MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanval3 Structured version   Visualization version   GIF version

Theorem tanval3 15489
Description: Express the tangent function directly in terms of exp. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
tanval3 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (tan‘𝐴) = (((exp‘(2 · (i · 𝐴))) − 1) / (i · ((exp‘(2 · (i · 𝐴))) + 1))))

Proof of Theorem tanval3
StepHypRef Expression
1 ax-icn 10598 . . . . . 6 i ∈ ℂ
2 simpl 485 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → 𝐴 ∈ ℂ)
3 mulcl 10623 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
41, 2, 3sylancr 589 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (i · 𝐴) ∈ ℂ)
5 efcl 15438 . . . . 5 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
64, 5syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (exp‘(i · 𝐴)) ∈ ℂ)
7 negicn 10889 . . . . . 6 -i ∈ ℂ
8 mulcl 10623 . . . . . 6 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
97, 2, 8sylancr 589 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (-i · 𝐴) ∈ ℂ)
10 efcl 15438 . . . . 5 ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
119, 10syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (exp‘(-i · 𝐴)) ∈ ℂ)
126, 11subcld 10999 . . 3 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ)
136, 11addcld 10662 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ)
14 mulcl 10623 . . . 4 ((i ∈ ℂ ∧ ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ) → (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) ∈ ℂ)
151, 13, 14sylancr 589 . . 3 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) ∈ ℂ)
16 2z 12017 . . . . . . . . . . 11 2 ∈ ℤ
17 efexp 15456 . . . . . . . . . . 11 (((i · 𝐴) ∈ ℂ ∧ 2 ∈ ℤ) → (exp‘(2 · (i · 𝐴))) = ((exp‘(i · 𝐴))↑2))
184, 16, 17sylancl 588 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (exp‘(2 · (i · 𝐴))) = ((exp‘(i · 𝐴))↑2))
196sqvald 13510 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(i · 𝐴))↑2) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
2018, 19eqtrd 2858 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (exp‘(2 · (i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
21 mulneg1 11078 . . . . . . . . . . . . 13 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) = -(i · 𝐴))
221, 2, 21sylancr 589 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (-i · 𝐴) = -(i · 𝐴))
2322fveq2d 6676 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (exp‘(-i · 𝐴)) = (exp‘-(i · 𝐴)))
2423oveq2d 7174 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘-(i · 𝐴))))
25 efcan 15451 . . . . . . . . . . 11 ((i · 𝐴) ∈ ℂ → ((exp‘(i · 𝐴)) · (exp‘-(i · 𝐴))) = 1)
264, 25syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(i · 𝐴)) · (exp‘-(i · 𝐴))) = 1)
2724, 26eqtr2d 2859 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → 1 = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
2820, 27oveq12d 7176 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(2 · (i · 𝐴))) + 1) = (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) + ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴)))))
296, 6, 11adddid 10667 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) = (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) + ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴)))))
3028, 29eqtr4d 2861 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(2 · (i · 𝐴))) + 1) = ((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))
3130oveq2d 7174 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (i · ((exp‘(2 · (i · 𝐴))) + 1)) = (i · ((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
321a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → i ∈ ℂ)
3332, 6, 13mul12d 10851 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (i · ((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))) = ((exp‘(i · 𝐴)) · (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
3431, 33eqtrd 2858 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (i · ((exp‘(2 · (i · 𝐴))) + 1)) = ((exp‘(i · 𝐴)) · (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
35 2cn 11715 . . . . . . . . 9 2 ∈ ℂ
36 mulcl 10623 . . . . . . . . 9 ((2 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (2 · (i · 𝐴)) ∈ ℂ)
3735, 4, 36sylancr 589 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (2 · (i · 𝐴)) ∈ ℂ)
38 efcl 15438 . . . . . . . 8 ((2 · (i · 𝐴)) ∈ ℂ → (exp‘(2 · (i · 𝐴))) ∈ ℂ)
3937, 38syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (exp‘(2 · (i · 𝐴))) ∈ ℂ)
40 ax-1cn 10597 . . . . . . 7 1 ∈ ℂ
41 addcl 10621 . . . . . . 7 (((exp‘(2 · (i · 𝐴))) ∈ ℂ ∧ 1 ∈ ℂ) → ((exp‘(2 · (i · 𝐴))) + 1) ∈ ℂ)
4239, 40, 41sylancl 588 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(2 · (i · 𝐴))) + 1) ∈ ℂ)
43 ine0 11077 . . . . . . 7 i ≠ 0
4443a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → i ≠ 0)
45 simpr 487 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0)
4632, 42, 44, 45mulne0d 11294 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (i · ((exp‘(2 · (i · 𝐴))) + 1)) ≠ 0)
4734, 46eqnetrrd 3086 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(i · 𝐴)) · (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))) ≠ 0)
486, 15, 47mulne0bbd 11298 . . 3 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) ≠ 0)
49 efne0 15452 . . . 4 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ≠ 0)
504, 49syl 17 . . 3 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (exp‘(i · 𝐴)) ≠ 0)
5112, 15, 6, 48, 50divcan5d 11444 . 2 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) / ((exp‘(i · 𝐴)) · (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
5220, 27oveq12d 7176 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(2 · (i · 𝐴))) − 1) = (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) − ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴)))))
536, 6, 11subdid 11098 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) = (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) − ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴)))))
5452, 53eqtr4d 2861 . . 3 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(2 · (i · 𝐴))) − 1) = ((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))))
5554, 34oveq12d 7176 . 2 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (((exp‘(2 · (i · 𝐴))) − 1) / (i · ((exp‘(2 · (i · 𝐴))) + 1))) = (((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) / ((exp‘(i · 𝐴)) · (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))))
56 cosval 15478 . . . . 5 (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
5756adantr 483 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
58 2cnd 11718 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → 2 ∈ ℂ)
5932, 13, 48mulne0bbd 11298 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ≠ 0)
60 2ne0 11744 . . . . . 6 2 ≠ 0
6160a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → 2 ≠ 0)
6213, 58, 59, 61divne0d 11434 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) ≠ 0)
6357, 62eqnetrd 3085 . . 3 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (cos‘𝐴) ≠ 0)
64 tanval2 15488 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
6563, 64syldan 593 . 2 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (tan‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
6651, 55, 653eqtr4rd 2869 1 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (tan‘𝐴) = (((exp‘(2 · (i · 𝐴))) − 1) / (i · ((exp‘(2 · (i · 𝐴))) + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3018  cfv 6357  (class class class)co 7158  cc 10537  0cc0 10539  1c1 10540  ici 10541   + caddc 10542   · cmul 10544  cmin 10872  -cneg 10873   / cdiv 11299  2c2 11695  cz 11984  cexp 13432  expce 15417  cosccos 15420  tanctan 15421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-ico 12747  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-ef 15423  df-sin 15425  df-cos 15426  df-tan 15427
This theorem is referenced by:  tanarg  25204  tanatan  25499
  Copyright terms: Public domain W3C validator