|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cosasin | Structured version Visualization version GIF version | ||
| Description: The cosine of the arcsine of 𝐴 is √(1 − 𝐴↑2). (Contributed by Mario Carneiro, 2-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| cosasin | ⊢ (𝐴 ∈ ℂ → (cos‘(arcsin‘𝐴)) = (√‘(1 − (𝐴↑2)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | asincl 26917 | . . 3 ⊢ (𝐴 ∈ ℂ → (arcsin‘𝐴) ∈ ℂ) | |
| 2 | cosval 16160 | . . 3 ⊢ ((arcsin‘𝐴) ∈ ℂ → (cos‘(arcsin‘𝐴)) = (((exp‘(i · (arcsin‘𝐴))) + (exp‘(-i · (arcsin‘𝐴)))) / 2)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ ℂ → (cos‘(arcsin‘𝐴)) = (((exp‘(i · (arcsin‘𝐴))) + (exp‘(-i · (arcsin‘𝐴)))) / 2)) | 
| 4 | ax-1cn 11214 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 5 | sqcl 14159 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ) | |
| 6 | subcl 11508 | . . . . . . 7 ⊢ ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − (𝐴↑2)) ∈ ℂ) | |
| 7 | 4, 5, 6 | sylancr 587 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (1 − (𝐴↑2)) ∈ ℂ) | 
| 8 | 7 | sqrtcld 15477 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (√‘(1 − (𝐴↑2))) ∈ ℂ) | 
| 9 | ax-icn 11215 | . . . . . 6 ⊢ i ∈ ℂ | |
| 10 | mulcl 11240 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
| 11 | 9, 10 | mpan 690 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ) | 
| 12 | 8, 11, 8 | ppncand 11661 | . . . 4 ⊢ (𝐴 ∈ ℂ → (((√‘(1 − (𝐴↑2))) + (i · 𝐴)) + ((√‘(1 − (𝐴↑2))) − (i · 𝐴))) = ((√‘(1 − (𝐴↑2))) + (√‘(1 − (𝐴↑2))))) | 
| 13 | efiasin 26932 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (exp‘(i · (arcsin‘𝐴))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2))))) | |
| 14 | 11, 8, 13 | comraddd 11476 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘(i · (arcsin‘𝐴))) = ((√‘(1 − (𝐴↑2))) + (i · 𝐴))) | 
| 15 | mulneg12 11702 | . . . . . . . . . 10 ⊢ ((i ∈ ℂ ∧ (arcsin‘𝐴) ∈ ℂ) → (-i · (arcsin‘𝐴)) = (i · -(arcsin‘𝐴))) | |
| 16 | 9, 1, 15 | sylancr 587 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (-i · (arcsin‘𝐴)) = (i · -(arcsin‘𝐴))) | 
| 17 | asinneg 26930 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℂ → (arcsin‘-𝐴) = -(arcsin‘𝐴)) | |
| 18 | 17 | oveq2d 7448 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (i · (arcsin‘-𝐴)) = (i · -(arcsin‘𝐴))) | 
| 19 | 16, 18 | eqtr4d 2779 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (-i · (arcsin‘𝐴)) = (i · (arcsin‘-𝐴))) | 
| 20 | 19 | fveq2d 6909 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (exp‘(-i · (arcsin‘𝐴))) = (exp‘(i · (arcsin‘-𝐴)))) | 
| 21 | negcl 11509 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
| 22 | efiasin 26932 | . . . . . . . 8 ⊢ (-𝐴 ∈ ℂ → (exp‘(i · (arcsin‘-𝐴))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) | |
| 23 | 21, 22 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (exp‘(i · (arcsin‘-𝐴))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) | 
| 24 | mulneg2 11701 | . . . . . . . . 9 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴)) | |
| 25 | 9, 24 | mpan 690 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (i · -𝐴) = -(i · 𝐴)) | 
| 26 | sqneg 14157 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℂ → (-𝐴↑2) = (𝐴↑2)) | |
| 27 | 26 | oveq2d 7448 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (1 − (-𝐴↑2)) = (1 − (𝐴↑2))) | 
| 28 | 27 | fveq2d 6909 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (√‘(1 − (-𝐴↑2))) = (√‘(1 − (𝐴↑2)))) | 
| 29 | 25, 28 | oveq12d 7450 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) = (-(i · 𝐴) + (√‘(1 − (𝐴↑2))))) | 
| 30 | 20, 23, 29 | 3eqtrd 2780 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (exp‘(-i · (arcsin‘𝐴))) = (-(i · 𝐴) + (√‘(1 − (𝐴↑2))))) | 
| 31 | 11 | negcld 11608 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → -(i · 𝐴) ∈ ℂ) | 
| 32 | 31, 8 | addcomd 11464 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (-(i · 𝐴) + (√‘(1 − (𝐴↑2)))) = ((√‘(1 − (𝐴↑2))) + -(i · 𝐴))) | 
| 33 | 8, 11 | negsubd 11627 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((√‘(1 − (𝐴↑2))) + -(i · 𝐴)) = ((√‘(1 − (𝐴↑2))) − (i · 𝐴))) | 
| 34 | 30, 32, 33 | 3eqtrd 2780 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘(-i · (arcsin‘𝐴))) = ((√‘(1 − (𝐴↑2))) − (i · 𝐴))) | 
| 35 | 14, 34 | oveq12d 7450 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((exp‘(i · (arcsin‘𝐴))) + (exp‘(-i · (arcsin‘𝐴)))) = (((√‘(1 − (𝐴↑2))) + (i · 𝐴)) + ((√‘(1 − (𝐴↑2))) − (i · 𝐴)))) | 
| 36 | 8 | 2timesd 12511 | . . . 4 ⊢ (𝐴 ∈ ℂ → (2 · (√‘(1 − (𝐴↑2)))) = ((√‘(1 − (𝐴↑2))) + (√‘(1 − (𝐴↑2))))) | 
| 37 | 12, 35, 36 | 3eqtr4d 2786 | . . 3 ⊢ (𝐴 ∈ ℂ → ((exp‘(i · (arcsin‘𝐴))) + (exp‘(-i · (arcsin‘𝐴)))) = (2 · (√‘(1 − (𝐴↑2))))) | 
| 38 | 37 | oveq1d 7447 | . 2 ⊢ (𝐴 ∈ ℂ → (((exp‘(i · (arcsin‘𝐴))) + (exp‘(-i · (arcsin‘𝐴)))) / 2) = ((2 · (√‘(1 − (𝐴↑2)))) / 2)) | 
| 39 | 2cnd 12345 | . . 3 ⊢ (𝐴 ∈ ℂ → 2 ∈ ℂ) | |
| 40 | 2ne0 12371 | . . . 4 ⊢ 2 ≠ 0 | |
| 41 | 40 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℂ → 2 ≠ 0) | 
| 42 | 8, 39, 41 | divcan3d 12049 | . 2 ⊢ (𝐴 ∈ ℂ → ((2 · (√‘(1 − (𝐴↑2)))) / 2) = (√‘(1 − (𝐴↑2)))) | 
| 43 | 3, 38, 42 | 3eqtrd 2780 | 1 ⊢ (𝐴 ∈ ℂ → (cos‘(arcsin‘𝐴)) = (√‘(1 − (𝐴↑2)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ‘cfv 6560 (class class class)co 7432 ℂcc 11154 0cc0 11156 1c1 11157 ici 11158 + caddc 11159 · cmul 11161 − cmin 11493 -cneg 11494 / cdiv 11921 2c2 12322 ↑cexp 14103 √csqrt 15273 expce 16098 cosccos 16101 arcsincasin 26906 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-inf2 9682 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 ax-addf 11235 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-of 7698 df-om 7889 df-1st 8015 df-2nd 8016 df-supp 8187 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-er 8746 df-map 8869 df-pm 8870 df-ixp 8939 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-fsupp 9403 df-fi 9452 df-sup 9483 df-inf 9484 df-oi 9551 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-q 12992 df-rp 13036 df-xneg 13155 df-xadd 13156 df-xmul 13157 df-ioo 13392 df-ioc 13393 df-ico 13394 df-icc 13395 df-fz 13549 df-fzo 13696 df-fl 13833 df-mod 13911 df-seq 14044 df-exp 14104 df-fac 14314 df-bc 14343 df-hash 14371 df-shft 15107 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 df-limsup 15508 df-clim 15525 df-rlim 15526 df-sum 15724 df-ef 16104 df-sin 16106 df-cos 16107 df-pi 16109 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17468 df-topn 17469 df-0g 17487 df-gsum 17488 df-topgen 17489 df-pt 17490 df-prds 17493 df-xrs 17548 df-qtop 17553 df-imas 17554 df-xps 17556 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-submnd 18798 df-mulg 19087 df-cntz 19336 df-cmn 19801 df-psmet 21357 df-xmet 21358 df-met 21359 df-bl 21360 df-mopn 21361 df-fbas 21362 df-fg 21363 df-cnfld 21366 df-top 22901 df-topon 22918 df-topsp 22940 df-bases 22954 df-cld 23028 df-ntr 23029 df-cls 23030 df-nei 23107 df-lp 23145 df-perf 23146 df-cn 23236 df-cnp 23237 df-haus 23324 df-tx 23571 df-hmeo 23764 df-fil 23855 df-fm 23947 df-flim 23948 df-flf 23949 df-xms 24331 df-ms 24332 df-tms 24333 df-cncf 24905 df-limc 25902 df-dv 25903 df-log 26599 df-asin 26909 | 
| This theorem is referenced by: sinacos 26949 | 
| Copyright terms: Public domain | W3C validator |