MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cosval Structured version   Visualization version   GIF version

Theorem cosval 16050
Description: Value of the cosine function. (Contributed by NM, 14-Mar-2005.) (Revised by Mario Carneiro, 10-Nov-2013.)
Assertion
Ref Expression
cosval (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))

Proof of Theorem cosval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7361 . . . . 5 (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴))
21fveq2d 6830 . . . 4 (𝑥 = 𝐴 → (exp‘(i · 𝑥)) = (exp‘(i · 𝐴)))
3 oveq2 7361 . . . . 5 (𝑥 = 𝐴 → (-i · 𝑥) = (-i · 𝐴))
43fveq2d 6830 . . . 4 (𝑥 = 𝐴 → (exp‘(-i · 𝑥)) = (exp‘(-i · 𝐴)))
52, 4oveq12d 7371 . . 3 (𝑥 = 𝐴 → ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) = ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))
65oveq1d 7368 . 2 (𝑥 = 𝐴 → (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
7 df-cos 15995 . 2 cos = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2))
8 ovex 7386 . 2 (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) ∈ V
96, 7, 8fvmpt 6934 1 (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  cc 11026  ici 11030   + caddc 11031   · cmul 11033  -cneg 11366   / cdiv 11795  2c2 12201  expce 15986  cosccos 15989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-cos 15995
This theorem is referenced by:  tanval2  16060  tanval3  16061  recosval  16063  cosneg  16074  efival  16079  coshval  16082  cosadd  16092  cosper  26407  pige3ALT  26445  cosargd  26533  asinsin  26818  cosasin  26830  cosatan  26847
  Copyright terms: Public domain W3C validator