| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cosasin | Structured version Visualization version GIF version | ||
| Description: The cosine of the arcsine of 𝐴 is √(1 − 𝐴↑2). (Contributed by Mario Carneiro, 2-Apr-2015.) |
| Ref | Expression |
|---|---|
| cosasin | ⊢ (𝐴 ∈ ℂ → (cos‘(arcsin‘𝐴)) = (√‘(1 − (𝐴↑2)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asincl 26840 | . . 3 ⊢ (𝐴 ∈ ℂ → (arcsin‘𝐴) ∈ ℂ) | |
| 2 | cosval 16146 | . . 3 ⊢ ((arcsin‘𝐴) ∈ ℂ → (cos‘(arcsin‘𝐴)) = (((exp‘(i · (arcsin‘𝐴))) + (exp‘(-i · (arcsin‘𝐴)))) / 2)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ ℂ → (cos‘(arcsin‘𝐴)) = (((exp‘(i · (arcsin‘𝐴))) + (exp‘(-i · (arcsin‘𝐴)))) / 2)) |
| 4 | ax-1cn 11192 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 5 | sqcl 14141 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ) | |
| 6 | subcl 11486 | . . . . . . 7 ⊢ ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − (𝐴↑2)) ∈ ℂ) | |
| 7 | 4, 5, 6 | sylancr 587 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (1 − (𝐴↑2)) ∈ ℂ) |
| 8 | 7 | sqrtcld 15461 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (√‘(1 − (𝐴↑2))) ∈ ℂ) |
| 9 | ax-icn 11193 | . . . . . 6 ⊢ i ∈ ℂ | |
| 10 | mulcl 11218 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
| 11 | 9, 10 | mpan 690 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ) |
| 12 | 8, 11, 8 | ppncand 11639 | . . . 4 ⊢ (𝐴 ∈ ℂ → (((√‘(1 − (𝐴↑2))) + (i · 𝐴)) + ((√‘(1 − (𝐴↑2))) − (i · 𝐴))) = ((√‘(1 − (𝐴↑2))) + (√‘(1 − (𝐴↑2))))) |
| 13 | efiasin 26855 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (exp‘(i · (arcsin‘𝐴))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2))))) | |
| 14 | 11, 8, 13 | comraddd 11454 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘(i · (arcsin‘𝐴))) = ((√‘(1 − (𝐴↑2))) + (i · 𝐴))) |
| 15 | mulneg12 11680 | . . . . . . . . . 10 ⊢ ((i ∈ ℂ ∧ (arcsin‘𝐴) ∈ ℂ) → (-i · (arcsin‘𝐴)) = (i · -(arcsin‘𝐴))) | |
| 16 | 9, 1, 15 | sylancr 587 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (-i · (arcsin‘𝐴)) = (i · -(arcsin‘𝐴))) |
| 17 | asinneg 26853 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℂ → (arcsin‘-𝐴) = -(arcsin‘𝐴)) | |
| 18 | 17 | oveq2d 7426 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (i · (arcsin‘-𝐴)) = (i · -(arcsin‘𝐴))) |
| 19 | 16, 18 | eqtr4d 2774 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (-i · (arcsin‘𝐴)) = (i · (arcsin‘-𝐴))) |
| 20 | 19 | fveq2d 6885 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (exp‘(-i · (arcsin‘𝐴))) = (exp‘(i · (arcsin‘-𝐴)))) |
| 21 | negcl 11487 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
| 22 | efiasin 26855 | . . . . . . . 8 ⊢ (-𝐴 ∈ ℂ → (exp‘(i · (arcsin‘-𝐴))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) | |
| 23 | 21, 22 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (exp‘(i · (arcsin‘-𝐴))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) |
| 24 | mulneg2 11679 | . . . . . . . . 9 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴)) | |
| 25 | 9, 24 | mpan 690 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (i · -𝐴) = -(i · 𝐴)) |
| 26 | sqneg 14138 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℂ → (-𝐴↑2) = (𝐴↑2)) | |
| 27 | 26 | oveq2d 7426 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (1 − (-𝐴↑2)) = (1 − (𝐴↑2))) |
| 28 | 27 | fveq2d 6885 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (√‘(1 − (-𝐴↑2))) = (√‘(1 − (𝐴↑2)))) |
| 29 | 25, 28 | oveq12d 7428 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) = (-(i · 𝐴) + (√‘(1 − (𝐴↑2))))) |
| 30 | 20, 23, 29 | 3eqtrd 2775 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (exp‘(-i · (arcsin‘𝐴))) = (-(i · 𝐴) + (√‘(1 − (𝐴↑2))))) |
| 31 | 11 | negcld 11586 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → -(i · 𝐴) ∈ ℂ) |
| 32 | 31, 8 | addcomd 11442 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (-(i · 𝐴) + (√‘(1 − (𝐴↑2)))) = ((√‘(1 − (𝐴↑2))) + -(i · 𝐴))) |
| 33 | 8, 11 | negsubd 11605 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((√‘(1 − (𝐴↑2))) + -(i · 𝐴)) = ((√‘(1 − (𝐴↑2))) − (i · 𝐴))) |
| 34 | 30, 32, 33 | 3eqtrd 2775 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘(-i · (arcsin‘𝐴))) = ((√‘(1 − (𝐴↑2))) − (i · 𝐴))) |
| 35 | 14, 34 | oveq12d 7428 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((exp‘(i · (arcsin‘𝐴))) + (exp‘(-i · (arcsin‘𝐴)))) = (((√‘(1 − (𝐴↑2))) + (i · 𝐴)) + ((√‘(1 − (𝐴↑2))) − (i · 𝐴)))) |
| 36 | 8 | 2timesd 12489 | . . . 4 ⊢ (𝐴 ∈ ℂ → (2 · (√‘(1 − (𝐴↑2)))) = ((√‘(1 − (𝐴↑2))) + (√‘(1 − (𝐴↑2))))) |
| 37 | 12, 35, 36 | 3eqtr4d 2781 | . . 3 ⊢ (𝐴 ∈ ℂ → ((exp‘(i · (arcsin‘𝐴))) + (exp‘(-i · (arcsin‘𝐴)))) = (2 · (√‘(1 − (𝐴↑2))))) |
| 38 | 37 | oveq1d 7425 | . 2 ⊢ (𝐴 ∈ ℂ → (((exp‘(i · (arcsin‘𝐴))) + (exp‘(-i · (arcsin‘𝐴)))) / 2) = ((2 · (√‘(1 − (𝐴↑2)))) / 2)) |
| 39 | 2cnd 12323 | . . 3 ⊢ (𝐴 ∈ ℂ → 2 ∈ ℂ) | |
| 40 | 2ne0 12349 | . . . 4 ⊢ 2 ≠ 0 | |
| 41 | 40 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℂ → 2 ≠ 0) |
| 42 | 8, 39, 41 | divcan3d 12027 | . 2 ⊢ (𝐴 ∈ ℂ → ((2 · (√‘(1 − (𝐴↑2)))) / 2) = (√‘(1 − (𝐴↑2)))) |
| 43 | 3, 38, 42 | 3eqtrd 2775 | 1 ⊢ (𝐴 ∈ ℂ → (cos‘(arcsin‘𝐴)) = (√‘(1 − (𝐴↑2)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 0cc0 11134 1c1 11135 ici 11136 + caddc 11137 · cmul 11139 − cmin 11471 -cneg 11472 / cdiv 11899 2c2 12300 ↑cexp 14084 √csqrt 15257 expce 16082 cosccos 16085 arcsincasin 26829 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-q 12970 df-rp 13014 df-xneg 13133 df-xadd 13134 df-xmul 13135 df-ioo 13371 df-ioc 13372 df-ico 13373 df-icc 13374 df-fz 13530 df-fzo 13677 df-fl 13814 df-mod 13892 df-seq 14025 df-exp 14085 df-fac 14297 df-bc 14326 df-hash 14354 df-shft 15091 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-limsup 15492 df-clim 15509 df-rlim 15510 df-sum 15708 df-ef 16088 df-sin 16090 df-cos 16091 df-pi 16093 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-hom 17300 df-cco 17301 df-rest 17441 df-topn 17442 df-0g 17460 df-gsum 17461 df-topgen 17462 df-pt 17463 df-prds 17466 df-xrs 17521 df-qtop 17526 df-imas 17527 df-xps 17529 df-mre 17603 df-mrc 17604 df-acs 17606 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-mulg 19056 df-cntz 19305 df-cmn 19768 df-psmet 21312 df-xmet 21313 df-met 21314 df-bl 21315 df-mopn 21316 df-fbas 21317 df-fg 21318 df-cnfld 21321 df-top 22837 df-topon 22854 df-topsp 22876 df-bases 22889 df-cld 22962 df-ntr 22963 df-cls 22964 df-nei 23041 df-lp 23079 df-perf 23080 df-cn 23170 df-cnp 23171 df-haus 23258 df-tx 23505 df-hmeo 23698 df-fil 23789 df-fm 23881 df-flim 23882 df-flf 23883 df-xms 24264 df-ms 24265 df-tms 24266 df-cncf 24827 df-limc 25824 df-dv 25825 df-log 26522 df-asin 26832 |
| This theorem is referenced by: sinacos 26872 |
| Copyright terms: Public domain | W3C validator |