MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff13f Structured version   Visualization version   GIF version

Theorem dff13f 7014
Description: A one-to-one function in terms of function values. Compare Theorem 4.8(iv) of [Monk1] p. 43. (Contributed by NM, 31-Jul-2003.)
Hypotheses
Ref Expression
dff13f.1 𝑥𝐹
dff13f.2 𝑦𝐹
Assertion
Ref Expression
dff13f (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem dff13f
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dff13 7013 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑤𝐴𝑣𝐴 ((𝐹𝑤) = (𝐹𝑣) → 𝑤 = 𝑣)))
2 dff13f.2 . . . . . . . . 9 𝑦𝐹
3 nfcv 2977 . . . . . . . . 9 𝑦𝑤
42, 3nffv 6680 . . . . . . . 8 𝑦(𝐹𝑤)
5 nfcv 2977 . . . . . . . . 9 𝑦𝑣
62, 5nffv 6680 . . . . . . . 8 𝑦(𝐹𝑣)
74, 6nfeq 2991 . . . . . . 7 𝑦(𝐹𝑤) = (𝐹𝑣)
8 nfv 1915 . . . . . . 7 𝑦 𝑤 = 𝑣
97, 8nfim 1897 . . . . . 6 𝑦((𝐹𝑤) = (𝐹𝑣) → 𝑤 = 𝑣)
10 nfv 1915 . . . . . 6 𝑣((𝐹𝑤) = (𝐹𝑦) → 𝑤 = 𝑦)
11 fveq2 6670 . . . . . . . 8 (𝑣 = 𝑦 → (𝐹𝑣) = (𝐹𝑦))
1211eqeq2d 2832 . . . . . . 7 (𝑣 = 𝑦 → ((𝐹𝑤) = (𝐹𝑣) ↔ (𝐹𝑤) = (𝐹𝑦)))
13 equequ2 2033 . . . . . . 7 (𝑣 = 𝑦 → (𝑤 = 𝑣𝑤 = 𝑦))
1412, 13imbi12d 347 . . . . . 6 (𝑣 = 𝑦 → (((𝐹𝑤) = (𝐹𝑣) → 𝑤 = 𝑣) ↔ ((𝐹𝑤) = (𝐹𝑦) → 𝑤 = 𝑦)))
159, 10, 14cbvralw 3441 . . . . 5 (∀𝑣𝐴 ((𝐹𝑤) = (𝐹𝑣) → 𝑤 = 𝑣) ↔ ∀𝑦𝐴 ((𝐹𝑤) = (𝐹𝑦) → 𝑤 = 𝑦))
1615ralbii 3165 . . . 4 (∀𝑤𝐴𝑣𝐴 ((𝐹𝑤) = (𝐹𝑣) → 𝑤 = 𝑣) ↔ ∀𝑤𝐴𝑦𝐴 ((𝐹𝑤) = (𝐹𝑦) → 𝑤 = 𝑦))
17 nfcv 2977 . . . . . 6 𝑥𝐴
18 dff13f.1 . . . . . . . . 9 𝑥𝐹
19 nfcv 2977 . . . . . . . . 9 𝑥𝑤
2018, 19nffv 6680 . . . . . . . 8 𝑥(𝐹𝑤)
21 nfcv 2977 . . . . . . . . 9 𝑥𝑦
2218, 21nffv 6680 . . . . . . . 8 𝑥(𝐹𝑦)
2320, 22nfeq 2991 . . . . . . 7 𝑥(𝐹𝑤) = (𝐹𝑦)
24 nfv 1915 . . . . . . 7 𝑥 𝑤 = 𝑦
2523, 24nfim 1897 . . . . . 6 𝑥((𝐹𝑤) = (𝐹𝑦) → 𝑤 = 𝑦)
2617, 25nfralw 3225 . . . . 5 𝑥𝑦𝐴 ((𝐹𝑤) = (𝐹𝑦) → 𝑤 = 𝑦)
27 nfv 1915 . . . . 5 𝑤𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)
28 fveqeq2 6679 . . . . . . 7 (𝑤 = 𝑥 → ((𝐹𝑤) = (𝐹𝑦) ↔ (𝐹𝑥) = (𝐹𝑦)))
29 equequ1 2032 . . . . . . 7 (𝑤 = 𝑥 → (𝑤 = 𝑦𝑥 = 𝑦))
3028, 29imbi12d 347 . . . . . 6 (𝑤 = 𝑥 → (((𝐹𝑤) = (𝐹𝑦) → 𝑤 = 𝑦) ↔ ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
3130ralbidv 3197 . . . . 5 (𝑤 = 𝑥 → (∀𝑦𝐴 ((𝐹𝑤) = (𝐹𝑦) → 𝑤 = 𝑦) ↔ ∀𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
3226, 27, 31cbvralw 3441 . . . 4 (∀𝑤𝐴𝑦𝐴 ((𝐹𝑤) = (𝐹𝑦) → 𝑤 = 𝑦) ↔ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
3316, 32bitri 277 . . 3 (∀𝑤𝐴𝑣𝐴 ((𝐹𝑤) = (𝐹𝑣) → 𝑤 = 𝑣) ↔ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
3433anbi2i 624 . 2 ((𝐹:𝐴𝐵 ∧ ∀𝑤𝐴𝑣𝐴 ((𝐹𝑤) = (𝐹𝑣) → 𝑤 = 𝑣)) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
351, 34bitri 277 1 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wnfc 2961  wral 3138  wf 6351  1-1wf1 6352  cfv 6355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fv 6363
This theorem is referenced by:  f1mpt  7019  dom2lem  8549
  Copyright terms: Public domain W3C validator