MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanval3 Structured version   Visualization version   GIF version

Theorem tanval3 16081
Description: Express the tangent function directly in terms of exp. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
tanval3 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (tan‘𝐴) = (((exp‘(2 · (i · 𝐴))) − 1) / (i · ((exp‘(2 · (i · 𝐴))) + 1))))

Proof of Theorem tanval3
StepHypRef Expression
1 ax-icn 11168 . . . . . 6 i ∈ ℂ
2 simpl 482 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → 𝐴 ∈ ℂ)
3 mulcl 11193 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
41, 2, 3sylancr 586 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (i · 𝐴) ∈ ℂ)
5 efcl 16029 . . . . 5 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
64, 5syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (exp‘(i · 𝐴)) ∈ ℂ)
7 negicn 11462 . . . . . 6 -i ∈ ℂ
8 mulcl 11193 . . . . . 6 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
97, 2, 8sylancr 586 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (-i · 𝐴) ∈ ℂ)
10 efcl 16029 . . . . 5 ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
119, 10syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (exp‘(-i · 𝐴)) ∈ ℂ)
126, 11subcld 11572 . . 3 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ)
136, 11addcld 11234 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ)
14 mulcl 11193 . . . 4 ((i ∈ ℂ ∧ ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ) → (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) ∈ ℂ)
151, 13, 14sylancr 586 . . 3 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) ∈ ℂ)
16 2z 12595 . . . . . . . . . . 11 2 ∈ ℤ
17 efexp 16048 . . . . . . . . . . 11 (((i · 𝐴) ∈ ℂ ∧ 2 ∈ ℤ) → (exp‘(2 · (i · 𝐴))) = ((exp‘(i · 𝐴))↑2))
184, 16, 17sylancl 585 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (exp‘(2 · (i · 𝐴))) = ((exp‘(i · 𝐴))↑2))
196sqvald 14110 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(i · 𝐴))↑2) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
2018, 19eqtrd 2766 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (exp‘(2 · (i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
21 mulneg1 11651 . . . . . . . . . . . . 13 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) = -(i · 𝐴))
221, 2, 21sylancr 586 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (-i · 𝐴) = -(i · 𝐴))
2322fveq2d 6888 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (exp‘(-i · 𝐴)) = (exp‘-(i · 𝐴)))
2423oveq2d 7420 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘-(i · 𝐴))))
25 efcan 16043 . . . . . . . . . . 11 ((i · 𝐴) ∈ ℂ → ((exp‘(i · 𝐴)) · (exp‘-(i · 𝐴))) = 1)
264, 25syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(i · 𝐴)) · (exp‘-(i · 𝐴))) = 1)
2724, 26eqtr2d 2767 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → 1 = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
2820, 27oveq12d 7422 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(2 · (i · 𝐴))) + 1) = (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) + ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴)))))
296, 6, 11adddid 11239 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) = (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) + ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴)))))
3028, 29eqtr4d 2769 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(2 · (i · 𝐴))) + 1) = ((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))
3130oveq2d 7420 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (i · ((exp‘(2 · (i · 𝐴))) + 1)) = (i · ((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
321a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → i ∈ ℂ)
3332, 6, 13mul12d 11424 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (i · ((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))) = ((exp‘(i · 𝐴)) · (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
3431, 33eqtrd 2766 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (i · ((exp‘(2 · (i · 𝐴))) + 1)) = ((exp‘(i · 𝐴)) · (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
35 2cn 12288 . . . . . . . . 9 2 ∈ ℂ
36 mulcl 11193 . . . . . . . . 9 ((2 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (2 · (i · 𝐴)) ∈ ℂ)
3735, 4, 36sylancr 586 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (2 · (i · 𝐴)) ∈ ℂ)
38 efcl 16029 . . . . . . . 8 ((2 · (i · 𝐴)) ∈ ℂ → (exp‘(2 · (i · 𝐴))) ∈ ℂ)
3937, 38syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (exp‘(2 · (i · 𝐴))) ∈ ℂ)
40 ax-1cn 11167 . . . . . . 7 1 ∈ ℂ
41 addcl 11191 . . . . . . 7 (((exp‘(2 · (i · 𝐴))) ∈ ℂ ∧ 1 ∈ ℂ) → ((exp‘(2 · (i · 𝐴))) + 1) ∈ ℂ)
4239, 40, 41sylancl 585 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(2 · (i · 𝐴))) + 1) ∈ ℂ)
43 ine0 11650 . . . . . . 7 i ≠ 0
4443a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → i ≠ 0)
45 simpr 484 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0)
4632, 42, 44, 45mulne0d 11867 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (i · ((exp‘(2 · (i · 𝐴))) + 1)) ≠ 0)
4734, 46eqnetrrd 3003 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(i · 𝐴)) · (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))) ≠ 0)
486, 15, 47mulne0bbd 11871 . . 3 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) ≠ 0)
49 efne0 16044 . . . 4 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ≠ 0)
504, 49syl 17 . . 3 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (exp‘(i · 𝐴)) ≠ 0)
5112, 15, 6, 48, 50divcan5d 12017 . 2 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) / ((exp‘(i · 𝐴)) · (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
5220, 27oveq12d 7422 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(2 · (i · 𝐴))) − 1) = (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) − ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴)))))
536, 6, 11subdid 11671 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) = (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) − ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴)))))
5452, 53eqtr4d 2769 . . 3 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(2 · (i · 𝐴))) − 1) = ((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))))
5554, 34oveq12d 7422 . 2 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (((exp‘(2 · (i · 𝐴))) − 1) / (i · ((exp‘(2 · (i · 𝐴))) + 1))) = (((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) / ((exp‘(i · 𝐴)) · (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))))
56 cosval 16070 . . . . 5 (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
5756adantr 480 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
58 2cnd 12291 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → 2 ∈ ℂ)
5932, 13, 48mulne0bbd 11871 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ≠ 0)
60 2ne0 12317 . . . . . 6 2 ≠ 0
6160a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → 2 ≠ 0)
6213, 58, 59, 61divne0d 12007 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) ≠ 0)
6357, 62eqnetrd 3002 . . 3 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (cos‘𝐴) ≠ 0)
64 tanval2 16080 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
6563, 64syldan 590 . 2 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (tan‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
6651, 55, 653eqtr4rd 2777 1 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (tan‘𝐴) = (((exp‘(2 · (i · 𝐴))) − 1) / (i · ((exp‘(2 · (i · 𝐴))) + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wne 2934  cfv 6536  (class class class)co 7404  cc 11107  0cc0 11109  1c1 11110  ici 11111   + caddc 11112   · cmul 11114  cmin 11445  -cneg 11446   / cdiv 11872  2c2 12268  cz 12559  cexp 14029  expce 16008  cosccos 16011  tanctan 16012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-inf2 9635  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-er 8702  df-pm 8822  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-sup 9436  df-inf 9437  df-oi 9504  df-card 9933  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-div 11873  df-nn 12214  df-2 12276  df-3 12277  df-n0 12474  df-z 12560  df-uz 12824  df-rp 12978  df-ico 13333  df-fz 13488  df-fzo 13631  df-fl 13760  df-seq 13970  df-exp 14030  df-fac 14236  df-bc 14265  df-hash 14293  df-shft 15017  df-cj 15049  df-re 15050  df-im 15051  df-sqrt 15185  df-abs 15186  df-limsup 15418  df-clim 15435  df-rlim 15436  df-sum 15636  df-ef 16014  df-sin 16016  df-cos 16017  df-tan 16018
This theorem is referenced by:  tanarg  26503  tanatan  26801
  Copyright terms: Public domain W3C validator