MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cosatan Structured version   Visualization version   GIF version

Theorem cosatan 26859
Description: The cosine of an arctangent. (Contributed by Mario Carneiro, 3-Apr-2015.)
Assertion
Ref Expression
cosatan (𝐴 ∈ dom arctan → (cos‘(arctan‘𝐴)) = (1 / (√‘(1 + (𝐴↑2)))))

Proof of Theorem cosatan
StepHypRef Expression
1 atancl 26819 . . 3 (𝐴 ∈ dom arctan → (arctan‘𝐴) ∈ ℂ)
2 cosval 16034 . . 3 ((arctan‘𝐴) ∈ ℂ → (cos‘(arctan‘𝐴)) = (((exp‘(i · (arctan‘𝐴))) + (exp‘(-i · (arctan‘𝐴)))) / 2))
31, 2syl 17 . 2 (𝐴 ∈ dom arctan → (cos‘(arctan‘𝐴)) = (((exp‘(i · (arctan‘𝐴))) + (exp‘(-i · (arctan‘𝐴)))) / 2))
4 efiatan2 26855 . . . . 5 (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘𝐴))) = ((1 + (i · 𝐴)) / (√‘(1 + (𝐴↑2)))))
5 ax-icn 11072 . . . . . . . . 9 i ∈ ℂ
6 mulneg12 11562 . . . . . . . . 9 ((i ∈ ℂ ∧ (arctan‘𝐴) ∈ ℂ) → (-i · (arctan‘𝐴)) = (i · -(arctan‘𝐴)))
75, 1, 6sylancr 587 . . . . . . . 8 (𝐴 ∈ dom arctan → (-i · (arctan‘𝐴)) = (i · -(arctan‘𝐴)))
8 atanneg 26845 . . . . . . . . 9 (𝐴 ∈ dom arctan → (arctan‘-𝐴) = -(arctan‘𝐴))
98oveq2d 7368 . . . . . . . 8 (𝐴 ∈ dom arctan → (i · (arctan‘-𝐴)) = (i · -(arctan‘𝐴)))
107, 9eqtr4d 2771 . . . . . . 7 (𝐴 ∈ dom arctan → (-i · (arctan‘𝐴)) = (i · (arctan‘-𝐴)))
1110fveq2d 6832 . . . . . 6 (𝐴 ∈ dom arctan → (exp‘(-i · (arctan‘𝐴))) = (exp‘(i · (arctan‘-𝐴))))
12 atandmneg 26844 . . . . . . 7 (𝐴 ∈ dom arctan → -𝐴 ∈ dom arctan)
13 efiatan2 26855 . . . . . . 7 (-𝐴 ∈ dom arctan → (exp‘(i · (arctan‘-𝐴))) = ((1 + (i · -𝐴)) / (√‘(1 + (-𝐴↑2)))))
1412, 13syl 17 . . . . . 6 (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘-𝐴))) = ((1 + (i · -𝐴)) / (√‘(1 + (-𝐴↑2)))))
15 atandm4 26817 . . . . . . . . . . 11 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ≠ 0))
1615simplbi 497 . . . . . . . . . 10 (𝐴 ∈ dom arctan → 𝐴 ∈ ℂ)
17 mulneg2 11561 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴))
185, 16, 17sylancr 587 . . . . . . . . 9 (𝐴 ∈ dom arctan → (i · -𝐴) = -(i · 𝐴))
1918oveq2d 7368 . . . . . . . 8 (𝐴 ∈ dom arctan → (1 + (i · -𝐴)) = (1 + -(i · 𝐴)))
20 ax-1cn 11071 . . . . . . . . 9 1 ∈ ℂ
21 mulcl 11097 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
225, 16, 21sylancr 587 . . . . . . . . 9 (𝐴 ∈ dom arctan → (i · 𝐴) ∈ ℂ)
23 negsub 11416 . . . . . . . . 9 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + -(i · 𝐴)) = (1 − (i · 𝐴)))
2420, 22, 23sylancr 587 . . . . . . . 8 (𝐴 ∈ dom arctan → (1 + -(i · 𝐴)) = (1 − (i · 𝐴)))
2519, 24eqtrd 2768 . . . . . . 7 (𝐴 ∈ dom arctan → (1 + (i · -𝐴)) = (1 − (i · 𝐴)))
26 sqneg 14024 . . . . . . . . . 10 (𝐴 ∈ ℂ → (-𝐴↑2) = (𝐴↑2))
2716, 26syl 17 . . . . . . . . 9 (𝐴 ∈ dom arctan → (-𝐴↑2) = (𝐴↑2))
2827oveq2d 7368 . . . . . . . 8 (𝐴 ∈ dom arctan → (1 + (-𝐴↑2)) = (1 + (𝐴↑2)))
2928fveq2d 6832 . . . . . . 7 (𝐴 ∈ dom arctan → (√‘(1 + (-𝐴↑2))) = (√‘(1 + (𝐴↑2))))
3025, 29oveq12d 7370 . . . . . 6 (𝐴 ∈ dom arctan → ((1 + (i · -𝐴)) / (√‘(1 + (-𝐴↑2)))) = ((1 − (i · 𝐴)) / (√‘(1 + (𝐴↑2)))))
3111, 14, 303eqtrd 2772 . . . . 5 (𝐴 ∈ dom arctan → (exp‘(-i · (arctan‘𝐴))) = ((1 − (i · 𝐴)) / (√‘(1 + (𝐴↑2)))))
324, 31oveq12d 7370 . . . 4 (𝐴 ∈ dom arctan → ((exp‘(i · (arctan‘𝐴))) + (exp‘(-i · (arctan‘𝐴)))) = (((1 + (i · 𝐴)) / (√‘(1 + (𝐴↑2)))) + ((1 − (i · 𝐴)) / (√‘(1 + (𝐴↑2))))))
33 addcl 11095 . . . . . 6 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
3420, 22, 33sylancr 587 . . . . 5 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ∈ ℂ)
35 subcl 11366 . . . . . 6 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
3620, 22, 35sylancr 587 . . . . 5 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ∈ ℂ)
3716sqcld 14053 . . . . . . 7 (𝐴 ∈ dom arctan → (𝐴↑2) ∈ ℂ)
38 addcl 11095 . . . . . . 7 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 + (𝐴↑2)) ∈ ℂ)
3920, 37, 38sylancr 587 . . . . . 6 (𝐴 ∈ dom arctan → (1 + (𝐴↑2)) ∈ ℂ)
4039sqrtcld 15349 . . . . 5 (𝐴 ∈ dom arctan → (√‘(1 + (𝐴↑2))) ∈ ℂ)
4139sqsqrtd 15351 . . . . . . 7 (𝐴 ∈ dom arctan → ((√‘(1 + (𝐴↑2)))↑2) = (1 + (𝐴↑2)))
4215simprbi 496 . . . . . . 7 (𝐴 ∈ dom arctan → (1 + (𝐴↑2)) ≠ 0)
4341, 42eqnetrd 2996 . . . . . 6 (𝐴 ∈ dom arctan → ((√‘(1 + (𝐴↑2)))↑2) ≠ 0)
44 sqne0 14032 . . . . . . 7 ((√‘(1 + (𝐴↑2))) ∈ ℂ → (((√‘(1 + (𝐴↑2)))↑2) ≠ 0 ↔ (√‘(1 + (𝐴↑2))) ≠ 0))
4540, 44syl 17 . . . . . 6 (𝐴 ∈ dom arctan → (((√‘(1 + (𝐴↑2)))↑2) ≠ 0 ↔ (√‘(1 + (𝐴↑2))) ≠ 0))
4643, 45mpbid 232 . . . . 5 (𝐴 ∈ dom arctan → (√‘(1 + (𝐴↑2))) ≠ 0)
4734, 36, 40, 46divdird 11942 . . . 4 (𝐴 ∈ dom arctan → (((1 + (i · 𝐴)) + (1 − (i · 𝐴))) / (√‘(1 + (𝐴↑2)))) = (((1 + (i · 𝐴)) / (√‘(1 + (𝐴↑2)))) + ((1 − (i · 𝐴)) / (√‘(1 + (𝐴↑2))))))
4820a1i 11 . . . . . . 7 (𝐴 ∈ dom arctan → 1 ∈ ℂ)
4948, 22, 48ppncand 11519 . . . . . 6 (𝐴 ∈ dom arctan → ((1 + (i · 𝐴)) + (1 − (i · 𝐴))) = (1 + 1))
50 df-2 12195 . . . . . 6 2 = (1 + 1)
5149, 50eqtr4di 2786 . . . . 5 (𝐴 ∈ dom arctan → ((1 + (i · 𝐴)) + (1 − (i · 𝐴))) = 2)
5251oveq1d 7367 . . . 4 (𝐴 ∈ dom arctan → (((1 + (i · 𝐴)) + (1 − (i · 𝐴))) / (√‘(1 + (𝐴↑2)))) = (2 / (√‘(1 + (𝐴↑2)))))
5332, 47, 523eqtr2d 2774 . . 3 (𝐴 ∈ dom arctan → ((exp‘(i · (arctan‘𝐴))) + (exp‘(-i · (arctan‘𝐴)))) = (2 / (√‘(1 + (𝐴↑2)))))
5453oveq1d 7367 . 2 (𝐴 ∈ dom arctan → (((exp‘(i · (arctan‘𝐴))) + (exp‘(-i · (arctan‘𝐴)))) / 2) = ((2 / (√‘(1 + (𝐴↑2)))) / 2))
55 2cnd 12210 . . . 4 (𝐴 ∈ dom arctan → 2 ∈ ℂ)
56 2ne0 12236 . . . . 5 2 ≠ 0
5756a1i 11 . . . 4 (𝐴 ∈ dom arctan → 2 ≠ 0)
5855, 40, 55, 46, 57divdiv32d 11929 . . 3 (𝐴 ∈ dom arctan → ((2 / (√‘(1 + (𝐴↑2)))) / 2) = ((2 / 2) / (√‘(1 + (𝐴↑2)))))
59 2div2e1 12268 . . . 4 (2 / 2) = 1
6059oveq1i 7362 . . 3 ((2 / 2) / (√‘(1 + (𝐴↑2)))) = (1 / (√‘(1 + (𝐴↑2))))
6158, 60eqtrdi 2784 . 2 (𝐴 ∈ dom arctan → ((2 / (√‘(1 + (𝐴↑2)))) / 2) = (1 / (√‘(1 + (𝐴↑2)))))
623, 54, 613eqtrd 2772 1 (𝐴 ∈ dom arctan → (cos‘(arctan‘𝐴)) = (1 / (√‘(1 + (𝐴↑2)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  wne 2929  dom cdm 5619  cfv 6486  (class class class)co 7352  cc 11011  0cc0 11013  1c1 11014  ici 11015   + caddc 11016   · cmul 11018  cmin 11351  -cneg 11352   / cdiv 11781  2c2 12187  cexp 13970  csqrt 15142  expce 15970  cosccos 15973  arctancatan 26802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-fi 9302  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ioo 13251  df-ioc 13252  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-fac 14183  df-bc 14212  df-hash 14240  df-shft 14976  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-limsup 15380  df-clim 15397  df-rlim 15398  df-sum 15596  df-ef 15976  df-sin 15978  df-cos 15979  df-pi 15981  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-rest 17328  df-topn 17329  df-0g 17347  df-gsum 17348  df-topgen 17349  df-pt 17350  df-prds 17353  df-xrs 17408  df-qtop 17413  df-imas 17414  df-xps 17416  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19231  df-cmn 19696  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-fbas 21290  df-fg 21291  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-haus 23231  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799  df-limc 25795  df-dv 25796  df-log 26493  df-cxp 26494  df-atan 26805
This theorem is referenced by:  cosatanne0  26860
  Copyright terms: Public domain W3C validator