MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrval Structured version   Visualization version   GIF version

Theorem dchrval 27293
Description: Value of the group of Dirichlet characters. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrval.g 𝐺 = (DChr‘𝑁)
dchrval.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrval.b 𝐵 = (Base‘𝑍)
dchrval.u 𝑈 = (Unit‘𝑍)
dchrval.n (𝜑𝑁 ∈ ℕ)
dchrval.d (𝜑𝐷 = {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵𝑈) × {0}) ⊆ 𝑥})
Assertion
Ref Expression
dchrval (𝜑𝐺 = {⟨(Base‘ndx), 𝐷⟩, ⟨(+g‘ndx), ( ∘f · ↾ (𝐷 × 𝐷))⟩})
Distinct variable groups:   𝑥,𝐵   𝑥,𝑁   𝑥,𝑈   𝜑,𝑥   𝑥,𝑍
Allowed substitution hints:   𝐷(𝑥)   𝐺(𝑥)

Proof of Theorem dchrval
Dummy variables 𝑧 𝑛 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchrval.g . 2 𝐺 = (DChr‘𝑁)
2 df-dchr 27292 . . 3 DChr = (𝑛 ∈ ℕ ↦ (ℤ/nℤ‘𝑛) / 𝑧{𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥} / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘f · ↾ (𝑏 × 𝑏))⟩})
3 fvexd 6922 . . . 4 ((𝜑𝑛 = 𝑁) → (ℤ/nℤ‘𝑛) ∈ V)
4 ovex 7464 . . . . . . 7 ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∈ V
54rabex 5345 . . . . . 6 {𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥} ∈ V
65a1i 11 . . . . 5 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → {𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥} ∈ V)
7 dchrval.d . . . . . . . . . . 11 (𝜑𝐷 = {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵𝑈) × {0}) ⊆ 𝑥})
87ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → 𝐷 = {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵𝑈) × {0}) ⊆ 𝑥})
9 dchrval.z . . . . . . . . . . . . . . . 16 𝑍 = (ℤ/nℤ‘𝑁)
10 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 = 𝑁) → 𝑛 = 𝑁)
1110fveq2d 6911 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 = 𝑁) → (ℤ/nℤ‘𝑛) = (ℤ/nℤ‘𝑁))
129, 11eqtr4id 2794 . . . . . . . . . . . . . . 15 ((𝜑𝑛 = 𝑁) → 𝑍 = (ℤ/nℤ‘𝑛))
1312eqeq2d 2746 . . . . . . . . . . . . . 14 ((𝜑𝑛 = 𝑁) → (𝑧 = 𝑍𝑧 = (ℤ/nℤ‘𝑛)))
1413biimpar 477 . . . . . . . . . . . . 13 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → 𝑧 = 𝑍)
1514fveq2d 6911 . . . . . . . . . . . 12 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → (mulGrp‘𝑧) = (mulGrp‘𝑍))
1615oveq1d 7446 . . . . . . . . . . 11 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) = ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
1714fveq2d 6911 . . . . . . . . . . . . . . 15 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → (Base‘𝑧) = (Base‘𝑍))
18 dchrval.b . . . . . . . . . . . . . . 15 𝐵 = (Base‘𝑍)
1917, 18eqtr4di 2793 . . . . . . . . . . . . . 14 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → (Base‘𝑧) = 𝐵)
2014fveq2d 6911 . . . . . . . . . . . . . . 15 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → (Unit‘𝑧) = (Unit‘𝑍))
21 dchrval.u . . . . . . . . . . . . . . 15 𝑈 = (Unit‘𝑍)
2220, 21eqtr4di 2793 . . . . . . . . . . . . . 14 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → (Unit‘𝑧) = 𝑈)
2319, 22difeq12d 4137 . . . . . . . . . . . . 13 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → ((Base‘𝑧) ∖ (Unit‘𝑧)) = (𝐵𝑈))
2423xpeq1d 5718 . . . . . . . . . . . 12 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) = ((𝐵𝑈) × {0}))
2524sseq1d 4027 . . . . . . . . . . 11 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → ((((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥 ↔ ((𝐵𝑈) × {0}) ⊆ 𝑥))
2616, 25rabeqbidv 3452 . . . . . . . . . 10 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → {𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥} = {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵𝑈) × {0}) ⊆ 𝑥})
278, 26eqtr4d 2778 . . . . . . . . 9 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → 𝐷 = {𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥})
2827eqeq2d 2746 . . . . . . . 8 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → (𝑏 = 𝐷𝑏 = {𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥}))
2928biimpar 477 . . . . . . 7 ((((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) ∧ 𝑏 = {𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥}) → 𝑏 = 𝐷)
3029opeq2d 4885 . . . . . 6 ((((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) ∧ 𝑏 = {𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥}) → ⟨(Base‘ndx), 𝑏⟩ = ⟨(Base‘ndx), 𝐷⟩)
3129sqxpeqd 5721 . . . . . . . 8 ((((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) ∧ 𝑏 = {𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥}) → (𝑏 × 𝑏) = (𝐷 × 𝐷))
3231reseq2d 6000 . . . . . . 7 ((((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) ∧ 𝑏 = {𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥}) → ( ∘f · ↾ (𝑏 × 𝑏)) = ( ∘f · ↾ (𝐷 × 𝐷)))
3332opeq2d 4885 . . . . . 6 ((((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) ∧ 𝑏 = {𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥}) → ⟨(+g‘ndx), ( ∘f · ↾ (𝑏 × 𝑏))⟩ = ⟨(+g‘ndx), ( ∘f · ↾ (𝐷 × 𝐷))⟩)
3430, 33preq12d 4746 . . . . 5 ((((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) ∧ 𝑏 = {𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥}) → {⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘f · ↾ (𝑏 × 𝑏))⟩} = {⟨(Base‘ndx), 𝐷⟩, ⟨(+g‘ndx), ( ∘f · ↾ (𝐷 × 𝐷))⟩})
356, 34csbied 3946 . . . 4 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → {𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥} / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘f · ↾ (𝑏 × 𝑏))⟩} = {⟨(Base‘ndx), 𝐷⟩, ⟨(+g‘ndx), ( ∘f · ↾ (𝐷 × 𝐷))⟩})
363, 35csbied 3946 . . 3 ((𝜑𝑛 = 𝑁) → (ℤ/nℤ‘𝑛) / 𝑧{𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥} / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘f · ↾ (𝑏 × 𝑏))⟩} = {⟨(Base‘ndx), 𝐷⟩, ⟨(+g‘ndx), ( ∘f · ↾ (𝐷 × 𝐷))⟩})
37 dchrval.n . . 3 (𝜑𝑁 ∈ ℕ)
38 prex 5443 . . . 4 {⟨(Base‘ndx), 𝐷⟩, ⟨(+g‘ndx), ( ∘f · ↾ (𝐷 × 𝐷))⟩} ∈ V
3938a1i 11 . . 3 (𝜑 → {⟨(Base‘ndx), 𝐷⟩, ⟨(+g‘ndx), ( ∘f · ↾ (𝐷 × 𝐷))⟩} ∈ V)
402, 36, 37, 39fvmptd2 7024 . 2 (𝜑 → (DChr‘𝑁) = {⟨(Base‘ndx), 𝐷⟩, ⟨(+g‘ndx), ( ∘f · ↾ (𝐷 × 𝐷))⟩})
411, 40eqtrid 2787 1 (𝜑𝐺 = {⟨(Base‘ndx), 𝐷⟩, ⟨(+g‘ndx), ( ∘f · ↾ (𝐷 × 𝐷))⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  {crab 3433  Vcvv 3478  csb 3908  cdif 3960  wss 3963  {csn 4631  {cpr 4633  cop 4637   × cxp 5687  cres 5691  cfv 6563  (class class class)co 7431  f cof 7695  0cc0 11153   · cmul 11158  cn 12264  ndxcnx 17227  Basecbs 17245  +gcplusg 17298   MndHom cmhm 18807  mulGrpcmgp 20152  Unitcui 20372  fldccnfld 21382  ℤ/nczn 21531  DChrcdchr 27291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-res 5701  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-dchr 27292
This theorem is referenced by:  dchrbas  27294  dchrplusg  27306
  Copyright terms: Public domain W3C validator