MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cosatan Structured version   Visualization version   GIF version

Theorem cosatan 25099
Description: The cosine of an arctangent. (Contributed by Mario Carneiro, 3-Apr-2015.)
Assertion
Ref Expression
cosatan (𝐴 ∈ dom arctan → (cos‘(arctan‘𝐴)) = (1 / (√‘(1 + (𝐴↑2)))))

Proof of Theorem cosatan
StepHypRef Expression
1 atancl 25059 . . 3 (𝐴 ∈ dom arctan → (arctan‘𝐴) ∈ ℂ)
2 cosval 15255 . . 3 ((arctan‘𝐴) ∈ ℂ → (cos‘(arctan‘𝐴)) = (((exp‘(i · (arctan‘𝐴))) + (exp‘(-i · (arctan‘𝐴)))) / 2))
31, 2syl 17 . 2 (𝐴 ∈ dom arctan → (cos‘(arctan‘𝐴)) = (((exp‘(i · (arctan‘𝐴))) + (exp‘(-i · (arctan‘𝐴)))) / 2))
4 efiatan2 25095 . . . . 5 (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘𝐴))) = ((1 + (i · 𝐴)) / (√‘(1 + (𝐴↑2)))))
5 ax-icn 10331 . . . . . . . . 9 i ∈ ℂ
6 mulneg12 10813 . . . . . . . . 9 ((i ∈ ℂ ∧ (arctan‘𝐴) ∈ ℂ) → (-i · (arctan‘𝐴)) = (i · -(arctan‘𝐴)))
75, 1, 6sylancr 581 . . . . . . . 8 (𝐴 ∈ dom arctan → (-i · (arctan‘𝐴)) = (i · -(arctan‘𝐴)))
8 atanneg 25085 . . . . . . . . 9 (𝐴 ∈ dom arctan → (arctan‘-𝐴) = -(arctan‘𝐴))
98oveq2d 6938 . . . . . . . 8 (𝐴 ∈ dom arctan → (i · (arctan‘-𝐴)) = (i · -(arctan‘𝐴)))
107, 9eqtr4d 2817 . . . . . . 7 (𝐴 ∈ dom arctan → (-i · (arctan‘𝐴)) = (i · (arctan‘-𝐴)))
1110fveq2d 6450 . . . . . 6 (𝐴 ∈ dom arctan → (exp‘(-i · (arctan‘𝐴))) = (exp‘(i · (arctan‘-𝐴))))
12 atandmneg 25084 . . . . . . 7 (𝐴 ∈ dom arctan → -𝐴 ∈ dom arctan)
13 efiatan2 25095 . . . . . . 7 (-𝐴 ∈ dom arctan → (exp‘(i · (arctan‘-𝐴))) = ((1 + (i · -𝐴)) / (√‘(1 + (-𝐴↑2)))))
1412, 13syl 17 . . . . . 6 (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘-𝐴))) = ((1 + (i · -𝐴)) / (√‘(1 + (-𝐴↑2)))))
15 atandm4 25057 . . . . . . . . . . 11 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ≠ 0))
1615simplbi 493 . . . . . . . . . 10 (𝐴 ∈ dom arctan → 𝐴 ∈ ℂ)
17 mulneg2 10812 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴))
185, 16, 17sylancr 581 . . . . . . . . 9 (𝐴 ∈ dom arctan → (i · -𝐴) = -(i · 𝐴))
1918oveq2d 6938 . . . . . . . 8 (𝐴 ∈ dom arctan → (1 + (i · -𝐴)) = (1 + -(i · 𝐴)))
20 ax-1cn 10330 . . . . . . . . 9 1 ∈ ℂ
21 mulcl 10356 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
225, 16, 21sylancr 581 . . . . . . . . 9 (𝐴 ∈ dom arctan → (i · 𝐴) ∈ ℂ)
23 negsub 10671 . . . . . . . . 9 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + -(i · 𝐴)) = (1 − (i · 𝐴)))
2420, 22, 23sylancr 581 . . . . . . . 8 (𝐴 ∈ dom arctan → (1 + -(i · 𝐴)) = (1 − (i · 𝐴)))
2519, 24eqtrd 2814 . . . . . . 7 (𝐴 ∈ dom arctan → (1 + (i · -𝐴)) = (1 − (i · 𝐴)))
26 sqneg 13241 . . . . . . . . . 10 (𝐴 ∈ ℂ → (-𝐴↑2) = (𝐴↑2))
2716, 26syl 17 . . . . . . . . 9 (𝐴 ∈ dom arctan → (-𝐴↑2) = (𝐴↑2))
2827oveq2d 6938 . . . . . . . 8 (𝐴 ∈ dom arctan → (1 + (-𝐴↑2)) = (1 + (𝐴↑2)))
2928fveq2d 6450 . . . . . . 7 (𝐴 ∈ dom arctan → (√‘(1 + (-𝐴↑2))) = (√‘(1 + (𝐴↑2))))
3025, 29oveq12d 6940 . . . . . 6 (𝐴 ∈ dom arctan → ((1 + (i · -𝐴)) / (√‘(1 + (-𝐴↑2)))) = ((1 − (i · 𝐴)) / (√‘(1 + (𝐴↑2)))))
3111, 14, 303eqtrd 2818 . . . . 5 (𝐴 ∈ dom arctan → (exp‘(-i · (arctan‘𝐴))) = ((1 − (i · 𝐴)) / (√‘(1 + (𝐴↑2)))))
324, 31oveq12d 6940 . . . 4 (𝐴 ∈ dom arctan → ((exp‘(i · (arctan‘𝐴))) + (exp‘(-i · (arctan‘𝐴)))) = (((1 + (i · 𝐴)) / (√‘(1 + (𝐴↑2)))) + ((1 − (i · 𝐴)) / (√‘(1 + (𝐴↑2))))))
33 addcl 10354 . . . . . 6 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
3420, 22, 33sylancr 581 . . . . 5 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ∈ ℂ)
35 subcl 10621 . . . . . 6 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
3620, 22, 35sylancr 581 . . . . 5 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ∈ ℂ)
3716sqcld 13325 . . . . . . 7 (𝐴 ∈ dom arctan → (𝐴↑2) ∈ ℂ)
38 addcl 10354 . . . . . . 7 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 + (𝐴↑2)) ∈ ℂ)
3920, 37, 38sylancr 581 . . . . . 6 (𝐴 ∈ dom arctan → (1 + (𝐴↑2)) ∈ ℂ)
4039sqrtcld 14584 . . . . 5 (𝐴 ∈ dom arctan → (√‘(1 + (𝐴↑2))) ∈ ℂ)
4139sqsqrtd 14586 . . . . . . 7 (𝐴 ∈ dom arctan → ((√‘(1 + (𝐴↑2)))↑2) = (1 + (𝐴↑2)))
4215simprbi 492 . . . . . . 7 (𝐴 ∈ dom arctan → (1 + (𝐴↑2)) ≠ 0)
4341, 42eqnetrd 3036 . . . . . 6 (𝐴 ∈ dom arctan → ((√‘(1 + (𝐴↑2)))↑2) ≠ 0)
44 sqne0 13248 . . . . . . 7 ((√‘(1 + (𝐴↑2))) ∈ ℂ → (((√‘(1 + (𝐴↑2)))↑2) ≠ 0 ↔ (√‘(1 + (𝐴↑2))) ≠ 0))
4540, 44syl 17 . . . . . 6 (𝐴 ∈ dom arctan → (((√‘(1 + (𝐴↑2)))↑2) ≠ 0 ↔ (√‘(1 + (𝐴↑2))) ≠ 0))
4643, 45mpbid 224 . . . . 5 (𝐴 ∈ dom arctan → (√‘(1 + (𝐴↑2))) ≠ 0)
4734, 36, 40, 46divdird 11189 . . . 4 (𝐴 ∈ dom arctan → (((1 + (i · 𝐴)) + (1 − (i · 𝐴))) / (√‘(1 + (𝐴↑2)))) = (((1 + (i · 𝐴)) / (√‘(1 + (𝐴↑2)))) + ((1 − (i · 𝐴)) / (√‘(1 + (𝐴↑2))))))
4820a1i 11 . . . . . . 7 (𝐴 ∈ dom arctan → 1 ∈ ℂ)
4948, 22, 48ppncand 10774 . . . . . 6 (𝐴 ∈ dom arctan → ((1 + (i · 𝐴)) + (1 − (i · 𝐴))) = (1 + 1))
50 df-2 11438 . . . . . 6 2 = (1 + 1)
5149, 50syl6eqr 2832 . . . . 5 (𝐴 ∈ dom arctan → ((1 + (i · 𝐴)) + (1 − (i · 𝐴))) = 2)
5251oveq1d 6937 . . . 4 (𝐴 ∈ dom arctan → (((1 + (i · 𝐴)) + (1 − (i · 𝐴))) / (√‘(1 + (𝐴↑2)))) = (2 / (√‘(1 + (𝐴↑2)))))
5332, 47, 523eqtr2d 2820 . . 3 (𝐴 ∈ dom arctan → ((exp‘(i · (arctan‘𝐴))) + (exp‘(-i · (arctan‘𝐴)))) = (2 / (√‘(1 + (𝐴↑2)))))
5453oveq1d 6937 . 2 (𝐴 ∈ dom arctan → (((exp‘(i · (arctan‘𝐴))) + (exp‘(-i · (arctan‘𝐴)))) / 2) = ((2 / (√‘(1 + (𝐴↑2)))) / 2))
55 2cnd 11453 . . . 4 (𝐴 ∈ dom arctan → 2 ∈ ℂ)
56 2ne0 11486 . . . . 5 2 ≠ 0
5756a1i 11 . . . 4 (𝐴 ∈ dom arctan → 2 ≠ 0)
5855, 40, 55, 46, 57divdiv32d 11176 . . 3 (𝐴 ∈ dom arctan → ((2 / (√‘(1 + (𝐴↑2)))) / 2) = ((2 / 2) / (√‘(1 + (𝐴↑2)))))
59 2div2e1 11523 . . . 4 (2 / 2) = 1
6059oveq1i 6932 . . 3 ((2 / 2) / (√‘(1 + (𝐴↑2)))) = (1 / (√‘(1 + (𝐴↑2))))
6158, 60syl6eq 2830 . 2 (𝐴 ∈ dom arctan → ((2 / (√‘(1 + (𝐴↑2)))) / 2) = (1 / (√‘(1 + (𝐴↑2)))))
623, 54, 613eqtrd 2818 1 (𝐴 ∈ dom arctan → (cos‘(arctan‘𝐴)) = (1 / (√‘(1 + (𝐴↑2)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1601  wcel 2107  wne 2969  dom cdm 5355  cfv 6135  (class class class)co 6922  cc 10270  0cc0 10272  1c1 10273  ici 10274   + caddc 10275   · cmul 10277  cmin 10606  -cneg 10607   / cdiv 11032  2c2 11430  cexp 13178  csqrt 14380  expce 15194  cosccos 15197  arctancatan 25042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-fi 8605  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-ioc 12492  df-ico 12493  df-icc 12494  df-fz 12644  df-fzo 12785  df-fl 12912  df-mod 12988  df-seq 13120  df-exp 13179  df-fac 13379  df-bc 13408  df-hash 13436  df-shft 14214  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-limsup 14610  df-clim 14627  df-rlim 14628  df-sum 14825  df-ef 15200  df-sin 15202  df-cos 15203  df-pi 15205  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-hom 16362  df-cco 16363  df-rest 16469  df-topn 16470  df-0g 16488  df-gsum 16489  df-topgen 16490  df-pt 16491  df-prds 16494  df-xrs 16548  df-qtop 16553  df-imas 16554  df-xps 16556  df-mre 16632  df-mrc 16633  df-acs 16635  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-submnd 17722  df-mulg 17928  df-cntz 18133  df-cmn 18581  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-fbas 20139  df-fg 20140  df-cnfld 20143  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-cld 21231  df-ntr 21232  df-cls 21233  df-nei 21310  df-lp 21348  df-perf 21349  df-cn 21439  df-cnp 21440  df-haus 21527  df-tx 21774  df-hmeo 21967  df-fil 22058  df-fm 22150  df-flim 22151  df-flf 22152  df-xms 22533  df-ms 22534  df-tms 22535  df-cncf 23089  df-limc 24067  df-dv 24068  df-log 24740  df-cxp 24741  df-atan 25045
This theorem is referenced by:  cosatanne0  25100
  Copyright terms: Public domain W3C validator