| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchrplusg | Structured version Visualization version GIF version | ||
| Description: Group operation on the group of Dirichlet characters. (Contributed by Mario Carneiro, 18-Apr-2016.) |
| Ref | Expression |
|---|---|
| dchrmhm.g | ⊢ 𝐺 = (DChr‘𝑁) |
| dchrmhm.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
| dchrmhm.b | ⊢ 𝐷 = (Base‘𝐺) |
| dchrmul.t | ⊢ · = (+g‘𝐺) |
| dchrplusg.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| Ref | Expression |
|---|---|
| dchrplusg | ⊢ (𝜑 → · = ( ∘f · ↾ (𝐷 × 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dchrmhm.g | . . . 4 ⊢ 𝐺 = (DChr‘𝑁) | |
| 2 | dchrmhm.z | . . . 4 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
| 3 | eqid 2734 | . . . 4 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
| 4 | eqid 2734 | . . . 4 ⊢ (Unit‘𝑍) = (Unit‘𝑍) | |
| 5 | dchrplusg.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 6 | dchrmhm.b | . . . . 5 ⊢ 𝐷 = (Base‘𝐺) | |
| 7 | 1, 2, 3, 4, 5, 6 | dchrbas 27234 | . . . 4 ⊢ (𝜑 → 𝐷 = {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑍) ∖ (Unit‘𝑍)) × {0}) ⊆ 𝑥}) |
| 8 | 1, 2, 3, 4, 5, 7 | dchrval 27233 | . . 3 ⊢ (𝜑 → 𝐺 = {〈(Base‘ndx), 𝐷〉, 〈(+g‘ndx), ( ∘f · ↾ (𝐷 × 𝐷))〉}) |
| 9 | 8 | fveq2d 6891 | . 2 ⊢ (𝜑 → (+g‘𝐺) = (+g‘{〈(Base‘ndx), 𝐷〉, 〈(+g‘ndx), ( ∘f · ↾ (𝐷 × 𝐷))〉})) |
| 10 | dchrmul.t | . 2 ⊢ · = (+g‘𝐺) | |
| 11 | 6 | fvexi 6901 | . . . 4 ⊢ 𝐷 ∈ V |
| 12 | 11, 11 | xpex 7756 | . . 3 ⊢ (𝐷 × 𝐷) ∈ V |
| 13 | ofexg 7685 | . . 3 ⊢ ((𝐷 × 𝐷) ∈ V → ( ∘f · ↾ (𝐷 × 𝐷)) ∈ V) | |
| 14 | eqid 2734 | . . . 4 ⊢ {〈(Base‘ndx), 𝐷〉, 〈(+g‘ndx), ( ∘f · ↾ (𝐷 × 𝐷))〉} = {〈(Base‘ndx), 𝐷〉, 〈(+g‘ndx), ( ∘f · ↾ (𝐷 × 𝐷))〉} | |
| 15 | 14 | grpplusg 17311 | . . 3 ⊢ (( ∘f · ↾ (𝐷 × 𝐷)) ∈ V → ( ∘f · ↾ (𝐷 × 𝐷)) = (+g‘{〈(Base‘ndx), 𝐷〉, 〈(+g‘ndx), ( ∘f · ↾ (𝐷 × 𝐷))〉})) |
| 16 | 12, 13, 15 | mp2b 10 | . 2 ⊢ ( ∘f · ↾ (𝐷 × 𝐷)) = (+g‘{〈(Base‘ndx), 𝐷〉, 〈(+g‘ndx), ( ∘f · ↾ (𝐷 × 𝐷))〉}) |
| 17 | 9, 10, 16 | 3eqtr4g 2794 | 1 ⊢ (𝜑 → · = ( ∘f · ↾ (𝐷 × 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3464 {cpr 4610 〈cop 4614 × cxp 5665 ↾ cres 5669 ‘cfv 6542 ∘f cof 7678 · cmul 11143 ℕcn 12249 ndxcnx 17213 Basecbs 17230 +gcplusg 17277 Unitcui 20328 ℤ/nℤczn 21480 DChrcdchr 27231 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7680 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-n0 12511 df-z 12598 df-uz 12862 df-fz 13531 df-struct 17167 df-slot 17202 df-ndx 17214 df-base 17231 df-plusg 17290 df-dchr 27232 |
| This theorem is referenced by: dchrmul 27247 |
| Copyright terms: Public domain | W3C validator |