Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lautcvr Structured version   Visualization version   GIF version

Theorem lautcvr 40049
Description: Covering property of a lattice automorphism. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
lautcvr.b 𝐵 = (Base‘𝐾)
lautcvr.c 𝐶 = ( ⋖ ‘𝐾)
lautcvr.i 𝐼 = (LAut‘𝐾)
Assertion
Ref Expression
lautcvr ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋𝐶𝑌 ↔ (𝐹𝑋)𝐶(𝐹𝑌)))

Proof of Theorem lautcvr
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lautcvr.b . . . 4 𝐵 = (Base‘𝐾)
2 eqid 2740 . . . 4 (lt‘𝐾) = (lt‘𝐾)
3 lautcvr.i . . . 4 𝐼 = (LAut‘𝐾)
41, 2, 3lautlt 40048 . . 3 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋(lt‘𝐾)𝑌 ↔ (𝐹𝑋)(lt‘𝐾)(𝐹𝑌)))
5 simpll 766 . . . . . . . . 9 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑤𝐵) → 𝐾𝐴)
6 simplr1 1215 . . . . . . . . 9 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑤𝐵) → 𝐹𝐼)
7 simplr2 1216 . . . . . . . . 9 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑤𝐵) → 𝑋𝐵)
8 simpr 484 . . . . . . . . 9 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑤𝐵) → 𝑤𝐵)
91, 2, 3lautlt 40048 . . . . . . . . 9 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑤𝐵)) → (𝑋(lt‘𝐾)𝑤 ↔ (𝐹𝑋)(lt‘𝐾)(𝐹𝑤)))
105, 6, 7, 8, 9syl13anc 1372 . . . . . . . 8 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑤𝐵) → (𝑋(lt‘𝐾)𝑤 ↔ (𝐹𝑋)(lt‘𝐾)(𝐹𝑤)))
11 simplr3 1217 . . . . . . . . 9 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑤𝐵) → 𝑌𝐵)
121, 2, 3lautlt 40048 . . . . . . . . 9 ((𝐾𝐴 ∧ (𝐹𝐼𝑤𝐵𝑌𝐵)) → (𝑤(lt‘𝐾)𝑌 ↔ (𝐹𝑤)(lt‘𝐾)(𝐹𝑌)))
135, 6, 8, 11, 12syl13anc 1372 . . . . . . . 8 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑤𝐵) → (𝑤(lt‘𝐾)𝑌 ↔ (𝐹𝑤)(lt‘𝐾)(𝐹𝑌)))
1410, 13anbi12d 631 . . . . . . 7 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑤𝐵) → ((𝑋(lt‘𝐾)𝑤𝑤(lt‘𝐾)𝑌) ↔ ((𝐹𝑋)(lt‘𝐾)(𝐹𝑤) ∧ (𝐹𝑤)(lt‘𝐾)(𝐹𝑌))))
151, 3lautcl 40044 . . . . . . . . 9 (((𝐾𝐴𝐹𝐼) ∧ 𝑤𝐵) → (𝐹𝑤) ∈ 𝐵)
165, 6, 8, 15syl21anc 837 . . . . . . . 8 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑤𝐵) → (𝐹𝑤) ∈ 𝐵)
17 breq2 5170 . . . . . . . . . . 11 (𝑧 = (𝐹𝑤) → ((𝐹𝑋)(lt‘𝐾)𝑧 ↔ (𝐹𝑋)(lt‘𝐾)(𝐹𝑤)))
18 breq1 5169 . . . . . . . . . . 11 (𝑧 = (𝐹𝑤) → (𝑧(lt‘𝐾)(𝐹𝑌) ↔ (𝐹𝑤)(lt‘𝐾)(𝐹𝑌)))
1917, 18anbi12d 631 . . . . . . . . . 10 (𝑧 = (𝐹𝑤) → (((𝐹𝑋)(lt‘𝐾)𝑧𝑧(lt‘𝐾)(𝐹𝑌)) ↔ ((𝐹𝑋)(lt‘𝐾)(𝐹𝑤) ∧ (𝐹𝑤)(lt‘𝐾)(𝐹𝑌))))
2019rspcev 3635 . . . . . . . . 9 (((𝐹𝑤) ∈ 𝐵 ∧ ((𝐹𝑋)(lt‘𝐾)(𝐹𝑤) ∧ (𝐹𝑤)(lt‘𝐾)(𝐹𝑌))) → ∃𝑧𝐵 ((𝐹𝑋)(lt‘𝐾)𝑧𝑧(lt‘𝐾)(𝐹𝑌)))
2120ex 412 . . . . . . . 8 ((𝐹𝑤) ∈ 𝐵 → (((𝐹𝑋)(lt‘𝐾)(𝐹𝑤) ∧ (𝐹𝑤)(lt‘𝐾)(𝐹𝑌)) → ∃𝑧𝐵 ((𝐹𝑋)(lt‘𝐾)𝑧𝑧(lt‘𝐾)(𝐹𝑌))))
2216, 21syl 17 . . . . . . 7 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑤𝐵) → (((𝐹𝑋)(lt‘𝐾)(𝐹𝑤) ∧ (𝐹𝑤)(lt‘𝐾)(𝐹𝑌)) → ∃𝑧𝐵 ((𝐹𝑋)(lt‘𝐾)𝑧𝑧(lt‘𝐾)(𝐹𝑌))))
2314, 22sylbid 240 . . . . . 6 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑤𝐵) → ((𝑋(lt‘𝐾)𝑤𝑤(lt‘𝐾)𝑌) → ∃𝑧𝐵 ((𝐹𝑋)(lt‘𝐾)𝑧𝑧(lt‘𝐾)(𝐹𝑌))))
2423rexlimdva 3161 . . . . 5 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (∃𝑤𝐵 (𝑋(lt‘𝐾)𝑤𝑤(lt‘𝐾)𝑌) → ∃𝑧𝐵 ((𝐹𝑋)(lt‘𝐾)𝑧𝑧(lt‘𝐾)(𝐹𝑌))))
25 simpll 766 . . . . . . . . . 10 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑧𝐵) → 𝐾𝐴)
26 simplr1 1215 . . . . . . . . . 10 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑧𝐵) → 𝐹𝐼)
27 simplr2 1216 . . . . . . . . . 10 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑧𝐵) → 𝑋𝐵)
281, 3laut1o 40042 . . . . . . . . . . . 12 ((𝐾𝐴𝐹𝐼) → 𝐹:𝐵1-1-onto𝐵)
2925, 26, 28syl2anc 583 . . . . . . . . . . 11 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑧𝐵) → 𝐹:𝐵1-1-onto𝐵)
30 f1ocnvdm 7321 . . . . . . . . . . 11 ((𝐹:𝐵1-1-onto𝐵𝑧𝐵) → (𝐹𝑧) ∈ 𝐵)
3129, 30sylancom 587 . . . . . . . . . 10 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑧𝐵) → (𝐹𝑧) ∈ 𝐵)
321, 2, 3lautlt 40048 . . . . . . . . . 10 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵 ∧ (𝐹𝑧) ∈ 𝐵)) → (𝑋(lt‘𝐾)(𝐹𝑧) ↔ (𝐹𝑋)(lt‘𝐾)(𝐹‘(𝐹𝑧))))
3325, 26, 27, 31, 32syl13anc 1372 . . . . . . . . 9 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑧𝐵) → (𝑋(lt‘𝐾)(𝐹𝑧) ↔ (𝐹𝑋)(lt‘𝐾)(𝐹‘(𝐹𝑧))))
34 f1ocnvfv2 7313 . . . . . . . . . . 11 ((𝐹:𝐵1-1-onto𝐵𝑧𝐵) → (𝐹‘(𝐹𝑧)) = 𝑧)
3529, 34sylancom 587 . . . . . . . . . 10 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑧𝐵) → (𝐹‘(𝐹𝑧)) = 𝑧)
3635breq2d 5178 . . . . . . . . 9 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑧𝐵) → ((𝐹𝑋)(lt‘𝐾)(𝐹‘(𝐹𝑧)) ↔ (𝐹𝑋)(lt‘𝐾)𝑧))
3733, 36bitr2d 280 . . . . . . . 8 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑧𝐵) → ((𝐹𝑋)(lt‘𝐾)𝑧𝑋(lt‘𝐾)(𝐹𝑧)))
38 simplr3 1217 . . . . . . . . . 10 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑧𝐵) → 𝑌𝐵)
391, 2, 3lautlt 40048 . . . . . . . . . 10 ((𝐾𝐴 ∧ (𝐹𝐼 ∧ (𝐹𝑧) ∈ 𝐵𝑌𝐵)) → ((𝐹𝑧)(lt‘𝐾)𝑌 ↔ (𝐹‘(𝐹𝑧))(lt‘𝐾)(𝐹𝑌)))
4025, 26, 31, 38, 39syl13anc 1372 . . . . . . . . 9 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑧𝐵) → ((𝐹𝑧)(lt‘𝐾)𝑌 ↔ (𝐹‘(𝐹𝑧))(lt‘𝐾)(𝐹𝑌)))
4135breq1d 5176 . . . . . . . . 9 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑧𝐵) → ((𝐹‘(𝐹𝑧))(lt‘𝐾)(𝐹𝑌) ↔ 𝑧(lt‘𝐾)(𝐹𝑌)))
4240, 41bitr2d 280 . . . . . . . 8 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑧𝐵) → (𝑧(lt‘𝐾)(𝐹𝑌) ↔ (𝐹𝑧)(lt‘𝐾)𝑌))
4337, 42anbi12d 631 . . . . . . 7 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑧𝐵) → (((𝐹𝑋)(lt‘𝐾)𝑧𝑧(lt‘𝐾)(𝐹𝑌)) ↔ (𝑋(lt‘𝐾)(𝐹𝑧) ∧ (𝐹𝑧)(lt‘𝐾)𝑌)))
44 breq2 5170 . . . . . . . . . . 11 (𝑤 = (𝐹𝑧) → (𝑋(lt‘𝐾)𝑤𝑋(lt‘𝐾)(𝐹𝑧)))
45 breq1 5169 . . . . . . . . . . 11 (𝑤 = (𝐹𝑧) → (𝑤(lt‘𝐾)𝑌 ↔ (𝐹𝑧)(lt‘𝐾)𝑌))
4644, 45anbi12d 631 . . . . . . . . . 10 (𝑤 = (𝐹𝑧) → ((𝑋(lt‘𝐾)𝑤𝑤(lt‘𝐾)𝑌) ↔ (𝑋(lt‘𝐾)(𝐹𝑧) ∧ (𝐹𝑧)(lt‘𝐾)𝑌)))
4746rspcev 3635 . . . . . . . . 9 (((𝐹𝑧) ∈ 𝐵 ∧ (𝑋(lt‘𝐾)(𝐹𝑧) ∧ (𝐹𝑧)(lt‘𝐾)𝑌)) → ∃𝑤𝐵 (𝑋(lt‘𝐾)𝑤𝑤(lt‘𝐾)𝑌))
4847ex 412 . . . . . . . 8 ((𝐹𝑧) ∈ 𝐵 → ((𝑋(lt‘𝐾)(𝐹𝑧) ∧ (𝐹𝑧)(lt‘𝐾)𝑌) → ∃𝑤𝐵 (𝑋(lt‘𝐾)𝑤𝑤(lt‘𝐾)𝑌)))
4931, 48syl 17 . . . . . . 7 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑧𝐵) → ((𝑋(lt‘𝐾)(𝐹𝑧) ∧ (𝐹𝑧)(lt‘𝐾)𝑌) → ∃𝑤𝐵 (𝑋(lt‘𝐾)𝑤𝑤(lt‘𝐾)𝑌)))
5043, 49sylbid 240 . . . . . 6 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑧𝐵) → (((𝐹𝑋)(lt‘𝐾)𝑧𝑧(lt‘𝐾)(𝐹𝑌)) → ∃𝑤𝐵 (𝑋(lt‘𝐾)𝑤𝑤(lt‘𝐾)𝑌)))
5150rexlimdva 3161 . . . . 5 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (∃𝑧𝐵 ((𝐹𝑋)(lt‘𝐾)𝑧𝑧(lt‘𝐾)(𝐹𝑌)) → ∃𝑤𝐵 (𝑋(lt‘𝐾)𝑤𝑤(lt‘𝐾)𝑌)))
5224, 51impbid 212 . . . 4 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (∃𝑤𝐵 (𝑋(lt‘𝐾)𝑤𝑤(lt‘𝐾)𝑌) ↔ ∃𝑧𝐵 ((𝐹𝑋)(lt‘𝐾)𝑧𝑧(lt‘𝐾)(𝐹𝑌))))
5352notbid 318 . . 3 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (¬ ∃𝑤𝐵 (𝑋(lt‘𝐾)𝑤𝑤(lt‘𝐾)𝑌) ↔ ¬ ∃𝑧𝐵 ((𝐹𝑋)(lt‘𝐾)𝑧𝑧(lt‘𝐾)(𝐹𝑌))))
544, 53anbi12d 631 . 2 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → ((𝑋(lt‘𝐾)𝑌 ∧ ¬ ∃𝑤𝐵 (𝑋(lt‘𝐾)𝑤𝑤(lt‘𝐾)𝑌)) ↔ ((𝐹𝑋)(lt‘𝐾)(𝐹𝑌) ∧ ¬ ∃𝑧𝐵 ((𝐹𝑋)(lt‘𝐾)𝑧𝑧(lt‘𝐾)(𝐹𝑌)))))
55 lautcvr.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
561, 2, 55cvrval 39225 . . 3 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋(lt‘𝐾)𝑌 ∧ ¬ ∃𝑤𝐵 (𝑋(lt‘𝐾)𝑤𝑤(lt‘𝐾)𝑌))))
57563adant3r1 1182 . 2 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋𝐶𝑌 ↔ (𝑋(lt‘𝐾)𝑌 ∧ ¬ ∃𝑤𝐵 (𝑋(lt‘𝐾)𝑤𝑤(lt‘𝐾)𝑌))))
58 simpl 482 . . 3 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝐾𝐴)
59 simpr1 1194 . . . 4 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝐹𝐼)
60 simpr2 1195 . . . 4 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
611, 3lautcl 40044 . . . 4 (((𝐾𝐴𝐹𝐼) ∧ 𝑋𝐵) → (𝐹𝑋) ∈ 𝐵)
6258, 59, 60, 61syl21anc 837 . . 3 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹𝑋) ∈ 𝐵)
63 simpr3 1196 . . . 4 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
641, 3lautcl 40044 . . . 4 (((𝐾𝐴𝐹𝐼) ∧ 𝑌𝐵) → (𝐹𝑌) ∈ 𝐵)
6558, 59, 63, 64syl21anc 837 . . 3 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹𝑌) ∈ 𝐵)
661, 2, 55cvrval 39225 . . 3 ((𝐾𝐴 ∧ (𝐹𝑋) ∈ 𝐵 ∧ (𝐹𝑌) ∈ 𝐵) → ((𝐹𝑋)𝐶(𝐹𝑌) ↔ ((𝐹𝑋)(lt‘𝐾)(𝐹𝑌) ∧ ¬ ∃𝑧𝐵 ((𝐹𝑋)(lt‘𝐾)𝑧𝑧(lt‘𝐾)(𝐹𝑌)))))
6758, 62, 65, 66syl3anc 1371 . 2 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → ((𝐹𝑋)𝐶(𝐹𝑌) ↔ ((𝐹𝑋)(lt‘𝐾)(𝐹𝑌) ∧ ¬ ∃𝑧𝐵 ((𝐹𝑋)(lt‘𝐾)𝑧𝑧(lt‘𝐾)(𝐹𝑌)))))
6854, 57, 673bitr4d 311 1 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋𝐶𝑌 ↔ (𝐹𝑋)𝐶(𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076   class class class wbr 5166  ccnv 5699  1-1-ontowf1o 6572  cfv 6573  Basecbs 17258  ltcplt 18378  ccvr 39218  LAutclaut 39942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-plt 18400  df-covers 39222  df-laut 39946
This theorem is referenced by:  ltrncvr  40090
  Copyright terms: Public domain W3C validator