Proof of Theorem cosatan
Step | Hyp | Ref
| Expression |
1 | | atancl 26031 |
. . 3
⊢ (𝐴 ∈ dom arctan →
(arctan‘𝐴) ∈
ℂ) |
2 | | cosval 15832 |
. . 3
⊢
((arctan‘𝐴)
∈ ℂ → (cos‘(arctan‘𝐴)) = (((exp‘(i ·
(arctan‘𝐴))) +
(exp‘(-i · (arctan‘𝐴)))) / 2)) |
3 | 1, 2 | syl 17 |
. 2
⊢ (𝐴 ∈ dom arctan →
(cos‘(arctan‘𝐴)) = (((exp‘(i ·
(arctan‘𝐴))) +
(exp‘(-i · (arctan‘𝐴)))) / 2)) |
4 | | efiatan2 26067 |
. . . . 5
⊢ (𝐴 ∈ dom arctan →
(exp‘(i · (arctan‘𝐴))) = ((1 + (i · 𝐴)) / (√‘(1 + (𝐴↑2))))) |
5 | | ax-icn 10930 |
. . . . . . . . 9
⊢ i ∈
ℂ |
6 | | mulneg12 11413 |
. . . . . . . . 9
⊢ ((i
∈ ℂ ∧ (arctan‘𝐴) ∈ ℂ) → (-i ·
(arctan‘𝐴)) = (i
· -(arctan‘𝐴))) |
7 | 5, 1, 6 | sylancr 587 |
. . . . . . . 8
⊢ (𝐴 ∈ dom arctan → (-i
· (arctan‘𝐴))
= (i · -(arctan‘𝐴))) |
8 | | atanneg 26057 |
. . . . . . . . 9
⊢ (𝐴 ∈ dom arctan →
(arctan‘-𝐴) =
-(arctan‘𝐴)) |
9 | 8 | oveq2d 7291 |
. . . . . . . 8
⊢ (𝐴 ∈ dom arctan → (i
· (arctan‘-𝐴))
= (i · -(arctan‘𝐴))) |
10 | 7, 9 | eqtr4d 2781 |
. . . . . . 7
⊢ (𝐴 ∈ dom arctan → (-i
· (arctan‘𝐴))
= (i · (arctan‘-𝐴))) |
11 | 10 | fveq2d 6778 |
. . . . . 6
⊢ (𝐴 ∈ dom arctan →
(exp‘(-i · (arctan‘𝐴))) = (exp‘(i ·
(arctan‘-𝐴)))) |
12 | | atandmneg 26056 |
. . . . . . 7
⊢ (𝐴 ∈ dom arctan → -𝐴 ∈ dom
arctan) |
13 | | efiatan2 26067 |
. . . . . . 7
⊢ (-𝐴 ∈ dom arctan →
(exp‘(i · (arctan‘-𝐴))) = ((1 + (i · -𝐴)) / (√‘(1 + (-𝐴↑2))))) |
14 | 12, 13 | syl 17 |
. . . . . 6
⊢ (𝐴 ∈ dom arctan →
(exp‘(i · (arctan‘-𝐴))) = ((1 + (i · -𝐴)) / (√‘(1 + (-𝐴↑2))))) |
15 | | atandm4 26029 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 +
(𝐴↑2)) ≠
0)) |
16 | 15 | simplbi 498 |
. . . . . . . . . 10
⊢ (𝐴 ∈ dom arctan → 𝐴 ∈
ℂ) |
17 | | mulneg2 11412 |
. . . . . . . . . 10
⊢ ((i
∈ ℂ ∧ 𝐴
∈ ℂ) → (i · -𝐴) = -(i · 𝐴)) |
18 | 5, 16, 17 | sylancr 587 |
. . . . . . . . 9
⊢ (𝐴 ∈ dom arctan → (i
· -𝐴) = -(i ·
𝐴)) |
19 | 18 | oveq2d 7291 |
. . . . . . . 8
⊢ (𝐴 ∈ dom arctan → (1 +
(i · -𝐴)) = (1 + -(i
· 𝐴))) |
20 | | ax-1cn 10929 |
. . . . . . . . 9
⊢ 1 ∈
ℂ |
21 | | mulcl 10955 |
. . . . . . . . . 10
⊢ ((i
∈ ℂ ∧ 𝐴
∈ ℂ) → (i · 𝐴) ∈ ℂ) |
22 | 5, 16, 21 | sylancr 587 |
. . . . . . . . 9
⊢ (𝐴 ∈ dom arctan → (i
· 𝐴) ∈
ℂ) |
23 | | negsub 11269 |
. . . . . . . . 9
⊢ ((1
∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + -(i ·
𝐴)) = (1 − (i
· 𝐴))) |
24 | 20, 22, 23 | sylancr 587 |
. . . . . . . 8
⊢ (𝐴 ∈ dom arctan → (1 +
-(i · 𝐴)) = (1
− (i · 𝐴))) |
25 | 19, 24 | eqtrd 2778 |
. . . . . . 7
⊢ (𝐴 ∈ dom arctan → (1 +
(i · -𝐴)) = (1
− (i · 𝐴))) |
26 | | sqneg 13836 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ → (-𝐴↑2) = (𝐴↑2)) |
27 | 16, 26 | syl 17 |
. . . . . . . . 9
⊢ (𝐴 ∈ dom arctan →
(-𝐴↑2) = (𝐴↑2)) |
28 | 27 | oveq2d 7291 |
. . . . . . . 8
⊢ (𝐴 ∈ dom arctan → (1 +
(-𝐴↑2)) = (1 + (𝐴↑2))) |
29 | 28 | fveq2d 6778 |
. . . . . . 7
⊢ (𝐴 ∈ dom arctan →
(√‘(1 + (-𝐴↑2))) = (√‘(1 + (𝐴↑2)))) |
30 | 25, 29 | oveq12d 7293 |
. . . . . 6
⊢ (𝐴 ∈ dom arctan → ((1 +
(i · -𝐴)) /
(√‘(1 + (-𝐴↑2)))) = ((1 − (i · 𝐴)) / (√‘(1 + (𝐴↑2))))) |
31 | 11, 14, 30 | 3eqtrd 2782 |
. . . . 5
⊢ (𝐴 ∈ dom arctan →
(exp‘(-i · (arctan‘𝐴))) = ((1 − (i · 𝐴)) / (√‘(1 + (𝐴↑2))))) |
32 | 4, 31 | oveq12d 7293 |
. . . 4
⊢ (𝐴 ∈ dom arctan →
((exp‘(i · (arctan‘𝐴))) + (exp‘(-i ·
(arctan‘𝐴)))) = (((1
+ (i · 𝐴)) /
(√‘(1 + (𝐴↑2)))) + ((1 − (i · 𝐴)) / (√‘(1 + (𝐴↑2)))))) |
33 | | addcl 10953 |
. . . . . 6
⊢ ((1
∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i ·
𝐴)) ∈
ℂ) |
34 | 20, 22, 33 | sylancr 587 |
. . . . 5
⊢ (𝐴 ∈ dom arctan → (1 +
(i · 𝐴)) ∈
ℂ) |
35 | | subcl 11220 |
. . . . . 6
⊢ ((1
∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i
· 𝐴)) ∈
ℂ) |
36 | 20, 22, 35 | sylancr 587 |
. . . . 5
⊢ (𝐴 ∈ dom arctan → (1
− (i · 𝐴))
∈ ℂ) |
37 | 16 | sqcld 13862 |
. . . . . . 7
⊢ (𝐴 ∈ dom arctan → (𝐴↑2) ∈
ℂ) |
38 | | addcl 10953 |
. . . . . . 7
⊢ ((1
∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 + (𝐴↑2)) ∈
ℂ) |
39 | 20, 37, 38 | sylancr 587 |
. . . . . 6
⊢ (𝐴 ∈ dom arctan → (1 +
(𝐴↑2)) ∈
ℂ) |
40 | 39 | sqrtcld 15149 |
. . . . 5
⊢ (𝐴 ∈ dom arctan →
(√‘(1 + (𝐴↑2))) ∈ ℂ) |
41 | 39 | sqsqrtd 15151 |
. . . . . . 7
⊢ (𝐴 ∈ dom arctan →
((√‘(1 + (𝐴↑2)))↑2) = (1 + (𝐴↑2))) |
42 | 15 | simprbi 497 |
. . . . . . 7
⊢ (𝐴 ∈ dom arctan → (1 +
(𝐴↑2)) ≠
0) |
43 | 41, 42 | eqnetrd 3011 |
. . . . . 6
⊢ (𝐴 ∈ dom arctan →
((√‘(1 + (𝐴↑2)))↑2) ≠ 0) |
44 | | sqne0 13843 |
. . . . . . 7
⊢
((√‘(1 + (𝐴↑2))) ∈ ℂ →
(((√‘(1 + (𝐴↑2)))↑2) ≠ 0 ↔
(√‘(1 + (𝐴↑2))) ≠ 0)) |
45 | 40, 44 | syl 17 |
. . . . . 6
⊢ (𝐴 ∈ dom arctan →
(((√‘(1 + (𝐴↑2)))↑2) ≠ 0 ↔
(√‘(1 + (𝐴↑2))) ≠ 0)) |
46 | 43, 45 | mpbid 231 |
. . . . 5
⊢ (𝐴 ∈ dom arctan →
(√‘(1 + (𝐴↑2))) ≠ 0) |
47 | 34, 36, 40, 46 | divdird 11789 |
. . . 4
⊢ (𝐴 ∈ dom arctan → (((1 +
(i · 𝐴)) + (1
− (i · 𝐴))) /
(√‘(1 + (𝐴↑2)))) = (((1 + (i · 𝐴)) / (√‘(1 + (𝐴↑2)))) + ((1 − (i
· 𝐴)) /
(√‘(1 + (𝐴↑2)))))) |
48 | 20 | a1i 11 |
. . . . . . 7
⊢ (𝐴 ∈ dom arctan → 1
∈ ℂ) |
49 | 48, 22, 48 | ppncand 11372 |
. . . . . 6
⊢ (𝐴 ∈ dom arctan → ((1 +
(i · 𝐴)) + (1
− (i · 𝐴))) =
(1 + 1)) |
50 | | df-2 12036 |
. . . . . 6
⊢ 2 = (1 +
1) |
51 | 49, 50 | eqtr4di 2796 |
. . . . 5
⊢ (𝐴 ∈ dom arctan → ((1 +
(i · 𝐴)) + (1
− (i · 𝐴))) =
2) |
52 | 51 | oveq1d 7290 |
. . . 4
⊢ (𝐴 ∈ dom arctan → (((1 +
(i · 𝐴)) + (1
− (i · 𝐴))) /
(√‘(1 + (𝐴↑2)))) = (2 / (√‘(1 +
(𝐴↑2))))) |
53 | 32, 47, 52 | 3eqtr2d 2784 |
. . 3
⊢ (𝐴 ∈ dom arctan →
((exp‘(i · (arctan‘𝐴))) + (exp‘(-i ·
(arctan‘𝐴)))) = (2 /
(√‘(1 + (𝐴↑2))))) |
54 | 53 | oveq1d 7290 |
. 2
⊢ (𝐴 ∈ dom arctan →
(((exp‘(i · (arctan‘𝐴))) + (exp‘(-i ·
(arctan‘𝐴)))) / 2) =
((2 / (√‘(1 + (𝐴↑2)))) / 2)) |
55 | | 2cnd 12051 |
. . . 4
⊢ (𝐴 ∈ dom arctan → 2
∈ ℂ) |
56 | | 2ne0 12077 |
. . . . 5
⊢ 2 ≠
0 |
57 | 56 | a1i 11 |
. . . 4
⊢ (𝐴 ∈ dom arctan → 2 ≠
0) |
58 | 55, 40, 55, 46, 57 | divdiv32d 11776 |
. . 3
⊢ (𝐴 ∈ dom arctan → ((2 /
(√‘(1 + (𝐴↑2)))) / 2) = ((2 / 2) /
(√‘(1 + (𝐴↑2))))) |
59 | | 2div2e1 12114 |
. . . 4
⊢ (2 / 2) =
1 |
60 | 59 | oveq1i 7285 |
. . 3
⊢ ((2 / 2)
/ (√‘(1 + (𝐴↑2)))) = (1 / (√‘(1 +
(𝐴↑2)))) |
61 | 58, 60 | eqtrdi 2794 |
. 2
⊢ (𝐴 ∈ dom arctan → ((2 /
(√‘(1 + (𝐴↑2)))) / 2) = (1 / (√‘(1 +
(𝐴↑2))))) |
62 | 3, 54, 61 | 3eqtrd 2782 |
1
⊢ (𝐴 ∈ dom arctan →
(cos‘(arctan‘𝐴)) = (1 / (√‘(1 + (𝐴↑2))))) |