| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnven | Structured version Visualization version GIF version | ||
| Description: A relational set is equinumerous to its converse. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| Ref | Expression |
|---|---|
| cnven | ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐴 ≈ ◡𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
| 2 | cnvexg 7854 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ V) | |
| 3 | 2 | adantl 481 | . 2 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ 𝑉) → ◡𝐴 ∈ V) |
| 4 | cnvf1o 8041 | . . 3 ⊢ (Rel 𝐴 → (𝑥 ∈ 𝐴 ↦ ∪ ◡{𝑥}):𝐴–1-1-onto→◡𝐴) | |
| 5 | 4 | adantr 480 | . 2 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ 𝐴 ↦ ∪ ◡{𝑥}):𝐴–1-1-onto→◡𝐴) |
| 6 | f1oen2g 8891 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ◡𝐴 ∈ V ∧ (𝑥 ∈ 𝐴 ↦ ∪ ◡{𝑥}):𝐴–1-1-onto→◡𝐴) → 𝐴 ≈ ◡𝐴) | |
| 7 | 1, 3, 5, 6 | syl3anc 1373 | 1 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐴 ≈ ◡𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 Vcvv 3436 {csn 4573 ∪ cuni 4856 class class class wbr 5089 ↦ cmpt 5170 ◡ccnv 5613 Rel wrel 5619 –1-1-onto→wf1o 6480 ≈ cen 8866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-1st 7921 df-2nd 7922 df-en 8870 |
| This theorem is referenced by: cnvct 8956 cnvfiALT 9223 lgsquadlem3 27320 |
| Copyright terms: Public domain | W3C validator |