MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnven Structured version   Visualization version   GIF version

Theorem cnven 9029
Description: A relational set is equinumerous to its converse. (Contributed by Mario Carneiro, 28-Dec-2014.)
Assertion
Ref Expression
cnven ((Rel 𝐴𝐴𝑉) → 𝐴𝐴)

Proof of Theorem cnven
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 485 . 2 ((Rel 𝐴𝐴𝑉) → 𝐴𝑉)
2 cnvexg 7911 . . 3 (𝐴𝑉𝐴 ∈ V)
32adantl 482 . 2 ((Rel 𝐴𝐴𝑉) → 𝐴 ∈ V)
4 cnvf1o 8093 . . 3 (Rel 𝐴 → (𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴)
54adantr 481 . 2 ((Rel 𝐴𝐴𝑉) → (𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴)
6 f1oen2g 8960 . 2 ((𝐴𝑉𝐴 ∈ V ∧ (𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴) → 𝐴𝐴)
71, 3, 5, 6syl3anc 1371 1 ((Rel 𝐴𝐴𝑉) → 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  Vcvv 3474  {csn 4627   cuni 4907   class class class wbr 5147  cmpt 5230  ccnv 5674  Rel wrel 5680  1-1-ontowf1o 6539  cen 8932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-1st 7971  df-2nd 7972  df-en 8936
This theorem is referenced by:  cnvct  9030  cnvfiALT  9330  lgsquadlem3  26874
  Copyright terms: Public domain W3C validator