MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnven Structured version   Visualization version   GIF version

Theorem cnven 9004
Description: A relational set is equinumerous to its converse. (Contributed by Mario Carneiro, 28-Dec-2014.)
Assertion
Ref Expression
cnven ((Rel 𝐴𝐴𝑉) → 𝐴𝐴)

Proof of Theorem cnven
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . 2 ((Rel 𝐴𝐴𝑉) → 𝐴𝑉)
2 cnvexg 7900 . . 3 (𝐴𝑉𝐴 ∈ V)
32adantl 481 . 2 ((Rel 𝐴𝐴𝑉) → 𝐴 ∈ V)
4 cnvf1o 8090 . . 3 (Rel 𝐴 → (𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴)
54adantr 480 . 2 ((Rel 𝐴𝐴𝑉) → (𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴)
6 f1oen2g 8940 . 2 ((𝐴𝑉𝐴 ∈ V ∧ (𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴) → 𝐴𝐴)
71, 3, 5, 6syl3anc 1373 1 ((Rel 𝐴𝐴𝑉) → 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Vcvv 3447  {csn 4589   cuni 4871   class class class wbr 5107  cmpt 5188  ccnv 5637  Rel wrel 5643  1-1-ontowf1o 6510  cen 8915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-1st 7968  df-2nd 7969  df-en 8919
This theorem is referenced by:  cnvct  9005  cnvfiALT  9290  lgsquadlem3  27293
  Copyright terms: Public domain W3C validator