Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cosval | Structured version Visualization version GIF version |
Description: Value of the cosine function. (Contributed by NM, 14-Mar-2005.) (Revised by Mario Carneiro, 10-Nov-2013.) |
Ref | Expression |
---|---|
cosval | ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7280 | . . . . 5 ⊢ (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴)) | |
2 | 1 | fveq2d 6775 | . . . 4 ⊢ (𝑥 = 𝐴 → (exp‘(i · 𝑥)) = (exp‘(i · 𝐴))) |
3 | oveq2 7280 | . . . . 5 ⊢ (𝑥 = 𝐴 → (-i · 𝑥) = (-i · 𝐴)) | |
4 | 3 | fveq2d 6775 | . . . 4 ⊢ (𝑥 = 𝐴 → (exp‘(-i · 𝑥)) = (exp‘(-i · 𝐴))) |
5 | 2, 4 | oveq12d 7290 | . . 3 ⊢ (𝑥 = 𝐴 → ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) = ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) |
6 | 5 | oveq1d 7287 | . 2 ⊢ (𝑥 = 𝐴 → (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) |
7 | df-cos 15791 | . 2 ⊢ cos = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2)) | |
8 | ovex 7305 | . 2 ⊢ (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) ∈ V | |
9 | 6, 7, 8 | fvmpt 6872 | 1 ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 ‘cfv 6432 (class class class)co 7272 ℂcc 10880 ici 10884 + caddc 10885 · cmul 10887 -cneg 11217 / cdiv 11643 2c2 12039 expce 15782 cosccos 15785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-iota 6390 df-fun 6434 df-fv 6440 df-ov 7275 df-cos 15791 |
This theorem is referenced by: tanval2 15853 tanval3 15854 recosval 15856 cosneg 15867 efival 15872 coshval 15875 cosadd 15885 cosper 25650 pige3ALT 25687 cosargd 25774 asinsin 26053 cosasin 26065 cosatan 26082 |
Copyright terms: Public domain | W3C validator |