| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cosval | Structured version Visualization version GIF version | ||
| Description: Value of the cosine function. (Contributed by NM, 14-Mar-2005.) (Revised by Mario Carneiro, 10-Nov-2013.) |
| Ref | Expression |
|---|---|
| cosval | ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7418 | . . . . 5 ⊢ (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴)) | |
| 2 | 1 | fveq2d 6885 | . . . 4 ⊢ (𝑥 = 𝐴 → (exp‘(i · 𝑥)) = (exp‘(i · 𝐴))) |
| 3 | oveq2 7418 | . . . . 5 ⊢ (𝑥 = 𝐴 → (-i · 𝑥) = (-i · 𝐴)) | |
| 4 | 3 | fveq2d 6885 | . . . 4 ⊢ (𝑥 = 𝐴 → (exp‘(-i · 𝑥)) = (exp‘(-i · 𝐴))) |
| 5 | 2, 4 | oveq12d 7428 | . . 3 ⊢ (𝑥 = 𝐴 → ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) = ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) |
| 6 | 5 | oveq1d 7425 | . 2 ⊢ (𝑥 = 𝐴 → (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) |
| 7 | df-cos 16091 | . 2 ⊢ cos = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2)) | |
| 8 | ovex 7443 | . 2 ⊢ (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) ∈ V | |
| 9 | 6, 7, 8 | fvmpt 6991 | 1 ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 ici 11136 + caddc 11137 · cmul 11139 -cneg 11472 / cdiv 11899 2c2 12300 expce 16082 cosccos 16085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-cos 16091 |
| This theorem is referenced by: tanval2 16156 tanval3 16157 recosval 16159 cosneg 16170 efival 16175 coshval 16178 cosadd 16188 cosper 26448 pige3ALT 26486 cosargd 26574 asinsin 26859 cosasin 26871 cosatan 26888 |
| Copyright terms: Public domain | W3C validator |