![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > diael | Structured version Visualization version GIF version |
Description: A member of the value of the partial isomorphism A is a translation, i.e., a vector. (Contributed by NM, 17-Jan-2014.) |
Ref | Expression |
---|---|
diass.b | β’ π΅ = (BaseβπΎ) |
diass.l | β’ β€ = (leβπΎ) |
diass.h | β’ π» = (LHypβπΎ) |
diass.t | β’ π = ((LTrnβπΎ)βπ) |
diass.i | β’ πΌ = ((DIsoAβπΎ)βπ) |
Ref | Expression |
---|---|
diael | β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π) β§ πΉ β (πΌβπ)) β πΉ β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | diass.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
2 | diass.l | . . . 4 β’ β€ = (leβπΎ) | |
3 | diass.h | . . . 4 β’ π» = (LHypβπΎ) | |
4 | diass.t | . . . 4 β’ π = ((LTrnβπΎ)βπ) | |
5 | diass.i | . . . 4 β’ πΌ = ((DIsoAβπΎ)βπ) | |
6 | 1, 2, 3, 4, 5 | diass 40452 | . . 3 β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π)) β (πΌβπ) β π) |
7 | 6 | sseld 3977 | . 2 β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π)) β (πΉ β (πΌβπ) β πΉ β π)) |
8 | 7 | 3impia 1115 | 1 β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π) β§ πΉ β (πΌβπ)) β πΉ β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1085 = wceq 1534 β wcel 2099 class class class wbr 5142 βcfv 6542 Basecbs 17171 lecple 17231 LHypclh 39394 LTrncltrn 39511 DIsoAcdia 40438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-disoa 40439 |
This theorem is referenced by: dialss 40456 dibelval1st1 40560 diblsmopel 40581 |
Copyright terms: Public domain | W3C validator |