Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dchrplusg | Structured version Visualization version GIF version |
Description: Group operation on the group of Dirichlet characters. (Contributed by Mario Carneiro, 18-Apr-2016.) |
Ref | Expression |
---|---|
dchrmhm.g | ⊢ 𝐺 = (DChr‘𝑁) |
dchrmhm.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
dchrmhm.b | ⊢ 𝐷 = (Base‘𝐺) |
dchrmul.t | ⊢ · = (+g‘𝐺) |
dchrplusg.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
Ref | Expression |
---|---|
dchrplusg | ⊢ (𝜑 → · = ( ∘f · ↾ (𝐷 × 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchrmhm.g | . . . 4 ⊢ 𝐺 = (DChr‘𝑁) | |
2 | dchrmhm.z | . . . 4 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
3 | eqid 2738 | . . . 4 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
4 | eqid 2738 | . . . 4 ⊢ (Unit‘𝑍) = (Unit‘𝑍) | |
5 | dchrplusg.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
6 | dchrmhm.b | . . . . 5 ⊢ 𝐷 = (Base‘𝐺) | |
7 | 1, 2, 3, 4, 5, 6 | dchrbas 26383 | . . . 4 ⊢ (𝜑 → 𝐷 = {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑍) ∖ (Unit‘𝑍)) × {0}) ⊆ 𝑥}) |
8 | 1, 2, 3, 4, 5, 7 | dchrval 26382 | . . 3 ⊢ (𝜑 → 𝐺 = {〈(Base‘ndx), 𝐷〉, 〈(+g‘ndx), ( ∘f · ↾ (𝐷 × 𝐷))〉}) |
9 | 8 | fveq2d 6778 | . 2 ⊢ (𝜑 → (+g‘𝐺) = (+g‘{〈(Base‘ndx), 𝐷〉, 〈(+g‘ndx), ( ∘f · ↾ (𝐷 × 𝐷))〉})) |
10 | dchrmul.t | . 2 ⊢ · = (+g‘𝐺) | |
11 | 6 | fvexi 6788 | . . . 4 ⊢ 𝐷 ∈ V |
12 | 11, 11 | xpex 7603 | . . 3 ⊢ (𝐷 × 𝐷) ∈ V |
13 | ofexg 7538 | . . 3 ⊢ ((𝐷 × 𝐷) ∈ V → ( ∘f · ↾ (𝐷 × 𝐷)) ∈ V) | |
14 | eqid 2738 | . . . 4 ⊢ {〈(Base‘ndx), 𝐷〉, 〈(+g‘ndx), ( ∘f · ↾ (𝐷 × 𝐷))〉} = {〈(Base‘ndx), 𝐷〉, 〈(+g‘ndx), ( ∘f · ↾ (𝐷 × 𝐷))〉} | |
15 | 14 | grpplusg 16998 | . . 3 ⊢ (( ∘f · ↾ (𝐷 × 𝐷)) ∈ V → ( ∘f · ↾ (𝐷 × 𝐷)) = (+g‘{〈(Base‘ndx), 𝐷〉, 〈(+g‘ndx), ( ∘f · ↾ (𝐷 × 𝐷))〉})) |
16 | 12, 13, 15 | mp2b 10 | . 2 ⊢ ( ∘f · ↾ (𝐷 × 𝐷)) = (+g‘{〈(Base‘ndx), 𝐷〉, 〈(+g‘ndx), ( ∘f · ↾ (𝐷 × 𝐷))〉}) |
17 | 9, 10, 16 | 3eqtr4g 2803 | 1 ⊢ (𝜑 → · = ( ∘f · ↾ (𝐷 × 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 {cpr 4563 〈cop 4567 × cxp 5587 ↾ cres 5591 ‘cfv 6433 ∘f cof 7531 · cmul 10876 ℕcn 11973 ndxcnx 16894 Basecbs 16912 +gcplusg 16962 Unitcui 19881 ℤ/nℤczn 20704 DChrcdchr 26380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-struct 16848 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-dchr 26381 |
This theorem is referenced by: dchrmul 26396 |
Copyright terms: Public domain | W3C validator |