| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnven | Structured version Visualization version GIF version | ||
| Description: A relational set is equinumerous to its converse. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| Ref | Expression |
|---|---|
| cnven | ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐴 ≈ ◡𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
| 2 | cnvexg 7928 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ V) | |
| 3 | 2 | adantl 481 | . 2 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ 𝑉) → ◡𝐴 ∈ V) |
| 4 | cnvf1o 8118 | . . 3 ⊢ (Rel 𝐴 → (𝑥 ∈ 𝐴 ↦ ∪ ◡{𝑥}):𝐴–1-1-onto→◡𝐴) | |
| 5 | 4 | adantr 480 | . 2 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ 𝐴 ↦ ∪ ◡{𝑥}):𝐴–1-1-onto→◡𝐴) |
| 6 | f1oen2g 8991 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ◡𝐴 ∈ V ∧ (𝑥 ∈ 𝐴 ↦ ∪ ◡{𝑥}):𝐴–1-1-onto→◡𝐴) → 𝐴 ≈ ◡𝐴) | |
| 7 | 1, 3, 5, 6 | syl3anc 1372 | 1 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐴 ≈ ◡𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 Vcvv 3463 {csn 4606 ∪ cuni 4887 class class class wbr 5123 ↦ cmpt 5205 ◡ccnv 5664 Rel wrel 5670 –1-1-onto→wf1o 6540 ≈ cen 8964 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-1st 7996 df-2nd 7997 df-en 8968 |
| This theorem is referenced by: cnvct 9056 cnvfiALT 9361 lgsquadlem3 27362 |
| Copyright terms: Public domain | W3C validator |