MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnven Structured version   Visualization version   GIF version

Theorem cnven 9081
Description: A relational set is equinumerous to its converse. (Contributed by Mario Carneiro, 28-Dec-2014.)
Assertion
Ref Expression
cnven ((Rel 𝐴𝐴𝑉) → 𝐴𝐴)

Proof of Theorem cnven
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . 2 ((Rel 𝐴𝐴𝑉) → 𝐴𝑉)
2 cnvexg 7954 . . 3 (𝐴𝑉𝐴 ∈ V)
32adantl 481 . 2 ((Rel 𝐴𝐴𝑉) → 𝐴 ∈ V)
4 cnvf1o 8144 . . 3 (Rel 𝐴 → (𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴)
54adantr 480 . 2 ((Rel 𝐴𝐴𝑉) → (𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴)
6 f1oen2g 9017 . 2 ((𝐴𝑉𝐴 ∈ V ∧ (𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴) → 𝐴𝐴)
71, 3, 5, 6syl3anc 1372 1 ((Rel 𝐴𝐴𝑉) → 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  Vcvv 3481  {csn 4634   cuni 4915   class class class wbr 5151  cmpt 5234  ccnv 5692  Rel wrel 5698  1-1-ontowf1o 6568  cen 8990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-1st 8022  df-2nd 8023  df-en 8994
This theorem is referenced by:  cnvct  9082  cnvfiALT  9386  lgsquadlem3  27452
  Copyright terms: Public domain W3C validator