MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cosasin Structured version   Visualization version   GIF version

Theorem cosasin 25163
Description: The cosine of the arcsine of 𝐴 is √(1 − 𝐴↑2). (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
cosasin (𝐴 ∈ ℂ → (cos‘(arcsin‘𝐴)) = (√‘(1 − (𝐴↑2))))

Proof of Theorem cosasin
StepHypRef Expression
1 asincl 25132 . . 3 (𝐴 ∈ ℂ → (arcsin‘𝐴) ∈ ℂ)
2 cosval 15309 . . 3 ((arcsin‘𝐴) ∈ ℂ → (cos‘(arcsin‘𝐴)) = (((exp‘(i · (arcsin‘𝐴))) + (exp‘(-i · (arcsin‘𝐴)))) / 2))
31, 2syl 17 . 2 (𝐴 ∈ ℂ → (cos‘(arcsin‘𝐴)) = (((exp‘(i · (arcsin‘𝐴))) + (exp‘(-i · (arcsin‘𝐴)))) / 2))
4 ax-1cn 10444 . . . . . . 7 1 ∈ ℂ
5 sqcl 13334 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
6 subcl 10734 . . . . . . 7 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − (𝐴↑2)) ∈ ℂ)
74, 5, 6sylancr 587 . . . . . 6 (𝐴 ∈ ℂ → (1 − (𝐴↑2)) ∈ ℂ)
87sqrtcld 14631 . . . . 5 (𝐴 ∈ ℂ → (√‘(1 − (𝐴↑2))) ∈ ℂ)
9 ax-icn 10445 . . . . . 6 i ∈ ℂ
10 mulcl 10470 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
119, 10mpan 686 . . . . 5 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
128, 11, 8ppncand 10887 . . . 4 (𝐴 ∈ ℂ → (((√‘(1 − (𝐴↑2))) + (i · 𝐴)) + ((√‘(1 − (𝐴↑2))) − (i · 𝐴))) = ((√‘(1 − (𝐴↑2))) + (√‘(1 − (𝐴↑2)))))
13 efiasin 25147 . . . . . 6 (𝐴 ∈ ℂ → (exp‘(i · (arcsin‘𝐴))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2)))))
1411, 8, 13comraddd 10703 . . . . 5 (𝐴 ∈ ℂ → (exp‘(i · (arcsin‘𝐴))) = ((√‘(1 − (𝐴↑2))) + (i · 𝐴)))
15 mulneg12 10928 . . . . . . . . . 10 ((i ∈ ℂ ∧ (arcsin‘𝐴) ∈ ℂ) → (-i · (arcsin‘𝐴)) = (i · -(arcsin‘𝐴)))
169, 1, 15sylancr 587 . . . . . . . . 9 (𝐴 ∈ ℂ → (-i · (arcsin‘𝐴)) = (i · -(arcsin‘𝐴)))
17 asinneg 25145 . . . . . . . . . 10 (𝐴 ∈ ℂ → (arcsin‘-𝐴) = -(arcsin‘𝐴))
1817oveq2d 7035 . . . . . . . . 9 (𝐴 ∈ ℂ → (i · (arcsin‘-𝐴)) = (i · -(arcsin‘𝐴)))
1916, 18eqtr4d 2833 . . . . . . . 8 (𝐴 ∈ ℂ → (-i · (arcsin‘𝐴)) = (i · (arcsin‘-𝐴)))
2019fveq2d 6545 . . . . . . 7 (𝐴 ∈ ℂ → (exp‘(-i · (arcsin‘𝐴))) = (exp‘(i · (arcsin‘-𝐴))))
21 negcl 10735 . . . . . . . 8 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
22 efiasin 25147 . . . . . . . 8 (-𝐴 ∈ ℂ → (exp‘(i · (arcsin‘-𝐴))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))
2321, 22syl 17 . . . . . . 7 (𝐴 ∈ ℂ → (exp‘(i · (arcsin‘-𝐴))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))
24 mulneg2 10927 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴))
259, 24mpan 686 . . . . . . . 8 (𝐴 ∈ ℂ → (i · -𝐴) = -(i · 𝐴))
26 sqneg 13332 . . . . . . . . . 10 (𝐴 ∈ ℂ → (-𝐴↑2) = (𝐴↑2))
2726oveq2d 7035 . . . . . . . . 9 (𝐴 ∈ ℂ → (1 − (-𝐴↑2)) = (1 − (𝐴↑2)))
2827fveq2d 6545 . . . . . . . 8 (𝐴 ∈ ℂ → (√‘(1 − (-𝐴↑2))) = (√‘(1 − (𝐴↑2))))
2925, 28oveq12d 7037 . . . . . . 7 (𝐴 ∈ ℂ → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) = (-(i · 𝐴) + (√‘(1 − (𝐴↑2)))))
3020, 23, 293eqtrd 2834 . . . . . 6 (𝐴 ∈ ℂ → (exp‘(-i · (arcsin‘𝐴))) = (-(i · 𝐴) + (√‘(1 − (𝐴↑2)))))
3111negcld 10834 . . . . . . 7 (𝐴 ∈ ℂ → -(i · 𝐴) ∈ ℂ)
3231, 8addcomd 10691 . . . . . 6 (𝐴 ∈ ℂ → (-(i · 𝐴) + (√‘(1 − (𝐴↑2)))) = ((√‘(1 − (𝐴↑2))) + -(i · 𝐴)))
338, 11negsubd 10853 . . . . . 6 (𝐴 ∈ ℂ → ((√‘(1 − (𝐴↑2))) + -(i · 𝐴)) = ((√‘(1 − (𝐴↑2))) − (i · 𝐴)))
3430, 32, 333eqtrd 2834 . . . . 5 (𝐴 ∈ ℂ → (exp‘(-i · (arcsin‘𝐴))) = ((√‘(1 − (𝐴↑2))) − (i · 𝐴)))
3514, 34oveq12d 7037 . . . 4 (𝐴 ∈ ℂ → ((exp‘(i · (arcsin‘𝐴))) + (exp‘(-i · (arcsin‘𝐴)))) = (((√‘(1 − (𝐴↑2))) + (i · 𝐴)) + ((√‘(1 − (𝐴↑2))) − (i · 𝐴))))
3682timesd 11730 . . . 4 (𝐴 ∈ ℂ → (2 · (√‘(1 − (𝐴↑2)))) = ((√‘(1 − (𝐴↑2))) + (√‘(1 − (𝐴↑2)))))
3712, 35, 363eqtr4d 2840 . . 3 (𝐴 ∈ ℂ → ((exp‘(i · (arcsin‘𝐴))) + (exp‘(-i · (arcsin‘𝐴)))) = (2 · (√‘(1 − (𝐴↑2)))))
3837oveq1d 7034 . 2 (𝐴 ∈ ℂ → (((exp‘(i · (arcsin‘𝐴))) + (exp‘(-i · (arcsin‘𝐴)))) / 2) = ((2 · (√‘(1 − (𝐴↑2)))) / 2))
39 2cnd 11565 . . 3 (𝐴 ∈ ℂ → 2 ∈ ℂ)
40 2ne0 11591 . . . 4 2 ≠ 0
4140a1i 11 . . 3 (𝐴 ∈ ℂ → 2 ≠ 0)
428, 39, 41divcan3d 11271 . 2 (𝐴 ∈ ℂ → ((2 · (√‘(1 − (𝐴↑2)))) / 2) = (√‘(1 − (𝐴↑2))))
433, 38, 423eqtrd 2834 1 (𝐴 ∈ ℂ → (cos‘(arcsin‘𝐴)) = (√‘(1 − (𝐴↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1522  wcel 2080  wne 2983  cfv 6228  (class class class)co 7019  cc 10384  0cc0 10386  1c1 10387  ici 10388   + caddc 10389   · cmul 10391  cmin 10719  -cneg 10720   / cdiv 11147  2c2 11542  cexp 13279  csqrt 14426  expce 15248  cosccos 15251  arcsincasin 25121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1778  ax-4 1792  ax-5 1889  ax-6 1948  ax-7 1993  ax-8 2082  ax-9 2090  ax-10 2111  ax-11 2125  ax-12 2140  ax-13 2343  ax-ext 2768  ax-rep 5084  ax-sep 5097  ax-nul 5104  ax-pow 5160  ax-pr 5224  ax-un 7322  ax-inf2 8953  ax-cnex 10442  ax-resscn 10443  ax-1cn 10444  ax-icn 10445  ax-addcl 10446  ax-addrcl 10447  ax-mulcl 10448  ax-mulrcl 10449  ax-mulcom 10450  ax-addass 10451  ax-mulass 10452  ax-distr 10453  ax-i2m1 10454  ax-1ne0 10455  ax-1rid 10456  ax-rnegex 10457  ax-rrecex 10458  ax-cnre 10459  ax-pre-lttri 10460  ax-pre-lttrn 10461  ax-pre-ltadd 10462  ax-pre-mulgt0 10463  ax-pre-sup 10464  ax-addf 10465  ax-mulf 10466
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1763  df-nf 1767  df-sb 2042  df-mo 2575  df-eu 2611  df-clab 2775  df-cleq 2787  df-clel 2862  df-nfc 2934  df-ne 2984  df-nel 3090  df-ral 3109  df-rex 3110  df-reu 3111  df-rmo 3112  df-rab 3113  df-v 3438  df-sbc 3708  df-csb 3814  df-dif 3864  df-un 3866  df-in 3868  df-ss 3876  df-pss 3878  df-nul 4214  df-if 4384  df-pw 4457  df-sn 4475  df-pr 4477  df-tp 4479  df-op 4481  df-uni 4748  df-int 4785  df-iun 4829  df-iin 4830  df-br 4965  df-opab 5027  df-mpt 5044  df-tr 5067  df-id 5351  df-eprel 5356  df-po 5365  df-so 5366  df-fr 5405  df-se 5406  df-we 5407  df-xp 5452  df-rel 5453  df-cnv 5454  df-co 5455  df-dm 5456  df-rn 5457  df-res 5458  df-ima 5459  df-pred 6026  df-ord 6072  df-on 6073  df-lim 6074  df-suc 6075  df-iota 6192  df-fun 6230  df-fn 6231  df-f 6232  df-f1 6233  df-fo 6234  df-f1o 6235  df-fv 6236  df-isom 6237  df-riota 6980  df-ov 7022  df-oprab 7023  df-mpo 7024  df-of 7270  df-om 7440  df-1st 7548  df-2nd 7549  df-supp 7685  df-wrecs 7801  df-recs 7863  df-rdg 7901  df-1o 7956  df-2o 7957  df-oadd 7960  df-er 8142  df-map 8261  df-pm 8262  df-ixp 8314  df-en 8361  df-dom 8362  df-sdom 8363  df-fin 8364  df-fsupp 8683  df-fi 8724  df-sup 8755  df-inf 8756  df-oi 8823  df-card 9217  df-pnf 10526  df-mnf 10527  df-xr 10528  df-ltxr 10529  df-le 10530  df-sub 10721  df-neg 10722  df-div 11148  df-nn 11489  df-2 11550  df-3 11551  df-4 11552  df-5 11553  df-6 11554  df-7 11555  df-8 11556  df-9 11557  df-n0 11748  df-z 11832  df-dec 11949  df-uz 12094  df-q 12198  df-rp 12240  df-xneg 12357  df-xadd 12358  df-xmul 12359  df-ioo 12592  df-ioc 12593  df-ico 12594  df-icc 12595  df-fz 12743  df-fzo 12884  df-fl 13012  df-mod 13088  df-seq 13220  df-exp 13280  df-fac 13484  df-bc 13513  df-hash 13541  df-shft 14260  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-limsup 14662  df-clim 14679  df-rlim 14680  df-sum 14877  df-ef 15254  df-sin 15256  df-cos 15257  df-pi 15259  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-starv 16409  df-sca 16410  df-vsca 16411  df-ip 16412  df-tset 16413  df-ple 16414  df-ds 16416  df-unif 16417  df-hom 16418  df-cco 16419  df-rest 16525  df-topn 16526  df-0g 16544  df-gsum 16545  df-topgen 16546  df-pt 16547  df-prds 16550  df-xrs 16604  df-qtop 16609  df-imas 16610  df-xps 16612  df-mre 16686  df-mrc 16687  df-acs 16689  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-submnd 17775  df-mulg 17982  df-cntz 18188  df-cmn 18635  df-psmet 20219  df-xmet 20220  df-met 20221  df-bl 20222  df-mopn 20223  df-fbas 20224  df-fg 20225  df-cnfld 20228  df-top 21186  df-topon 21203  df-topsp 21225  df-bases 21238  df-cld 21311  df-ntr 21312  df-cls 21313  df-nei 21390  df-lp 21428  df-perf 21429  df-cn 21519  df-cnp 21520  df-haus 21607  df-tx 21854  df-hmeo 22047  df-fil 22138  df-fm 22230  df-flim 22231  df-flf 22232  df-xms 22613  df-ms 22614  df-tms 22615  df-cncf 23169  df-limc 24147  df-dv 24148  df-log 24821  df-asin 25124
This theorem is referenced by:  sinacos  25164
  Copyright terms: Public domain W3C validator