MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanval2 Structured version   Visualization version   GIF version

Theorem tanval2 16108
Description: Express the tangent function directly in terms of exp. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
tanval2 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))

Proof of Theorem tanval2
StepHypRef Expression
1 tanval 16103 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
2 2cn 12268 . . . . . . 7 2 ∈ ℂ
3 ax-icn 11134 . . . . . . 7 i ∈ ℂ
42, 3mulcomi 11189 . . . . . 6 (2 · i) = (i · 2)
54oveq2i 7401 . . . . 5 (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · 2))
6 sinval 16097 . . . . . 6 (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
76adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
8 simpl 482 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → 𝐴 ∈ ℂ)
9 mulcl 11159 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
103, 8, 9sylancr 587 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (i · 𝐴) ∈ ℂ)
11 efcl 16055 . . . . . . . 8 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
1210, 11syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (exp‘(i · 𝐴)) ∈ ℂ)
13 negicn 11429 . . . . . . . . 9 -i ∈ ℂ
14 mulcl 11159 . . . . . . . . 9 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
1513, 8, 14sylancr 587 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (-i · 𝐴) ∈ ℂ)
16 efcl 16055 . . . . . . . 8 ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
1715, 16syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (exp‘(-i · 𝐴)) ∈ ℂ)
1812, 17subcld 11540 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ)
193a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → i ∈ ℂ)
202a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → 2 ∈ ℂ)
21 ine0 11620 . . . . . . 7 i ≠ 0
2221a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → i ≠ 0)
23 2ne0 12297 . . . . . . 7 2 ≠ 0
2423a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → 2 ≠ 0)
2518, 19, 20, 22, 24divdiv1d 11996 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · 2)))
265, 7, 253eqtr4a 2791 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (sin‘𝐴) = ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2))
27 cosval 16098 . . . . 5 (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
2827adantr 480 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
2926, 28oveq12d 7408 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((sin‘𝐴) / (cos‘𝐴)) = (((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) / (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)))
301, 29eqtrd 2765 . 2 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = (((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) / (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)))
3118, 19, 22divcld 11965 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) ∈ ℂ)
3212, 17addcld 11200 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ)
33 simpr 484 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (cos‘𝐴) ≠ 0)
3428, 33eqnetrrd 2994 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) ≠ 0)
3532, 20, 24diveq0ad 11975 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) = 0 ↔ ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) = 0))
3635necon3bid 2970 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) ≠ 0 ↔ ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ≠ 0))
3734, 36mpbid 232 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ≠ 0)
3831, 32, 20, 37, 24divcan7d 11993 . 2 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) / (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) = ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))
3918, 19, 32, 22, 37divdiv1d 11996 . 2 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
4030, 38, 393eqtrd 2769 1 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075  ici 11077   + caddc 11078   · cmul 11080  cmin 11412  -cneg 11413   / cdiv 11842  2c2 12248  expce 16034  sincsin 16036  cosccos 16037  tanctan 16038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-ico 13319  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-fac 14246  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-tan 16044
This theorem is referenced by:  tanval3  16109
  Copyright terms: Public domain W3C validator