝐾) ⊆ ((𝑘Gen‘𝐽) ↾t 𝐾)) | |
6 | 2, 4, 5 | syl2anc 587 | . 2 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝐽 ↾t 𝐾) ⊆ ((𝑘Gen‘𝐽) ↾t 𝐾)) |
7 | cmptop 22324 | . . . . . 6 ⊢ ((𝐽 ↾t 𝐾) ∈ Comp → (𝐽 ↾t 𝐾) ∈ Top) | |
8 | 7 | adantl 485 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝐽 ↾t 𝐾) ∈ Top) |
9 | restrcl 22086 | . . . . . 6 ⊢ ((𝐽 ↾t 𝐾) ∈ Top → (𝐽 ∈ V ∧ 𝐾 ∈ V)) | |
10 | 9 | simprd 499 | . . . . 5 ⊢ ((𝐽 ↾t 𝐾) ∈ Top → 𝐾 ∈ V) |
11 | 8, 10 | syl 17 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → 𝐾 ∈ V) |
12 | restval 16964 | . . . 4 ⊢ (((𝑘Gen‘𝐽) ∈ Top ∧ 𝐾 ∈ V) → ((𝑘Gen‘𝐽) ↾t 𝐾) = ran (𝑥 ∈ (𝑘Gen‘𝐽) ↦ (𝑥 ∩ 𝐾))) | |
13 | 2, 11, 12 | syl2anc 587 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → ((𝑘Gen‘𝐽) ↾t 𝐾) = ran (𝑥 ∈ (𝑘Gen‘𝐽) ↦ (𝑥 ∩ 𝐾))) |
14 | simpr 488 | . . . . . 6 ⊢ (((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → 𝑥 ∈ (𝑘Gen‘𝐽)) | |
15 | simplr 769 | . . . . . 6 ⊢ (((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → (𝐽 ↾t 𝐾) ∈ Comp) | |
16 | kgeni 22466 | . . . . . 6 ⊢ ((𝑥 ∈ (𝑘Gen‘𝐽) ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝑥 ∩ 𝐾) ∈ (𝐽 ↾t 𝐾)) | |
17 | 14, 15, 16 | syl2anc 587 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → (𝑥 ∩ 𝐾) ∈ (𝐽 ↾t 𝐾)) |
18 | 17 | fmpttd 6954 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝑥 ∈ (𝑘Gen‘𝐽) ↦ (𝑥 ∩ 𝐾)):(𝑘Gen‘𝐽)⟶(𝐽 ↾t 𝐾)) |
19 | 18 | frnd 6575 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → ran (𝑥 ∈ (𝑘Gen‘𝐽) ↦ (𝑥 ∩ 𝐾)) ⊆ (𝐽 ↾t 𝐾)) |
20 | 13, 19 | eqsstrd 3956 | . 2 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → ((𝑘Gen‘𝐽) ↾t 𝐾) ⊆ (𝐽 ↾t 𝐾)) |
21 | 6, 20 | eqssd 3935 | 1 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝐽 ↾t 𝐾) = ((𝑘Gen‘𝐽) ↾t 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 Vcvv 3423 ∩ cin 3882 ⊆ wss 3883 ↦ cmpt 5152 ran crn 5570 ‘cfv 6401 (class class class)co 7235 ↾t crest 16958 Topctop 21822 Compccmp 22315 𝑘Genckgen 22462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5196 ax-sep 5209 ax-nul 5216 ax-pow 5275 ax-pr 5339 ax-un 7545 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5179 df-id 5472 df-eprel 5478 df-po 5486 df-so 5487 df-fr 5527 df-we 5529 df-xp 5575 df-rel 5576 df-cnv 5577 df-co 5578 df-dm 5579 df-rn 5580 df-res 5581 df-ima 5582 df-ord 6237 df-on 6238 df-lim 6239 df-suc 6240 df-iota 6359 df-fun 6403 df-fn 6404 df-f 6405 df-f1 6406 df-fo 6407 df-f1o 6408 df-fv 6409 df-ov 7238 df-oprab 7239 df-mpo 7240 df-om 7667 df-1st 7783 df-2nd 7784 df-en 8651 df-fin 8654 df-fi 9057 df-rest 16960 df-topgen 16981 df-top 21823 df-topon 21840 df-bases 21875 df-cmp 22316 df-kgen 22463 |
This theorem is referenced by: kgencmp2 22475 kgenidm 22476 |
Copyright terms: Public domain | W3C validator |