MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cosneg Structured version   Visualization version   GIF version

Theorem cosneg 16051
Description: The cosines of a number and its negative are the same. (Contributed by NM, 30-Apr-2005.)
Assertion
Ref Expression
cosneg (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴))

Proof of Theorem cosneg
StepHypRef Expression
1 negicn 11356 . . . . . 6 -i ∈ ℂ
2 mulcl 11085 . . . . . 6 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
31, 2mpan 690 . . . . 5 (𝐴 ∈ ℂ → (-i · 𝐴) ∈ ℂ)
4 efcl 15984 . . . . 5 ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
53, 4syl 17 . . . 4 (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
6 ax-icn 11060 . . . . . 6 i ∈ ℂ
7 mulcl 11085 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
86, 7mpan 690 . . . . 5 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
9 efcl 15984 . . . . 5 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
108, 9syl 17 . . . 4 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
11 mulneg12 11550 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) = (i · -𝐴))
126, 11mpan 690 . . . . . . 7 (𝐴 ∈ ℂ → (-i · 𝐴) = (i · -𝐴))
1312eqcomd 2737 . . . . . 6 (𝐴 ∈ ℂ → (i · -𝐴) = (-i · 𝐴))
1413fveq2d 6821 . . . . 5 (𝐴 ∈ ℂ → (exp‘(i · -𝐴)) = (exp‘(-i · 𝐴)))
15 mul2neg 11551 . . . . . . 7 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · -𝐴) = (i · 𝐴))
166, 15mpan 690 . . . . . 6 (𝐴 ∈ ℂ → (-i · -𝐴) = (i · 𝐴))
1716fveq2d 6821 . . . . 5 (𝐴 ∈ ℂ → (exp‘(-i · -𝐴)) = (exp‘(i · 𝐴)))
1814, 17oveq12d 7359 . . . 4 (𝐴 ∈ ℂ → ((exp‘(i · -𝐴)) + (exp‘(-i · -𝐴))) = ((exp‘(-i · 𝐴)) + (exp‘(i · 𝐴))))
195, 10, 18comraddd 11322 . . 3 (𝐴 ∈ ℂ → ((exp‘(i · -𝐴)) + (exp‘(-i · -𝐴))) = ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))
2019oveq1d 7356 . 2 (𝐴 ∈ ℂ → (((exp‘(i · -𝐴)) + (exp‘(-i · -𝐴))) / 2) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
21 negcl 11355 . . 3 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
22 cosval 16027 . . 3 (-𝐴 ∈ ℂ → (cos‘-𝐴) = (((exp‘(i · -𝐴)) + (exp‘(-i · -𝐴))) / 2))
2321, 22syl 17 . 2 (𝐴 ∈ ℂ → (cos‘-𝐴) = (((exp‘(i · -𝐴)) + (exp‘(-i · -𝐴))) / 2))
24 cosval 16027 . 2 (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
2520, 23, 243eqtr4d 2776 1 (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6476  (class class class)co 7341  cc 10999  ici 11003   + caddc 11004   · cmul 11006  -cneg 11340   / cdiv 11769  2c2 12175  expce 15963  cosccos 15966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-n0 12377  df-z 12464  df-uz 12728  df-rp 12886  df-ico 13246  df-fz 13403  df-fzo 13550  df-fl 13691  df-seq 13904  df-exp 13964  df-fac 14176  df-hash 14233  df-shft 14969  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-limsup 15373  df-clim 15390  df-rlim 15391  df-sum 15589  df-ef 15969  df-cos 15972
This theorem is referenced by:  tanneg  16052  efmival  16057  sinsub  16072  cossub  16073  sincossq  16080  cosneghalfpi  26401  cos2pim  26417  ptolemy  26427  coseq0negpitopi  26434  tanord  26469  argregt0  26541  argrege0  26542  atantan  26855  cospim  42384
  Copyright terms: Public domain W3C validator