MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanval3 Structured version   Visualization version   GIF version

Theorem tanval3 16102
Description: Express the tangent function directly in terms of exp. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
tanval3 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (tan‘𝐴) = (((exp‘(2 · (i · 𝐴))) − 1) / (i · ((exp‘(2 · (i · 𝐴))) + 1))))

Proof of Theorem tanval3
StepHypRef Expression
1 ax-icn 11127 . . . . . 6 i ∈ ℂ
2 simpl 482 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → 𝐴 ∈ ℂ)
3 mulcl 11152 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
41, 2, 3sylancr 587 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (i · 𝐴) ∈ ℂ)
5 efcl 16048 . . . . 5 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
64, 5syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (exp‘(i · 𝐴)) ∈ ℂ)
7 negicn 11422 . . . . . 6 -i ∈ ℂ
8 mulcl 11152 . . . . . 6 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
97, 2, 8sylancr 587 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (-i · 𝐴) ∈ ℂ)
10 efcl 16048 . . . . 5 ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
119, 10syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (exp‘(-i · 𝐴)) ∈ ℂ)
126, 11subcld 11533 . . 3 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ)
136, 11addcld 11193 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ)
14 mulcl 11152 . . . 4 ((i ∈ ℂ ∧ ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ) → (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) ∈ ℂ)
151, 13, 14sylancr 587 . . 3 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) ∈ ℂ)
16 2z 12565 . . . . . . . . . . 11 2 ∈ ℤ
17 efexp 16069 . . . . . . . . . . 11 (((i · 𝐴) ∈ ℂ ∧ 2 ∈ ℤ) → (exp‘(2 · (i · 𝐴))) = ((exp‘(i · 𝐴))↑2))
184, 16, 17sylancl 586 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (exp‘(2 · (i · 𝐴))) = ((exp‘(i · 𝐴))↑2))
196sqvald 14108 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(i · 𝐴))↑2) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
2018, 19eqtrd 2764 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (exp‘(2 · (i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
21 mulneg1 11614 . . . . . . . . . . . . 13 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) = -(i · 𝐴))
221, 2, 21sylancr 587 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (-i · 𝐴) = -(i · 𝐴))
2322fveq2d 6862 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (exp‘(-i · 𝐴)) = (exp‘-(i · 𝐴)))
2423oveq2d 7403 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘-(i · 𝐴))))
25 efcan 16062 . . . . . . . . . . 11 ((i · 𝐴) ∈ ℂ → ((exp‘(i · 𝐴)) · (exp‘-(i · 𝐴))) = 1)
264, 25syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(i · 𝐴)) · (exp‘-(i · 𝐴))) = 1)
2724, 26eqtr2d 2765 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → 1 = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
2820, 27oveq12d 7405 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(2 · (i · 𝐴))) + 1) = (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) + ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴)))))
296, 6, 11adddid 11198 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) = (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) + ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴)))))
3028, 29eqtr4d 2767 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(2 · (i · 𝐴))) + 1) = ((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))
3130oveq2d 7403 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (i · ((exp‘(2 · (i · 𝐴))) + 1)) = (i · ((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
321a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → i ∈ ℂ)
3332, 6, 13mul12d 11383 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (i · ((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))) = ((exp‘(i · 𝐴)) · (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
3431, 33eqtrd 2764 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (i · ((exp‘(2 · (i · 𝐴))) + 1)) = ((exp‘(i · 𝐴)) · (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
35 2cn 12261 . . . . . . . . 9 2 ∈ ℂ
36 mulcl 11152 . . . . . . . . 9 ((2 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (2 · (i · 𝐴)) ∈ ℂ)
3735, 4, 36sylancr 587 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (2 · (i · 𝐴)) ∈ ℂ)
38 efcl 16048 . . . . . . . 8 ((2 · (i · 𝐴)) ∈ ℂ → (exp‘(2 · (i · 𝐴))) ∈ ℂ)
3937, 38syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (exp‘(2 · (i · 𝐴))) ∈ ℂ)
40 ax-1cn 11126 . . . . . . 7 1 ∈ ℂ
41 addcl 11150 . . . . . . 7 (((exp‘(2 · (i · 𝐴))) ∈ ℂ ∧ 1 ∈ ℂ) → ((exp‘(2 · (i · 𝐴))) + 1) ∈ ℂ)
4239, 40, 41sylancl 586 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(2 · (i · 𝐴))) + 1) ∈ ℂ)
43 ine0 11613 . . . . . . 7 i ≠ 0
4443a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → i ≠ 0)
45 simpr 484 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0)
4632, 42, 44, 45mulne0d 11830 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (i · ((exp‘(2 · (i · 𝐴))) + 1)) ≠ 0)
4734, 46eqnetrrd 2993 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(i · 𝐴)) · (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))) ≠ 0)
486, 15, 47mulne0bbd 11834 . . 3 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) ≠ 0)
49 efne0 16064 . . . 4 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ≠ 0)
504, 49syl 17 . . 3 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (exp‘(i · 𝐴)) ≠ 0)
5112, 15, 6, 48, 50divcan5d 11984 . 2 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) / ((exp‘(i · 𝐴)) · (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
5220, 27oveq12d 7405 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(2 · (i · 𝐴))) − 1) = (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) − ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴)))))
536, 6, 11subdid 11634 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) = (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) − ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴)))))
5452, 53eqtr4d 2767 . . 3 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(2 · (i · 𝐴))) − 1) = ((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))))
5554, 34oveq12d 7405 . 2 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (((exp‘(2 · (i · 𝐴))) − 1) / (i · ((exp‘(2 · (i · 𝐴))) + 1))) = (((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) / ((exp‘(i · 𝐴)) · (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))))
56 cosval 16091 . . . . 5 (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
5756adantr 480 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
58 2cnd 12264 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → 2 ∈ ℂ)
5932, 13, 48mulne0bbd 11834 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ≠ 0)
60 2ne0 12290 . . . . . 6 2 ≠ 0
6160a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → 2 ≠ 0)
6213, 58, 59, 61divne0d 11974 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) ≠ 0)
6357, 62eqnetrd 2992 . . 3 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (cos‘𝐴) ≠ 0)
64 tanval2 16101 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
6563, 64syldan 591 . 2 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (tan‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
6651, 55, 653eqtr4rd 2775 1 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (tan‘𝐴) = (((exp‘(2 · (i · 𝐴))) − 1) / (i · ((exp‘(2 · (i · 𝐴))) + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  cfv 6511  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069  ici 11070   + caddc 11071   · cmul 11073  cmin 11405  -cneg 11406   / cdiv 11835  2c2 12241  cz 12529  cexp 14026  expce 16027  cosccos 16030  tanctan 16031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-ico 13312  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-tan 16037
This theorem is referenced by:  tanarg  26528  tanatan  26829
  Copyright terms: Public domain W3C validator