![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrbas | Structured version Visualization version GIF version |
Description: Base set of the group of Dirichlet characters. (Contributed by Mario Carneiro, 18-Apr-2016.) |
Ref | Expression |
---|---|
dchrval.g | ⊢ 𝐺 = (DChr‘𝑁) |
dchrval.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
dchrval.b | ⊢ 𝐵 = (Base‘𝑍) |
dchrval.u | ⊢ 𝑈 = (Unit‘𝑍) |
dchrval.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
dchrbas.b | ⊢ 𝐷 = (Base‘𝐺) |
Ref | Expression |
---|---|
dchrbas | ⊢ (𝜑 → 𝐷 = {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵 ∖ 𝑈) × {0}) ⊆ 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchrval.g | . . . 4 ⊢ 𝐺 = (DChr‘𝑁) | |
2 | dchrval.z | . . . 4 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
3 | dchrval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑍) | |
4 | dchrval.u | . . . 4 ⊢ 𝑈 = (Unit‘𝑍) | |
5 | dchrval.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
6 | eqidd 2735 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵 ∖ 𝑈) × {0}) ⊆ 𝑥} = {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵 ∖ 𝑈) × {0}) ⊆ 𝑥}) | |
7 | 1, 2, 3, 4, 5, 6 | dchrval 27287 | . . 3 ⊢ (𝜑 → 𝐺 = {〈(Base‘ndx), {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵 ∖ 𝑈) × {0}) ⊆ 𝑥}〉, 〈(+g‘ndx), ( ∘f · ↾ ({𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵 ∖ 𝑈) × {0}) ⊆ 𝑥} × {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵 ∖ 𝑈) × {0}) ⊆ 𝑥}))〉}) |
8 | 7 | fveq2d 6923 | . 2 ⊢ (𝜑 → (Base‘𝐺) = (Base‘{〈(Base‘ndx), {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵 ∖ 𝑈) × {0}) ⊆ 𝑥}〉, 〈(+g‘ndx), ( ∘f · ↾ ({𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵 ∖ 𝑈) × {0}) ⊆ 𝑥} × {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵 ∖ 𝑈) × {0}) ⊆ 𝑥}))〉})) |
9 | dchrbas.b | . 2 ⊢ 𝐷 = (Base‘𝐺) | |
10 | ovex 7478 | . . . 4 ⊢ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∈ V | |
11 | 10 | rabex 5360 | . . 3 ⊢ {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵 ∖ 𝑈) × {0}) ⊆ 𝑥} ∈ V |
12 | eqid 2734 | . . . 4 ⊢ {〈(Base‘ndx), {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵 ∖ 𝑈) × {0}) ⊆ 𝑥}〉, 〈(+g‘ndx), ( ∘f · ↾ ({𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵 ∖ 𝑈) × {0}) ⊆ 𝑥} × {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵 ∖ 𝑈) × {0}) ⊆ 𝑥}))〉} = {〈(Base‘ndx), {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵 ∖ 𝑈) × {0}) ⊆ 𝑥}〉, 〈(+g‘ndx), ( ∘f · ↾ ({𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵 ∖ 𝑈) × {0}) ⊆ 𝑥} × {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵 ∖ 𝑈) × {0}) ⊆ 𝑥}))〉} | |
13 | 12 | grpbase 17340 | . . 3 ⊢ ({𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵 ∖ 𝑈) × {0}) ⊆ 𝑥} ∈ V → {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵 ∖ 𝑈) × {0}) ⊆ 𝑥} = (Base‘{〈(Base‘ndx), {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵 ∖ 𝑈) × {0}) ⊆ 𝑥}〉, 〈(+g‘ndx), ( ∘f · ↾ ({𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵 ∖ 𝑈) × {0}) ⊆ 𝑥} × {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵 ∖ 𝑈) × {0}) ⊆ 𝑥}))〉})) |
14 | 11, 13 | ax-mp 5 | . 2 ⊢ {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵 ∖ 𝑈) × {0}) ⊆ 𝑥} = (Base‘{〈(Base‘ndx), {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵 ∖ 𝑈) × {0}) ⊆ 𝑥}〉, 〈(+g‘ndx), ( ∘f · ↾ ({𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵 ∖ 𝑈) × {0}) ⊆ 𝑥} × {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵 ∖ 𝑈) × {0}) ⊆ 𝑥}))〉}) |
15 | 8, 9, 14 | 3eqtr4g 2799 | 1 ⊢ (𝜑 → 𝐷 = {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵 ∖ 𝑈) × {0}) ⊆ 𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2103 {crab 3438 Vcvv 3482 ∖ cdif 3967 ⊆ wss 3970 {csn 4648 {cpr 4650 〈cop 4654 × cxp 5697 ↾ cres 5701 ‘cfv 6572 (class class class)co 7445 ∘f cof 7708 0cc0 11180 · cmul 11185 ℕcn 12289 ndxcnx 17235 Basecbs 17253 +gcplusg 17306 MndHom cmhm 18811 mulGrpcmgp 20156 Unitcui 20376 ℂfldccnfld 21382 ℤ/nℤczn 21531 DChrcdchr 27285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 ax-cnex 11236 ax-resscn 11237 ax-1cn 11238 ax-icn 11239 ax-addcl 11240 ax-addrcl 11241 ax-mulcl 11242 ax-mulrcl 11243 ax-mulcom 11244 ax-addass 11245 ax-mulass 11246 ax-distr 11247 ax-i2m1 11248 ax-1ne0 11249 ax-1rid 11250 ax-rnegex 11251 ax-rrecex 11252 ax-cnre 11253 ax-pre-lttri 11254 ax-pre-lttrn 11255 ax-pre-ltadd 11256 ax-pre-mulgt0 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-pss 3990 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5021 df-br 5170 df-opab 5232 df-mpt 5253 df-tr 5287 df-id 5597 df-eprel 5603 df-po 5611 df-so 5612 df-fr 5654 df-we 5656 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-pred 6331 df-ord 6397 df-on 6398 df-lim 6399 df-suc 6400 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-riota 7401 df-ov 7448 df-oprab 7449 df-mpo 7450 df-om 7900 df-1st 8026 df-2nd 8027 df-frecs 8318 df-wrecs 8349 df-recs 8423 df-rdg 8462 df-1o 8518 df-er 8759 df-en 9000 df-dom 9001 df-sdom 9002 df-fin 9003 df-pnf 11322 df-mnf 11323 df-xr 11324 df-ltxr 11325 df-le 11326 df-sub 11518 df-neg 11519 df-nn 12290 df-2 12352 df-n0 12550 df-z 12636 df-uz 12900 df-fz 13564 df-struct 17189 df-slot 17224 df-ndx 17236 df-base 17254 df-plusg 17319 df-dchr 27286 |
This theorem is referenced by: dchrelbas 27289 dchrplusg 27300 |
Copyright terms: Public domain | W3C validator |