![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnven | Structured version Visualization version GIF version |
Description: A relational set is equinumerous to its converse. (Contributed by Mario Carneiro, 28-Dec-2014.) |
Ref | Expression |
---|---|
cnven | ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐴 ≈ ◡𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . 2 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
2 | cnvexg 7909 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ V) | |
3 | 2 | adantl 481 | . 2 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ 𝑉) → ◡𝐴 ∈ V) |
4 | cnvf1o 8092 | . . 3 ⊢ (Rel 𝐴 → (𝑥 ∈ 𝐴 ↦ ∪ ◡{𝑥}):𝐴–1-1-onto→◡𝐴) | |
5 | 4 | adantr 480 | . 2 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ 𝐴 ↦ ∪ ◡{𝑥}):𝐴–1-1-onto→◡𝐴) |
6 | f1oen2g 8961 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ◡𝐴 ∈ V ∧ (𝑥 ∈ 𝐴 ↦ ∪ ◡{𝑥}):𝐴–1-1-onto→◡𝐴) → 𝐴 ≈ ◡𝐴) | |
7 | 1, 3, 5, 6 | syl3anc 1368 | 1 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐴 ≈ ◡𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2098 Vcvv 3466 {csn 4621 ∪ cuni 4900 class class class wbr 5139 ↦ cmpt 5222 ◡ccnv 5666 Rel wrel 5672 –1-1-onto→wf1o 6533 ≈ cen 8933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-1st 7969 df-2nd 7970 df-en 8937 |
This theorem is referenced by: cnvct 9031 cnvfiALT 9331 lgsquadlem3 27255 |
Copyright terms: Public domain | W3C validator |