MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanval2 Structured version   Visualization version   GIF version

Theorem tanval2 15770
Description: Express the tangent function directly in terms of exp. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
tanval2 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))

Proof of Theorem tanval2
StepHypRef Expression
1 tanval 15765 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
2 2cn 11978 . . . . . . 7 2 ∈ ℂ
3 ax-icn 10861 . . . . . . 7 i ∈ ℂ
42, 3mulcomi 10914 . . . . . 6 (2 · i) = (i · 2)
54oveq2i 7266 . . . . 5 (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · 2))
6 sinval 15759 . . . . . 6 (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
76adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
8 simpl 482 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → 𝐴 ∈ ℂ)
9 mulcl 10886 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
103, 8, 9sylancr 586 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (i · 𝐴) ∈ ℂ)
11 efcl 15720 . . . . . . . 8 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
1210, 11syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (exp‘(i · 𝐴)) ∈ ℂ)
13 negicn 11152 . . . . . . . . 9 -i ∈ ℂ
14 mulcl 10886 . . . . . . . . 9 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
1513, 8, 14sylancr 586 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (-i · 𝐴) ∈ ℂ)
16 efcl 15720 . . . . . . . 8 ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
1715, 16syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (exp‘(-i · 𝐴)) ∈ ℂ)
1812, 17subcld 11262 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ)
193a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → i ∈ ℂ)
202a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → 2 ∈ ℂ)
21 ine0 11340 . . . . . . 7 i ≠ 0
2221a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → i ≠ 0)
23 2ne0 12007 . . . . . . 7 2 ≠ 0
2423a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → 2 ≠ 0)
2518, 19, 20, 22, 24divdiv1d 11712 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · 2)))
265, 7, 253eqtr4a 2805 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (sin‘𝐴) = ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2))
27 cosval 15760 . . . . 5 (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
2827adantr 480 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
2926, 28oveq12d 7273 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((sin‘𝐴) / (cos‘𝐴)) = (((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) / (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)))
301, 29eqtrd 2778 . 2 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = (((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) / (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)))
3118, 19, 22divcld 11681 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) ∈ ℂ)
3212, 17addcld 10925 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ)
33 simpr 484 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (cos‘𝐴) ≠ 0)
3428, 33eqnetrrd 3011 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) ≠ 0)
3532, 20, 24diveq0ad 11691 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) = 0 ↔ ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) = 0))
3635necon3bid 2987 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) ≠ 0 ↔ ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ≠ 0))
3734, 36mpbid 231 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ≠ 0)
3831, 32, 20, 37, 24divcan7d 11709 . 2 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) / (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) = ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))
3918, 19, 32, 22, 37divdiv1d 11712 . 2 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
4030, 38, 393eqtrd 2782 1 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  ici 10804   + caddc 10805   · cmul 10807  cmin 11135  -cneg 11136   / cdiv 11562  2c2 11958  expce 15699  sincsin 15701  cosccos 15702  tanctan 15703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-fac 13916  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-tan 15709
This theorem is referenced by:  tanval3  15771
  Copyright terms: Public domain W3C validator