MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cosneg Structured version   Visualization version   GIF version

Theorem cosneg 15495
Description: The cosines of a number and its negative are the same. (Contributed by NM, 30-Apr-2005.)
Assertion
Ref Expression
cosneg (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴))

Proof of Theorem cosneg
StepHypRef Expression
1 negicn 10880 . . . . . 6 -i ∈ ℂ
2 mulcl 10614 . . . . . 6 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
31, 2mpan 689 . . . . 5 (𝐴 ∈ ℂ → (-i · 𝐴) ∈ ℂ)
4 efcl 15431 . . . . 5 ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
53, 4syl 17 . . . 4 (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
6 ax-icn 10589 . . . . . 6 i ∈ ℂ
7 mulcl 10614 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
86, 7mpan 689 . . . . 5 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
9 efcl 15431 . . . . 5 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
108, 9syl 17 . . . 4 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
11 mulneg12 11071 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) = (i · -𝐴))
126, 11mpan 689 . . . . . . 7 (𝐴 ∈ ℂ → (-i · 𝐴) = (i · -𝐴))
1312eqcomd 2807 . . . . . 6 (𝐴 ∈ ℂ → (i · -𝐴) = (-i · 𝐴))
1413fveq2d 6653 . . . . 5 (𝐴 ∈ ℂ → (exp‘(i · -𝐴)) = (exp‘(-i · 𝐴)))
15 mul2neg 11072 . . . . . . 7 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · -𝐴) = (i · 𝐴))
166, 15mpan 689 . . . . . 6 (𝐴 ∈ ℂ → (-i · -𝐴) = (i · 𝐴))
1716fveq2d 6653 . . . . 5 (𝐴 ∈ ℂ → (exp‘(-i · -𝐴)) = (exp‘(i · 𝐴)))
1814, 17oveq12d 7157 . . . 4 (𝐴 ∈ ℂ → ((exp‘(i · -𝐴)) + (exp‘(-i · -𝐴))) = ((exp‘(-i · 𝐴)) + (exp‘(i · 𝐴))))
195, 10, 18comraddd 10847 . . 3 (𝐴 ∈ ℂ → ((exp‘(i · -𝐴)) + (exp‘(-i · -𝐴))) = ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))
2019oveq1d 7154 . 2 (𝐴 ∈ ℂ → (((exp‘(i · -𝐴)) + (exp‘(-i · -𝐴))) / 2) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
21 negcl 10879 . . 3 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
22 cosval 15471 . . 3 (-𝐴 ∈ ℂ → (cos‘-𝐴) = (((exp‘(i · -𝐴)) + (exp‘(-i · -𝐴))) / 2))
2321, 22syl 17 . 2 (𝐴 ∈ ℂ → (cos‘-𝐴) = (((exp‘(i · -𝐴)) + (exp‘(-i · -𝐴))) / 2))
24 cosval 15471 . 2 (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
2520, 23, 243eqtr4d 2846 1 (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2112  cfv 6328  (class class class)co 7139  cc 10528  ici 10532   + caddc 10533   · cmul 10535  -cneg 10864   / cdiv 11290  2c2 11684  expce 15410  cosccos 15413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-ico 12736  df-fz 12890  df-fzo 13033  df-fl 13161  df-seq 13369  df-exp 13430  df-fac 13634  df-hash 13691  df-shft 14421  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-limsup 14823  df-clim 14840  df-rlim 14841  df-sum 15038  df-ef 15416  df-cos 15419
This theorem is referenced by:  tanneg  15496  efmival  15501  sinsub  15516  cossub  15517  sincossq  15524  cosneghalfpi  25066  cos2pim  25082  ptolemy  25092  coseq0negpitopi  25099  tanord  25133  argregt0  25204  argrege0  25205  atantan  25512
  Copyright terms: Public domain W3C validator