MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnven Structured version   Visualization version   GIF version

Theorem cnven 8644
Description: A relational set is equinumerous to its converse. (Contributed by Mario Carneiro, 28-Dec-2014.)
Assertion
Ref Expression
cnven ((Rel 𝐴𝐴𝑉) → 𝐴𝐴)

Proof of Theorem cnven
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 488 . 2 ((Rel 𝐴𝐴𝑉) → 𝐴𝑉)
2 cnvexg 7667 . . 3 (𝐴𝑉𝐴 ∈ V)
32adantl 485 . 2 ((Rel 𝐴𝐴𝑉) → 𝐴 ∈ V)
4 cnvf1o 7844 . . 3 (Rel 𝐴 → (𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴)
54adantr 484 . 2 ((Rel 𝐴𝐴𝑉) → (𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴)
6 f1oen2g 8584 . 2 ((𝐴𝑉𝐴 ∈ V ∧ (𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴) → 𝐴𝐴)
71, 3, 5, 6syl3anc 1372 1 ((Rel 𝐴𝐴𝑉) → 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2114  Vcvv 3400  {csn 4526   cuni 4806   class class class wbr 5040  cmpt 5120  ccnv 5534  Rel wrel 5540  1-1-ontowf1o 6348  cen 8564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3402  df-sbc 3686  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4807  df-br 5041  df-opab 5103  df-mpt 5121  df-id 5439  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-1st 7726  df-2nd 7727  df-en 8568
This theorem is referenced by:  cnvct  8645  cnvfiALT  8891  lgsquadlem3  26130
  Copyright terms: Public domain W3C validator