MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cosasin Structured version   Visualization version   GIF version

Theorem cosasin 26836
Description: The cosine of the arcsine of 𝐴 is √(1 − 𝐴↑2). (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
cosasin (𝐴 ∈ ℂ → (cos‘(arcsin‘𝐴)) = (√‘(1 − (𝐴↑2))))

Proof of Theorem cosasin
StepHypRef Expression
1 asincl 26805 . . 3 (𝐴 ∈ ℂ → (arcsin‘𝐴) ∈ ℂ)
2 cosval 16027 . . 3 ((arcsin‘𝐴) ∈ ℂ → (cos‘(arcsin‘𝐴)) = (((exp‘(i · (arcsin‘𝐴))) + (exp‘(-i · (arcsin‘𝐴)))) / 2))
31, 2syl 17 . 2 (𝐴 ∈ ℂ → (cos‘(arcsin‘𝐴)) = (((exp‘(i · (arcsin‘𝐴))) + (exp‘(-i · (arcsin‘𝐴)))) / 2))
4 ax-1cn 11059 . . . . . . 7 1 ∈ ℂ
5 sqcl 14020 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
6 subcl 11354 . . . . . . 7 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − (𝐴↑2)) ∈ ℂ)
74, 5, 6sylancr 587 . . . . . 6 (𝐴 ∈ ℂ → (1 − (𝐴↑2)) ∈ ℂ)
87sqrtcld 15342 . . . . 5 (𝐴 ∈ ℂ → (√‘(1 − (𝐴↑2))) ∈ ℂ)
9 ax-icn 11060 . . . . . 6 i ∈ ℂ
10 mulcl 11085 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
119, 10mpan 690 . . . . 5 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
128, 11, 8ppncand 11507 . . . 4 (𝐴 ∈ ℂ → (((√‘(1 − (𝐴↑2))) + (i · 𝐴)) + ((√‘(1 − (𝐴↑2))) − (i · 𝐴))) = ((√‘(1 − (𝐴↑2))) + (√‘(1 − (𝐴↑2)))))
13 efiasin 26820 . . . . . 6 (𝐴 ∈ ℂ → (exp‘(i · (arcsin‘𝐴))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2)))))
1411, 8, 13comraddd 11322 . . . . 5 (𝐴 ∈ ℂ → (exp‘(i · (arcsin‘𝐴))) = ((√‘(1 − (𝐴↑2))) + (i · 𝐴)))
15 mulneg12 11550 . . . . . . . . . 10 ((i ∈ ℂ ∧ (arcsin‘𝐴) ∈ ℂ) → (-i · (arcsin‘𝐴)) = (i · -(arcsin‘𝐴)))
169, 1, 15sylancr 587 . . . . . . . . 9 (𝐴 ∈ ℂ → (-i · (arcsin‘𝐴)) = (i · -(arcsin‘𝐴)))
17 asinneg 26818 . . . . . . . . . 10 (𝐴 ∈ ℂ → (arcsin‘-𝐴) = -(arcsin‘𝐴))
1817oveq2d 7357 . . . . . . . . 9 (𝐴 ∈ ℂ → (i · (arcsin‘-𝐴)) = (i · -(arcsin‘𝐴)))
1916, 18eqtr4d 2769 . . . . . . . 8 (𝐴 ∈ ℂ → (-i · (arcsin‘𝐴)) = (i · (arcsin‘-𝐴)))
2019fveq2d 6821 . . . . . . 7 (𝐴 ∈ ℂ → (exp‘(-i · (arcsin‘𝐴))) = (exp‘(i · (arcsin‘-𝐴))))
21 negcl 11355 . . . . . . . 8 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
22 efiasin 26820 . . . . . . . 8 (-𝐴 ∈ ℂ → (exp‘(i · (arcsin‘-𝐴))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))
2321, 22syl 17 . . . . . . 7 (𝐴 ∈ ℂ → (exp‘(i · (arcsin‘-𝐴))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))
24 mulneg2 11549 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴))
259, 24mpan 690 . . . . . . . 8 (𝐴 ∈ ℂ → (i · -𝐴) = -(i · 𝐴))
26 sqneg 14017 . . . . . . . . . 10 (𝐴 ∈ ℂ → (-𝐴↑2) = (𝐴↑2))
2726oveq2d 7357 . . . . . . . . 9 (𝐴 ∈ ℂ → (1 − (-𝐴↑2)) = (1 − (𝐴↑2)))
2827fveq2d 6821 . . . . . . . 8 (𝐴 ∈ ℂ → (√‘(1 − (-𝐴↑2))) = (√‘(1 − (𝐴↑2))))
2925, 28oveq12d 7359 . . . . . . 7 (𝐴 ∈ ℂ → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) = (-(i · 𝐴) + (√‘(1 − (𝐴↑2)))))
3020, 23, 293eqtrd 2770 . . . . . 6 (𝐴 ∈ ℂ → (exp‘(-i · (arcsin‘𝐴))) = (-(i · 𝐴) + (√‘(1 − (𝐴↑2)))))
3111negcld 11454 . . . . . . 7 (𝐴 ∈ ℂ → -(i · 𝐴) ∈ ℂ)
3231, 8addcomd 11310 . . . . . 6 (𝐴 ∈ ℂ → (-(i · 𝐴) + (√‘(1 − (𝐴↑2)))) = ((√‘(1 − (𝐴↑2))) + -(i · 𝐴)))
338, 11negsubd 11473 . . . . . 6 (𝐴 ∈ ℂ → ((√‘(1 − (𝐴↑2))) + -(i · 𝐴)) = ((√‘(1 − (𝐴↑2))) − (i · 𝐴)))
3430, 32, 333eqtrd 2770 . . . . 5 (𝐴 ∈ ℂ → (exp‘(-i · (arcsin‘𝐴))) = ((√‘(1 − (𝐴↑2))) − (i · 𝐴)))
3514, 34oveq12d 7359 . . . 4 (𝐴 ∈ ℂ → ((exp‘(i · (arcsin‘𝐴))) + (exp‘(-i · (arcsin‘𝐴)))) = (((√‘(1 − (𝐴↑2))) + (i · 𝐴)) + ((√‘(1 − (𝐴↑2))) − (i · 𝐴))))
3682timesd 12359 . . . 4 (𝐴 ∈ ℂ → (2 · (√‘(1 − (𝐴↑2)))) = ((√‘(1 − (𝐴↑2))) + (√‘(1 − (𝐴↑2)))))
3712, 35, 363eqtr4d 2776 . . 3 (𝐴 ∈ ℂ → ((exp‘(i · (arcsin‘𝐴))) + (exp‘(-i · (arcsin‘𝐴)))) = (2 · (√‘(1 − (𝐴↑2)))))
3837oveq1d 7356 . 2 (𝐴 ∈ ℂ → (((exp‘(i · (arcsin‘𝐴))) + (exp‘(-i · (arcsin‘𝐴)))) / 2) = ((2 · (√‘(1 − (𝐴↑2)))) / 2))
39 2cnd 12198 . . 3 (𝐴 ∈ ℂ → 2 ∈ ℂ)
40 2ne0 12224 . . . 4 2 ≠ 0
4140a1i 11 . . 3 (𝐴 ∈ ℂ → 2 ≠ 0)
428, 39, 41divcan3d 11897 . 2 (𝐴 ∈ ℂ → ((2 · (√‘(1 − (𝐴↑2)))) / 2) = (√‘(1 − (𝐴↑2))))
433, 38, 423eqtrd 2770 1 (𝐴 ∈ ℂ → (cos‘(arcsin‘𝐴)) = (√‘(1 − (𝐴↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wne 2928  cfv 6476  (class class class)co 7341  cc 10999  0cc0 11001  1c1 11002  ici 11003   + caddc 11004   · cmul 11006  cmin 11339  -cneg 11340   / cdiv 11769  2c2 12175  cexp 13963  csqrt 15135  expce 15963  cosccos 15966  arcsincasin 26794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ioo 13244  df-ioc 13245  df-ico 13246  df-icc 13247  df-fz 13403  df-fzo 13550  df-fl 13691  df-mod 13769  df-seq 13904  df-exp 13964  df-fac 14176  df-bc 14205  df-hash 14233  df-shft 14969  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-limsup 15373  df-clim 15390  df-rlim 15391  df-sum 15589  df-ef 15969  df-sin 15971  df-cos 15972  df-pi 15974  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-rest 17321  df-topn 17322  df-0g 17340  df-gsum 17341  df-topgen 17342  df-pt 17343  df-prds 17346  df-xrs 17401  df-qtop 17406  df-imas 17407  df-xps 17409  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19224  df-cmn 19689  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-cld 22929  df-ntr 22930  df-cls 22931  df-nei 23008  df-lp 23046  df-perf 23047  df-cn 23137  df-cnp 23138  df-haus 23225  df-tx 23472  df-hmeo 23665  df-fil 23756  df-fm 23848  df-flim 23849  df-flf 23850  df-xms 24230  df-ms 24231  df-tms 24232  df-cncf 24793  df-limc 25789  df-dv 25790  df-log 26487  df-asin 26797
This theorem is referenced by:  sinacos  26837
  Copyright terms: Public domain W3C validator