MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cosatan Structured version   Visualization version   GIF version

Theorem cosatan 26840
Description: The cosine of an arctangent. (Contributed by Mario Carneiro, 3-Apr-2015.)
Assertion
Ref Expression
cosatan (𝐴 ∈ dom arctan → (cos‘(arctan‘𝐴)) = (1 / (√‘(1 + (𝐴↑2)))))

Proof of Theorem cosatan
StepHypRef Expression
1 atancl 26800 . . 3 (𝐴 ∈ dom arctan → (arctan‘𝐴) ∈ ℂ)
2 cosval 16091 . . 3 ((arctan‘𝐴) ∈ ℂ → (cos‘(arctan‘𝐴)) = (((exp‘(i · (arctan‘𝐴))) + (exp‘(-i · (arctan‘𝐴)))) / 2))
31, 2syl 17 . 2 (𝐴 ∈ dom arctan → (cos‘(arctan‘𝐴)) = (((exp‘(i · (arctan‘𝐴))) + (exp‘(-i · (arctan‘𝐴)))) / 2))
4 efiatan2 26836 . . . . 5 (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘𝐴))) = ((1 + (i · 𝐴)) / (√‘(1 + (𝐴↑2)))))
5 ax-icn 11189 . . . . . . . . 9 i ∈ ℂ
6 mulneg12 11674 . . . . . . . . 9 ((i ∈ ℂ ∧ (arctan‘𝐴) ∈ ℂ) → (-i · (arctan‘𝐴)) = (i · -(arctan‘𝐴)))
75, 1, 6sylancr 586 . . . . . . . 8 (𝐴 ∈ dom arctan → (-i · (arctan‘𝐴)) = (i · -(arctan‘𝐴)))
8 atanneg 26826 . . . . . . . . 9 (𝐴 ∈ dom arctan → (arctan‘-𝐴) = -(arctan‘𝐴))
98oveq2d 7430 . . . . . . . 8 (𝐴 ∈ dom arctan → (i · (arctan‘-𝐴)) = (i · -(arctan‘𝐴)))
107, 9eqtr4d 2770 . . . . . . 7 (𝐴 ∈ dom arctan → (-i · (arctan‘𝐴)) = (i · (arctan‘-𝐴)))
1110fveq2d 6895 . . . . . 6 (𝐴 ∈ dom arctan → (exp‘(-i · (arctan‘𝐴))) = (exp‘(i · (arctan‘-𝐴))))
12 atandmneg 26825 . . . . . . 7 (𝐴 ∈ dom arctan → -𝐴 ∈ dom arctan)
13 efiatan2 26836 . . . . . . 7 (-𝐴 ∈ dom arctan → (exp‘(i · (arctan‘-𝐴))) = ((1 + (i · -𝐴)) / (√‘(1 + (-𝐴↑2)))))
1412, 13syl 17 . . . . . 6 (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘-𝐴))) = ((1 + (i · -𝐴)) / (√‘(1 + (-𝐴↑2)))))
15 atandm4 26798 . . . . . . . . . . 11 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ≠ 0))
1615simplbi 497 . . . . . . . . . 10 (𝐴 ∈ dom arctan → 𝐴 ∈ ℂ)
17 mulneg2 11673 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴))
185, 16, 17sylancr 586 . . . . . . . . 9 (𝐴 ∈ dom arctan → (i · -𝐴) = -(i · 𝐴))
1918oveq2d 7430 . . . . . . . 8 (𝐴 ∈ dom arctan → (1 + (i · -𝐴)) = (1 + -(i · 𝐴)))
20 ax-1cn 11188 . . . . . . . . 9 1 ∈ ℂ
21 mulcl 11214 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
225, 16, 21sylancr 586 . . . . . . . . 9 (𝐴 ∈ dom arctan → (i · 𝐴) ∈ ℂ)
23 negsub 11530 . . . . . . . . 9 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + -(i · 𝐴)) = (1 − (i · 𝐴)))
2420, 22, 23sylancr 586 . . . . . . . 8 (𝐴 ∈ dom arctan → (1 + -(i · 𝐴)) = (1 − (i · 𝐴)))
2519, 24eqtrd 2767 . . . . . . 7 (𝐴 ∈ dom arctan → (1 + (i · -𝐴)) = (1 − (i · 𝐴)))
26 sqneg 14104 . . . . . . . . . 10 (𝐴 ∈ ℂ → (-𝐴↑2) = (𝐴↑2))
2716, 26syl 17 . . . . . . . . 9 (𝐴 ∈ dom arctan → (-𝐴↑2) = (𝐴↑2))
2827oveq2d 7430 . . . . . . . 8 (𝐴 ∈ dom arctan → (1 + (-𝐴↑2)) = (1 + (𝐴↑2)))
2928fveq2d 6895 . . . . . . 7 (𝐴 ∈ dom arctan → (√‘(1 + (-𝐴↑2))) = (√‘(1 + (𝐴↑2))))
3025, 29oveq12d 7432 . . . . . 6 (𝐴 ∈ dom arctan → ((1 + (i · -𝐴)) / (√‘(1 + (-𝐴↑2)))) = ((1 − (i · 𝐴)) / (√‘(1 + (𝐴↑2)))))
3111, 14, 303eqtrd 2771 . . . . 5 (𝐴 ∈ dom arctan → (exp‘(-i · (arctan‘𝐴))) = ((1 − (i · 𝐴)) / (√‘(1 + (𝐴↑2)))))
324, 31oveq12d 7432 . . . 4 (𝐴 ∈ dom arctan → ((exp‘(i · (arctan‘𝐴))) + (exp‘(-i · (arctan‘𝐴)))) = (((1 + (i · 𝐴)) / (√‘(1 + (𝐴↑2)))) + ((1 − (i · 𝐴)) / (√‘(1 + (𝐴↑2))))))
33 addcl 11212 . . . . . 6 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
3420, 22, 33sylancr 586 . . . . 5 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ∈ ℂ)
35 subcl 11481 . . . . . 6 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
3620, 22, 35sylancr 586 . . . . 5 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ∈ ℂ)
3716sqcld 14132 . . . . . . 7 (𝐴 ∈ dom arctan → (𝐴↑2) ∈ ℂ)
38 addcl 11212 . . . . . . 7 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 + (𝐴↑2)) ∈ ℂ)
3920, 37, 38sylancr 586 . . . . . 6 (𝐴 ∈ dom arctan → (1 + (𝐴↑2)) ∈ ℂ)
4039sqrtcld 15408 . . . . 5 (𝐴 ∈ dom arctan → (√‘(1 + (𝐴↑2))) ∈ ℂ)
4139sqsqrtd 15410 . . . . . . 7 (𝐴 ∈ dom arctan → ((√‘(1 + (𝐴↑2)))↑2) = (1 + (𝐴↑2)))
4215simprbi 496 . . . . . . 7 (𝐴 ∈ dom arctan → (1 + (𝐴↑2)) ≠ 0)
4341, 42eqnetrd 3003 . . . . . 6 (𝐴 ∈ dom arctan → ((√‘(1 + (𝐴↑2)))↑2) ≠ 0)
44 sqne0 14111 . . . . . . 7 ((√‘(1 + (𝐴↑2))) ∈ ℂ → (((√‘(1 + (𝐴↑2)))↑2) ≠ 0 ↔ (√‘(1 + (𝐴↑2))) ≠ 0))
4540, 44syl 17 . . . . . 6 (𝐴 ∈ dom arctan → (((√‘(1 + (𝐴↑2)))↑2) ≠ 0 ↔ (√‘(1 + (𝐴↑2))) ≠ 0))
4643, 45mpbid 231 . . . . 5 (𝐴 ∈ dom arctan → (√‘(1 + (𝐴↑2))) ≠ 0)
4734, 36, 40, 46divdird 12050 . . . 4 (𝐴 ∈ dom arctan → (((1 + (i · 𝐴)) + (1 − (i · 𝐴))) / (√‘(1 + (𝐴↑2)))) = (((1 + (i · 𝐴)) / (√‘(1 + (𝐴↑2)))) + ((1 − (i · 𝐴)) / (√‘(1 + (𝐴↑2))))))
4820a1i 11 . . . . . . 7 (𝐴 ∈ dom arctan → 1 ∈ ℂ)
4948, 22, 48ppncand 11633 . . . . . 6 (𝐴 ∈ dom arctan → ((1 + (i · 𝐴)) + (1 − (i · 𝐴))) = (1 + 1))
50 df-2 12297 . . . . . 6 2 = (1 + 1)
5149, 50eqtr4di 2785 . . . . 5 (𝐴 ∈ dom arctan → ((1 + (i · 𝐴)) + (1 − (i · 𝐴))) = 2)
5251oveq1d 7429 . . . 4 (𝐴 ∈ dom arctan → (((1 + (i · 𝐴)) + (1 − (i · 𝐴))) / (√‘(1 + (𝐴↑2)))) = (2 / (√‘(1 + (𝐴↑2)))))
5332, 47, 523eqtr2d 2773 . . 3 (𝐴 ∈ dom arctan → ((exp‘(i · (arctan‘𝐴))) + (exp‘(-i · (arctan‘𝐴)))) = (2 / (√‘(1 + (𝐴↑2)))))
5453oveq1d 7429 . 2 (𝐴 ∈ dom arctan → (((exp‘(i · (arctan‘𝐴))) + (exp‘(-i · (arctan‘𝐴)))) / 2) = ((2 / (√‘(1 + (𝐴↑2)))) / 2))
55 2cnd 12312 . . . 4 (𝐴 ∈ dom arctan → 2 ∈ ℂ)
56 2ne0 12338 . . . . 5 2 ≠ 0
5756a1i 11 . . . 4 (𝐴 ∈ dom arctan → 2 ≠ 0)
5855, 40, 55, 46, 57divdiv32d 12037 . . 3 (𝐴 ∈ dom arctan → ((2 / (√‘(1 + (𝐴↑2)))) / 2) = ((2 / 2) / (√‘(1 + (𝐴↑2)))))
59 2div2e1 12375 . . . 4 (2 / 2) = 1
6059oveq1i 7424 . . 3 ((2 / 2) / (√‘(1 + (𝐴↑2)))) = (1 / (√‘(1 + (𝐴↑2))))
6158, 60eqtrdi 2783 . 2 (𝐴 ∈ dom arctan → ((2 / (√‘(1 + (𝐴↑2)))) / 2) = (1 / (√‘(1 + (𝐴↑2)))))
623, 54, 613eqtrd 2771 1 (𝐴 ∈ dom arctan → (cos‘(arctan‘𝐴)) = (1 / (√‘(1 + (𝐴↑2)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1534  wcel 2099  wne 2935  dom cdm 5672  cfv 6542  (class class class)co 7414  cc 11128  0cc0 11130  1c1 11131  ici 11132   + caddc 11133   · cmul 11135  cmin 11466  -cneg 11467   / cdiv 11893  2c2 12289  cexp 14050  csqrt 15204  expce 16029  cosccos 16032  arctancatan 26783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9656  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208  ax-addf 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8718  df-map 8838  df-pm 8839  df-ixp 8908  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-fsupp 9378  df-fi 9426  df-sup 9457  df-inf 9458  df-oi 9525  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-5 12300  df-6 12301  df-7 12302  df-8 12303  df-9 12304  df-n0 12495  df-z 12581  df-dec 12700  df-uz 12845  df-q 12955  df-rp 12999  df-xneg 13116  df-xadd 13117  df-xmul 13118  df-ioo 13352  df-ioc 13353  df-ico 13354  df-icc 13355  df-fz 13509  df-fzo 13652  df-fl 13781  df-mod 13859  df-seq 13991  df-exp 14051  df-fac 14257  df-bc 14286  df-hash 14314  df-shft 15038  df-cj 15070  df-re 15071  df-im 15072  df-sqrt 15206  df-abs 15207  df-limsup 15439  df-clim 15456  df-rlim 15457  df-sum 15657  df-ef 16035  df-sin 16037  df-cos 16038  df-pi 16040  df-struct 17107  df-sets 17124  df-slot 17142  df-ndx 17154  df-base 17172  df-ress 17201  df-plusg 17237  df-mulr 17238  df-starv 17239  df-sca 17240  df-vsca 17241  df-ip 17242  df-tset 17243  df-ple 17244  df-ds 17246  df-unif 17247  df-hom 17248  df-cco 17249  df-rest 17395  df-topn 17396  df-0g 17414  df-gsum 17415  df-topgen 17416  df-pt 17417  df-prds 17420  df-xrs 17475  df-qtop 17480  df-imas 17481  df-xps 17483  df-mre 17557  df-mrc 17558  df-acs 17560  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-submnd 18732  df-mulg 19015  df-cntz 19259  df-cmn 19728  df-psmet 21258  df-xmet 21259  df-met 21260  df-bl 21261  df-mopn 21262  df-fbas 21263  df-fg 21264  df-cnfld 21267  df-top 22783  df-topon 22800  df-topsp 22822  df-bases 22836  df-cld 22910  df-ntr 22911  df-cls 22912  df-nei 22989  df-lp 23027  df-perf 23028  df-cn 23118  df-cnp 23119  df-haus 23206  df-tx 23453  df-hmeo 23646  df-fil 23737  df-fm 23829  df-flim 23830  df-flf 23831  df-xms 24213  df-ms 24214  df-tms 24215  df-cncf 24785  df-limc 25782  df-dv 25783  df-log 26477  df-cxp 26478  df-atan 26786
This theorem is referenced by:  cosatanne0  26841
  Copyright terms: Public domain W3C validator