Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnven | Structured version Visualization version GIF version |
Description: A relational set is equinumerous to its converse. (Contributed by Mario Carneiro, 28-Dec-2014.) |
Ref | Expression |
---|---|
cnven | ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐴 ≈ ◡𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 488 | . 2 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
2 | cnvexg 7667 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ V) | |
3 | 2 | adantl 485 | . 2 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ 𝑉) → ◡𝐴 ∈ V) |
4 | cnvf1o 7844 | . . 3 ⊢ (Rel 𝐴 → (𝑥 ∈ 𝐴 ↦ ∪ ◡{𝑥}):𝐴–1-1-onto→◡𝐴) | |
5 | 4 | adantr 484 | . 2 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ 𝐴 ↦ ∪ ◡{𝑥}):𝐴–1-1-onto→◡𝐴) |
6 | f1oen2g 8584 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ◡𝐴 ∈ V ∧ (𝑥 ∈ 𝐴 ↦ ∪ ◡{𝑥}):𝐴–1-1-onto→◡𝐴) → 𝐴 ≈ ◡𝐴) | |
7 | 1, 3, 5, 6 | syl3anc 1372 | 1 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐴 ≈ ◡𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2114 Vcvv 3400 {csn 4526 ∪ cuni 4806 class class class wbr 5040 ↦ cmpt 5120 ◡ccnv 5534 Rel wrel 5540 –1-1-onto→wf1o 6348 ≈ cen 8564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7491 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-rab 3063 df-v 3402 df-sbc 3686 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-br 5041 df-opab 5103 df-mpt 5121 df-id 5439 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-f1 6354 df-fo 6355 df-f1o 6356 df-fv 6357 df-1st 7726 df-2nd 7727 df-en 8568 |
This theorem is referenced by: cnvct 8645 cnvfiALT 8891 lgsquadlem3 26130 |
Copyright terms: Public domain | W3C validator |