MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrplusg Structured version   Visualization version   GIF version

Theorem dchrplusg 25392
Description: Group operation on the group of Dirichlet characters. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrmhm.g 𝐺 = (DChr‘𝑁)
dchrmhm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrmhm.b 𝐷 = (Base‘𝐺)
dchrmul.t · = (+g𝐺)
dchrplusg.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
dchrplusg (𝜑· = ( ∘𝑓 · ↾ (𝐷 × 𝐷)))

Proof of Theorem dchrplusg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dchrmhm.g . . . 4 𝐺 = (DChr‘𝑁)
2 dchrmhm.z . . . 4 𝑍 = (ℤ/nℤ‘𝑁)
3 eqid 2825 . . . 4 (Base‘𝑍) = (Base‘𝑍)
4 eqid 2825 . . . 4 (Unit‘𝑍) = (Unit‘𝑍)
5 dchrplusg.n . . . 4 (𝜑𝑁 ∈ ℕ)
6 dchrmhm.b . . . . 5 𝐷 = (Base‘𝐺)
71, 2, 3, 4, 5, 6dchrbas 25380 . . . 4 (𝜑𝐷 = {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑍) ∖ (Unit‘𝑍)) × {0}) ⊆ 𝑥})
81, 2, 3, 4, 5, 7dchrval 25379 . . 3 (𝜑𝐺 = {⟨(Base‘ndx), 𝐷⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝐷 × 𝐷))⟩})
98fveq2d 6441 . 2 (𝜑 → (+g𝐺) = (+g‘{⟨(Base‘ndx), 𝐷⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝐷 × 𝐷))⟩}))
10 dchrmul.t . 2 · = (+g𝐺)
116fvexi 6451 . . . 4 𝐷 ∈ V
1211, 11xpex 7228 . . 3 (𝐷 × 𝐷) ∈ V
13 ofexg 7166 . . 3 ((𝐷 × 𝐷) ∈ V → ( ∘𝑓 · ↾ (𝐷 × 𝐷)) ∈ V)
14 eqid 2825 . . . 4 {⟨(Base‘ndx), 𝐷⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝐷 × 𝐷))⟩} = {⟨(Base‘ndx), 𝐷⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝐷 × 𝐷))⟩}
1514grpplusg 16358 . . 3 (( ∘𝑓 · ↾ (𝐷 × 𝐷)) ∈ V → ( ∘𝑓 · ↾ (𝐷 × 𝐷)) = (+g‘{⟨(Base‘ndx), 𝐷⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝐷 × 𝐷))⟩}))
1612, 13, 15mp2b 10 . 2 ( ∘𝑓 · ↾ (𝐷 × 𝐷)) = (+g‘{⟨(Base‘ndx), 𝐷⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝐷 × 𝐷))⟩})
179, 10, 163eqtr4g 2886 1 (𝜑· = ( ∘𝑓 · ↾ (𝐷 × 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1656  wcel 2164  Vcvv 3414  {cpr 4401  cop 4405   × cxp 5344  cres 5348  cfv 6127  𝑓 cof 7160   · cmul 10264  cn 11357  ndxcnx 16226  Basecbs 16229  +gcplusg 16312  Unitcui 19000  ℤ/nczn 20218  DChrcdchr 25377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-of 7162  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-n0 11626  df-z 11712  df-uz 11976  df-fz 12627  df-struct 16231  df-ndx 16232  df-slot 16233  df-base 16235  df-plusg 16325  df-dchr 25378
This theorem is referenced by:  dchrmul  25393
  Copyright terms: Public domain W3C validator