| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchrplusg | Structured version Visualization version GIF version | ||
| Description: Group operation on the group of Dirichlet characters. (Contributed by Mario Carneiro, 18-Apr-2016.) |
| Ref | Expression |
|---|---|
| dchrmhm.g | ⊢ 𝐺 = (DChr‘𝑁) |
| dchrmhm.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
| dchrmhm.b | ⊢ 𝐷 = (Base‘𝐺) |
| dchrmul.t | ⊢ · = (+g‘𝐺) |
| dchrplusg.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| Ref | Expression |
|---|---|
| dchrplusg | ⊢ (𝜑 → · = ( ∘f · ↾ (𝐷 × 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dchrmhm.g | . . . 4 ⊢ 𝐺 = (DChr‘𝑁) | |
| 2 | dchrmhm.z | . . . 4 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
| 3 | eqid 2730 | . . . 4 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
| 4 | eqid 2730 | . . . 4 ⊢ (Unit‘𝑍) = (Unit‘𝑍) | |
| 5 | dchrplusg.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 6 | dchrmhm.b | . . . . 5 ⊢ 𝐷 = (Base‘𝐺) | |
| 7 | 1, 2, 3, 4, 5, 6 | dchrbas 27152 | . . . 4 ⊢ (𝜑 → 𝐷 = {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑍) ∖ (Unit‘𝑍)) × {0}) ⊆ 𝑥}) |
| 8 | 1, 2, 3, 4, 5, 7 | dchrval 27151 | . . 3 ⊢ (𝜑 → 𝐺 = {〈(Base‘ndx), 𝐷〉, 〈(+g‘ndx), ( ∘f · ↾ (𝐷 × 𝐷))〉}) |
| 9 | 8 | fveq2d 6864 | . 2 ⊢ (𝜑 → (+g‘𝐺) = (+g‘{〈(Base‘ndx), 𝐷〉, 〈(+g‘ndx), ( ∘f · ↾ (𝐷 × 𝐷))〉})) |
| 10 | dchrmul.t | . 2 ⊢ · = (+g‘𝐺) | |
| 11 | 6 | fvexi 6874 | . . . 4 ⊢ 𝐷 ∈ V |
| 12 | 11, 11 | xpex 7731 | . . 3 ⊢ (𝐷 × 𝐷) ∈ V |
| 13 | ofexg 7660 | . . 3 ⊢ ((𝐷 × 𝐷) ∈ V → ( ∘f · ↾ (𝐷 × 𝐷)) ∈ V) | |
| 14 | eqid 2730 | . . . 4 ⊢ {〈(Base‘ndx), 𝐷〉, 〈(+g‘ndx), ( ∘f · ↾ (𝐷 × 𝐷))〉} = {〈(Base‘ndx), 𝐷〉, 〈(+g‘ndx), ( ∘f · ↾ (𝐷 × 𝐷))〉} | |
| 15 | 14 | grpplusg 17259 | . . 3 ⊢ (( ∘f · ↾ (𝐷 × 𝐷)) ∈ V → ( ∘f · ↾ (𝐷 × 𝐷)) = (+g‘{〈(Base‘ndx), 𝐷〉, 〈(+g‘ndx), ( ∘f · ↾ (𝐷 × 𝐷))〉})) |
| 16 | 12, 13, 15 | mp2b 10 | . 2 ⊢ ( ∘f · ↾ (𝐷 × 𝐷)) = (+g‘{〈(Base‘ndx), 𝐷〉, 〈(+g‘ndx), ( ∘f · ↾ (𝐷 × 𝐷))〉}) |
| 17 | 9, 10, 16 | 3eqtr4g 2790 | 1 ⊢ (𝜑 → · = ( ∘f · ↾ (𝐷 × 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 {cpr 4593 〈cop 4597 × cxp 5638 ↾ cres 5642 ‘cfv 6513 ∘f cof 7653 · cmul 11079 ℕcn 12187 ndxcnx 17169 Basecbs 17185 +gcplusg 17226 Unitcui 20270 ℤ/nℤczn 21418 DChrcdchr 27149 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-of 7655 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-n0 12449 df-z 12536 df-uz 12800 df-fz 13475 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17186 df-plusg 17239 df-dchr 27150 |
| This theorem is referenced by: dchrmul 27165 |
| Copyright terms: Public domain | W3C validator |