MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanval2 Structured version   Visualization version   GIF version

Theorem tanval2 15203
Description: Express the tangent function directly in terms of exp. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
tanval2 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))

Proof of Theorem tanval2
StepHypRef Expression
1 tanval 15198 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
2 2cn 11392 . . . . . . 7 2 ∈ ℂ
3 ax-icn 10287 . . . . . . 7 i ∈ ℂ
42, 3mulcomi 10341 . . . . . 6 (2 · i) = (i · 2)
54oveq2i 6893 . . . . 5 (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · 2))
6 sinval 15192 . . . . . 6 (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
76adantr 473 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
8 simpl 475 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → 𝐴 ∈ ℂ)
9 mulcl 10312 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
103, 8, 9sylancr 582 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (i · 𝐴) ∈ ℂ)
11 efcl 15153 . . . . . . . 8 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
1210, 11syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (exp‘(i · 𝐴)) ∈ ℂ)
13 negicn 10577 . . . . . . . . 9 -i ∈ ℂ
14 mulcl 10312 . . . . . . . . 9 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
1513, 8, 14sylancr 582 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (-i · 𝐴) ∈ ℂ)
16 efcl 15153 . . . . . . . 8 ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
1715, 16syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (exp‘(-i · 𝐴)) ∈ ℂ)
1812, 17subcld 10688 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ)
193a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → i ∈ ℂ)
202a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → 2 ∈ ℂ)
21 ine0 10761 . . . . . . 7 i ≠ 0
2221a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → i ≠ 0)
23 2ne0 11428 . . . . . . 7 2 ≠ 0
2423a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → 2 ≠ 0)
2518, 19, 20, 22, 24divdiv1d 11128 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · 2)))
265, 7, 253eqtr4a 2863 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (sin‘𝐴) = ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2))
27 cosval 15193 . . . . 5 (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
2827adantr 473 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
2926, 28oveq12d 6900 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((sin‘𝐴) / (cos‘𝐴)) = (((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) / (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)))
301, 29eqtrd 2837 . 2 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = (((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) / (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)))
3118, 19, 22divcld 11097 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) ∈ ℂ)
3212, 17addcld 10352 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ)
33 simpr 478 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (cos‘𝐴) ≠ 0)
3428, 33eqnetrrd 3043 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) ≠ 0)
3532, 20, 24diveq0ad 11107 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) = 0 ↔ ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) = 0))
3635necon3bid 3019 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) ≠ 0 ↔ ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ≠ 0))
3734, 36mpbid 224 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ≠ 0)
3831, 32, 20, 37, 24divcan7d 11125 . 2 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) / (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) = ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))
3918, 19, 32, 22, 37divdiv1d 11128 . 2 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
4030, 38, 393eqtrd 2841 1 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  wne 2975  cfv 6105  (class class class)co 6882  cc 10226  0cc0 10228  ici 10230   + caddc 10231   · cmul 10233  cmin 10560  -cneg 10561   / cdiv 10980  2c2 11372  expce 15132  sincsin 15134  cosccos 15135  tanctan 15136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2379  ax-ext 2781  ax-rep 4968  ax-sep 4979  ax-nul 4987  ax-pow 5039  ax-pr 5101  ax-un 7187  ax-inf2 8792  ax-cnex 10284  ax-resscn 10285  ax-1cn 10286  ax-icn 10287  ax-addcl 10288  ax-addrcl 10289  ax-mulcl 10290  ax-mulrcl 10291  ax-mulcom 10292  ax-addass 10293  ax-mulass 10294  ax-distr 10295  ax-i2m1 10296  ax-1ne0 10297  ax-1rid 10298  ax-rnegex 10299  ax-rrecex 10300  ax-cnre 10301  ax-pre-lttri 10302  ax-pre-lttrn 10303  ax-pre-ltadd 10304  ax-pre-mulgt0 10305  ax-pre-sup 10306  ax-addf 10307  ax-mulf 10308
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2593  df-eu 2611  df-clab 2790  df-cleq 2796  df-clel 2799  df-nfc 2934  df-ne 2976  df-nel 3079  df-ral 3098  df-rex 3099  df-reu 3100  df-rmo 3101  df-rab 3102  df-v 3391  df-sbc 3638  df-csb 3733  df-dif 3776  df-un 3778  df-in 3780  df-ss 3787  df-pss 3789  df-nul 4120  df-if 4282  df-pw 4355  df-sn 4373  df-pr 4375  df-tp 4377  df-op 4379  df-uni 4633  df-int 4672  df-iun 4716  df-br 4848  df-opab 4910  df-mpt 4927  df-tr 4950  df-id 5224  df-eprel 5229  df-po 5237  df-so 5238  df-fr 5275  df-se 5276  df-we 5277  df-xp 5322  df-rel 5323  df-cnv 5324  df-co 5325  df-dm 5326  df-rn 5327  df-res 5328  df-ima 5329  df-pred 5902  df-ord 5948  df-on 5949  df-lim 5950  df-suc 5951  df-iota 6068  df-fun 6107  df-fn 6108  df-f 6109  df-f1 6110  df-fo 6111  df-f1o 6112  df-fv 6113  df-isom 6114  df-riota 6843  df-ov 6885  df-oprab 6886  df-mpt2 6887  df-om 7304  df-1st 7405  df-2nd 7406  df-wrecs 7649  df-recs 7711  df-rdg 7749  df-1o 7803  df-oadd 7807  df-er 7986  df-pm 8102  df-en 8200  df-dom 8201  df-sdom 8202  df-fin 8203  df-sup 8594  df-inf 8595  df-oi 8661  df-card 9055  df-pnf 10369  df-mnf 10370  df-xr 10371  df-ltxr 10372  df-le 10373  df-sub 10562  df-neg 10563  df-div 10981  df-nn 11317  df-2 11380  df-3 11381  df-n0 11585  df-z 11671  df-uz 11935  df-rp 12079  df-ico 12434  df-fz 12585  df-fzo 12725  df-fl 12852  df-seq 13060  df-exp 13119  df-fac 13318  df-hash 13375  df-shft 14152  df-cj 14184  df-re 14185  df-im 14186  df-sqrt 14320  df-abs 14321  df-limsup 14547  df-clim 14564  df-rlim 14565  df-sum 14762  df-ef 15138  df-sin 15140  df-cos 15141  df-tan 15142
This theorem is referenced by:  tanval3  15204
  Copyright terms: Public domain W3C validator