![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cosval | Structured version Visualization version GIF version |
Description: Value of the cosine function. (Contributed by NM, 14-Mar-2005.) (Revised by Mario Carneiro, 10-Nov-2013.) |
Ref | Expression |
---|---|
cosval | ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7427 | . . . . 5 ⊢ (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴)) | |
2 | 1 | fveq2d 6900 | . . . 4 ⊢ (𝑥 = 𝐴 → (exp‘(i · 𝑥)) = (exp‘(i · 𝐴))) |
3 | oveq2 7427 | . . . . 5 ⊢ (𝑥 = 𝐴 → (-i · 𝑥) = (-i · 𝐴)) | |
4 | 3 | fveq2d 6900 | . . . 4 ⊢ (𝑥 = 𝐴 → (exp‘(-i · 𝑥)) = (exp‘(-i · 𝐴))) |
5 | 2, 4 | oveq12d 7437 | . . 3 ⊢ (𝑥 = 𝐴 → ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) = ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) |
6 | 5 | oveq1d 7434 | . 2 ⊢ (𝑥 = 𝐴 → (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) |
7 | df-cos 16050 | . 2 ⊢ cos = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2)) | |
8 | ovex 7452 | . 2 ⊢ (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) ∈ V | |
9 | 6, 7, 8 | fvmpt 7004 | 1 ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ‘cfv 6549 (class class class)co 7419 ℂcc 11138 ici 11142 + caddc 11143 · cmul 11145 -cneg 11477 / cdiv 11903 2c2 12300 expce 16041 cosccos 16044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6501 df-fun 6551 df-fv 6557 df-ov 7422 df-cos 16050 |
This theorem is referenced by: tanval2 16113 tanval3 16114 recosval 16116 cosneg 16127 efival 16132 coshval 16135 cosadd 16145 cosper 26462 pige3ALT 26499 cosargd 26587 asinsin 26869 cosasin 26881 cosatan 26898 |
Copyright terms: Public domain | W3C validator |