Proof of Theorem tanval2
| Step | Hyp | Ref
| Expression |
| 1 | | tanval 16146 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) ≠ 0)
→ (tan‘𝐴) =
((sin‘𝐴) /
(cos‘𝐴))) |
| 2 | | 2cn 12323 |
. . . . . . 7
⊢ 2 ∈
ℂ |
| 3 | | ax-icn 11196 |
. . . . . . 7
⊢ i ∈
ℂ |
| 4 | 2, 3 | mulcomi 11251 |
. . . . . 6
⊢ (2
· i) = (i · 2) |
| 5 | 4 | oveq2i 7424 |
. . . . 5
⊢
(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) =
(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i ·
2)) |
| 6 | | sinval 16140 |
. . . . . 6
⊢ (𝐴 ∈ ℂ →
(sin‘𝐴) =
(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 ·
i))) |
| 7 | 6 | adantr 480 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) ≠ 0)
→ (sin‘𝐴) =
(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 ·
i))) |
| 8 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) ≠ 0)
→ 𝐴 ∈
ℂ) |
| 9 | | mulcl 11221 |
. . . . . . . . 9
⊢ ((i
∈ ℂ ∧ 𝐴
∈ ℂ) → (i · 𝐴) ∈ ℂ) |
| 10 | 3, 8, 9 | sylancr 587 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) ≠ 0)
→ (i · 𝐴)
∈ ℂ) |
| 11 | | efcl 16100 |
. . . . . . . 8
⊢ ((i
· 𝐴) ∈ ℂ
→ (exp‘(i · 𝐴)) ∈ ℂ) |
| 12 | 10, 11 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) ≠ 0)
→ (exp‘(i · 𝐴)) ∈ ℂ) |
| 13 | | negicn 11491 |
. . . . . . . . 9
⊢ -i ∈
ℂ |
| 14 | | mulcl 11221 |
. . . . . . . . 9
⊢ ((-i
∈ ℂ ∧ 𝐴
∈ ℂ) → (-i · 𝐴) ∈ ℂ) |
| 15 | 13, 8, 14 | sylancr 587 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) ≠ 0)
→ (-i · 𝐴)
∈ ℂ) |
| 16 | | efcl 16100 |
. . . . . . . 8
⊢ ((-i
· 𝐴) ∈ ℂ
→ (exp‘(-i · 𝐴)) ∈ ℂ) |
| 17 | 15, 16 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) ≠ 0)
→ (exp‘(-i · 𝐴)) ∈ ℂ) |
| 18 | 12, 17 | subcld 11602 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) ≠ 0)
→ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈
ℂ) |
| 19 | 3 | a1i 11 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) ≠ 0)
→ i ∈ ℂ) |
| 20 | 2 | a1i 11 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) ≠ 0)
→ 2 ∈ ℂ) |
| 21 | | ine0 11680 |
. . . . . . 7
⊢ i ≠
0 |
| 22 | 21 | a1i 11 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) ≠ 0)
→ i ≠ 0) |
| 23 | | 2ne0 12352 |
. . . . . . 7
⊢ 2 ≠
0 |
| 24 | 23 | a1i 11 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) ≠ 0)
→ 2 ≠ 0) |
| 25 | 18, 19, 20, 22, 24 | divdiv1d 12056 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) ≠ 0)
→ ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) = (((exp‘(i
· 𝐴)) −
(exp‘(-i · 𝐴))) / (i · 2))) |
| 26 | 5, 7, 25 | 3eqtr4a 2795 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) ≠ 0)
→ (sin‘𝐴) =
((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2)) |
| 27 | | cosval 16141 |
. . . . 5
⊢ (𝐴 ∈ ℂ →
(cos‘𝐴) =
(((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) |
| 28 | 27 | adantr 480 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) ≠ 0)
→ (cos‘𝐴) =
(((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) |
| 29 | 26, 28 | oveq12d 7431 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) ≠ 0)
→ ((sin‘𝐴) /
(cos‘𝐴)) =
(((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) / (((exp‘(i
· 𝐴)) +
(exp‘(-i · 𝐴))) / 2))) |
| 30 | 1, 29 | eqtrd 2769 |
. 2
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) ≠ 0)
→ (tan‘𝐴) =
(((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) / (((exp‘(i
· 𝐴)) +
(exp‘(-i · 𝐴))) / 2))) |
| 31 | 18, 19, 22 | divcld 12025 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) ≠ 0)
→ (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) ∈
ℂ) |
| 32 | 12, 17 | addcld 11262 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) ≠ 0)
→ ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈
ℂ) |
| 33 | | simpr 484 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) ≠ 0)
→ (cos‘𝐴) ≠
0) |
| 34 | 28, 33 | eqnetrrd 2999 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) ≠ 0)
→ (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) ≠
0) |
| 35 | 32, 20, 24 | diveq0ad 12035 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) ≠ 0)
→ ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) = 0 ↔
((exp‘(i · 𝐴))
+ (exp‘(-i · 𝐴))) = 0)) |
| 36 | 35 | necon3bid 2975 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) ≠ 0)
→ ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) ≠ 0 ↔
((exp‘(i · 𝐴))
+ (exp‘(-i · 𝐴))) ≠ 0)) |
| 37 | 34, 36 | mpbid 232 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) ≠ 0)
→ ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ≠ 0) |
| 38 | 31, 32, 20, 37, 24 | divcan7d 12053 |
. 2
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) ≠ 0)
→ (((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) / (((exp‘(i
· 𝐴)) +
(exp‘(-i · 𝐴))) / 2)) = ((((exp‘(i · 𝐴)) − (exp‘(-i
· 𝐴))) / i) /
((exp‘(i · 𝐴))
+ (exp‘(-i · 𝐴))))) |
| 39 | 18, 19, 32, 22, 37 | divdiv1d 12056 |
. 2
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) ≠ 0)
→ ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / ((exp‘(i
· 𝐴)) +
(exp‘(-i · 𝐴)))) = (((exp‘(i · 𝐴)) − (exp‘(-i
· 𝐴))) / (i ·
((exp‘(i · 𝐴))
+ (exp‘(-i · 𝐴)))))) |
| 40 | 30, 38, 39 | 3eqtrd 2773 |
1
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) ≠ 0)
→ (tan‘𝐴) =
(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i
· 𝐴)) +
(exp‘(-i · 𝐴)))))) |