MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cosval Structured version   Visualization version   GIF version

Theorem cosval 16142
Description: Value of the cosine function. (Contributed by NM, 14-Mar-2005.) (Revised by Mario Carneiro, 10-Nov-2013.)
Assertion
Ref Expression
cosval (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))

Proof of Theorem cosval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7421 . . . . 5 (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴))
21fveq2d 6890 . . . 4 (𝑥 = 𝐴 → (exp‘(i · 𝑥)) = (exp‘(i · 𝐴)))
3 oveq2 7421 . . . . 5 (𝑥 = 𝐴 → (-i · 𝑥) = (-i · 𝐴))
43fveq2d 6890 . . . 4 (𝑥 = 𝐴 → (exp‘(-i · 𝑥)) = (exp‘(-i · 𝐴)))
52, 4oveq12d 7431 . . 3 (𝑥 = 𝐴 → ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) = ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))
65oveq1d 7428 . 2 (𝑥 = 𝐴 → (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
7 df-cos 16089 . 2 cos = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2))
8 ovex 7446 . 2 (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) ∈ V
96, 7, 8fvmpt 6996 1 (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cfv 6541  (class class class)co 7413  cc 11135  ici 11139   + caddc 11140   · cmul 11142  -cneg 11475   / cdiv 11902  2c2 12303  expce 16080  cosccos 16083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-iota 6494  df-fun 6543  df-fv 6549  df-ov 7416  df-cos 16089
This theorem is referenced by:  tanval2  16152  tanval3  16153  recosval  16155  cosneg  16166  efival  16171  coshval  16174  cosadd  16184  cosper  26461  pige3ALT  26499  cosargd  26587  asinsin  26872  cosasin  26884  cosatan  26901
  Copyright terms: Public domain W3C validator