Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dialss Structured version   Visualization version   GIF version

Theorem dialss 39363
Description: The value of partial isomorphism A is a subspace of partial vector space A. Part of Lemma M of [Crawley] p. 120 line 26. (Contributed by NM, 17-Jan-2014.) (Revised by Mario Carneiro, 23-Jun-2014.)
Hypotheses
Ref Expression
dialss.b 𝐵 = (Base‘𝐾)
dialss.l = (le‘𝐾)
dialss.h 𝐻 = (LHyp‘𝐾)
dialss.u 𝑈 = ((DVecA‘𝐾)‘𝑊)
dialss.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
dialss.s 𝑆 = (LSubSp‘𝑈)
Assertion
Ref Expression
dialss (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ∈ 𝑆)

Proof of Theorem dialss
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2738 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (Scalar‘𝑈) = (Scalar‘𝑈))
2 dialss.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 eqid 2737 . . . . 5 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
4 dialss.u . . . . 5 𝑈 = ((DVecA‘𝐾)‘𝑊)
5 eqid 2737 . . . . 5 (Scalar‘𝑈) = (Scalar‘𝑈)
6 eqid 2737 . . . . 5 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
72, 3, 4, 5, 6dvabase 39324 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘(Scalar‘𝑈)) = ((TEndo‘𝐾)‘𝑊))
87eqcomd 2743 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((TEndo‘𝐾)‘𝑊) = (Base‘(Scalar‘𝑈)))
98adantr 482 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → ((TEndo‘𝐾)‘𝑊) = (Base‘(Scalar‘𝑈)))
10 eqid 2737 . . . . 5 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
11 eqid 2737 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
122, 10, 4, 11dvavbase 39330 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝑈) = ((LTrn‘𝐾)‘𝑊))
1312eqcomd 2743 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((LTrn‘𝐾)‘𝑊) = (Base‘𝑈))
1413adantr 482 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → ((LTrn‘𝐾)‘𝑊) = (Base‘𝑈))
15 eqidd 2738 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (+g𝑈) = (+g𝑈))
16 eqidd 2738 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → ( ·𝑠𝑈) = ( ·𝑠𝑈))
17 dialss.s . . 3 𝑆 = (LSubSp‘𝑈)
1817a1i 11 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → 𝑆 = (LSubSp‘𝑈))
19 dialss.b . . 3 𝐵 = (Base‘𝐾)
20 dialss.l . . 3 = (le‘𝐾)
21 dialss.i . . 3 𝐼 = ((DIsoA‘𝐾)‘𝑊)
2219, 20, 2, 10, 21diass 39359 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ⊆ ((LTrn‘𝐾)‘𝑊))
2319, 20, 2, 21dian0 39356 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ≠ ∅)
24 simpll 765 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
25 simpr1 1194 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑥 ∈ ((TEndo‘𝐾)‘𝑊))
26 simplr 767 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑋𝐵𝑋 𝑊))
27 simpr2 1195 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑎 ∈ (𝐼𝑋))
2819, 20, 2, 10, 21diael 39360 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑎 ∈ (𝐼𝑋)) → 𝑎 ∈ ((LTrn‘𝐾)‘𝑊))
2924, 26, 27, 28syl3anc 1371 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑎 ∈ ((LTrn‘𝐾)‘𝑊))
30 eqid 2737 . . . . . . 7 ( ·𝑠𝑈) = ( ·𝑠𝑈)
312, 10, 3, 4, 30dvavsca 39334 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ ((LTrn‘𝐾)‘𝑊))) → (𝑥( ·𝑠𝑈)𝑎) = (𝑥𝑎))
3224, 25, 29, 31syl12anc 835 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑥( ·𝑠𝑈)𝑎) = (𝑥𝑎))
3332oveq1d 7357 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((𝑥( ·𝑠𝑈)𝑎)(+g𝑈)𝑏) = ((𝑥𝑎)(+g𝑈)𝑏))
342, 10, 3tendocl 39084 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑥𝑎) ∈ ((LTrn‘𝐾)‘𝑊))
3524, 25, 29, 34syl3anc 1371 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑥𝑎) ∈ ((LTrn‘𝐾)‘𝑊))
36 simpr3 1196 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑏 ∈ (𝐼𝑋))
3719, 20, 2, 10, 21diael 39360 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑏 ∈ (𝐼𝑋)) → 𝑏 ∈ ((LTrn‘𝐾)‘𝑊))
3824, 26, 36, 37syl3anc 1371 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑏 ∈ ((LTrn‘𝐾)‘𝑊))
39 eqid 2737 . . . . . 6 (+g𝑈) = (+g𝑈)
402, 10, 4, 39dvavadd 39332 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑥𝑎) ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑏 ∈ ((LTrn‘𝐾)‘𝑊))) → ((𝑥𝑎)(+g𝑈)𝑏) = ((𝑥𝑎) ∘ 𝑏))
4124, 35, 38, 40syl12anc 835 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((𝑥𝑎)(+g𝑈)𝑏) = ((𝑥𝑎) ∘ 𝑏))
4233, 41eqtrd 2777 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((𝑥( ·𝑠𝑈)𝑎)(+g𝑈)𝑏) = ((𝑥𝑎) ∘ 𝑏))
432, 10ltrnco 39036 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑎) ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑏 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑥𝑎) ∘ 𝑏) ∈ ((LTrn‘𝐾)‘𝑊))
4424, 35, 38, 43syl3anc 1371 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((𝑥𝑎) ∘ 𝑏) ∈ ((LTrn‘𝐾)‘𝑊))
45 hllat 37679 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
4645ad3antrrr 728 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝐾 ∈ Lat)
47 eqid 2737 . . . . . . 7 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
4819, 2, 10, 47trlcl 38481 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑥𝑎) ∘ 𝑏) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑥𝑎) ∘ 𝑏)) ∈ 𝐵)
4924, 44, 48syl2anc 585 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘((𝑥𝑎) ∘ 𝑏)) ∈ 𝐵)
5019, 2, 10, 47trlcl 38481 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑎) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑥𝑎)) ∈ 𝐵)
5124, 35, 50syl2anc 585 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(𝑥𝑎)) ∈ 𝐵)
5219, 2, 10, 47trlcl 38481 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑏 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘𝑏) ∈ 𝐵)
5324, 38, 52syl2anc 585 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘𝑏) ∈ 𝐵)
54 eqid 2737 . . . . . . 7 (join‘𝐾) = (join‘𝐾)
5519, 54latjcl 18255 . . . . . 6 ((𝐾 ∈ Lat ∧ (((trL‘𝐾)‘𝑊)‘(𝑥𝑎)) ∈ 𝐵 ∧ (((trL‘𝐾)‘𝑊)‘𝑏) ∈ 𝐵) → ((((trL‘𝐾)‘𝑊)‘(𝑥𝑎))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑏)) ∈ 𝐵)
5646, 51, 53, 55syl3anc 1371 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((((trL‘𝐾)‘𝑊)‘(𝑥𝑎))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑏)) ∈ 𝐵)
57 simplrl 775 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑋𝐵)
5820, 54, 2, 10, 47trlco 39044 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑎) ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑏 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑥𝑎) ∘ 𝑏)) ((((trL‘𝐾)‘𝑊)‘(𝑥𝑎))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑏)))
5924, 35, 38, 58syl3anc 1371 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘((𝑥𝑎) ∘ 𝑏)) ((((trL‘𝐾)‘𝑊)‘(𝑥𝑎))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑏)))
6019, 2, 10, 47trlcl 38481 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑎 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘𝑎) ∈ 𝐵)
6124, 29, 60syl2anc 585 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘𝑎) ∈ 𝐵)
6220, 2, 10, 47, 3tendotp 39078 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑥𝑎)) (((trL‘𝐾)‘𝑊)‘𝑎))
6324, 25, 29, 62syl3anc 1371 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(𝑥𝑎)) (((trL‘𝐾)‘𝑊)‘𝑎))
6419, 20, 2, 10, 47, 21diatrl 39361 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑎 ∈ (𝐼𝑋)) → (((trL‘𝐾)‘𝑊)‘𝑎) 𝑋)
6524, 26, 27, 64syl3anc 1371 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘𝑎) 𝑋)
6619, 20, 46, 51, 61, 57, 63, 65lattrd 18262 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(𝑥𝑎)) 𝑋)
6719, 20, 2, 10, 47, 21diatrl 39361 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑏 ∈ (𝐼𝑋)) → (((trL‘𝐾)‘𝑊)‘𝑏) 𝑋)
6824, 26, 36, 67syl3anc 1371 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘𝑏) 𝑋)
6919, 20, 54latjle12 18266 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((((trL‘𝐾)‘𝑊)‘(𝑥𝑎)) ∈ 𝐵 ∧ (((trL‘𝐾)‘𝑊)‘𝑏) ∈ 𝐵𝑋𝐵)) → (((((trL‘𝐾)‘𝑊)‘(𝑥𝑎)) 𝑋 ∧ (((trL‘𝐾)‘𝑊)‘𝑏) 𝑋) ↔ ((((trL‘𝐾)‘𝑊)‘(𝑥𝑎))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑏)) 𝑋))
7046, 51, 53, 57, 69syl13anc 1372 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((((trL‘𝐾)‘𝑊)‘(𝑥𝑎)) 𝑋 ∧ (((trL‘𝐾)‘𝑊)‘𝑏) 𝑋) ↔ ((((trL‘𝐾)‘𝑊)‘(𝑥𝑎))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑏)) 𝑋))
7166, 68, 70mpbi2and 710 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((((trL‘𝐾)‘𝑊)‘(𝑥𝑎))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑏)) 𝑋)
7219, 20, 46, 49, 56, 57, 59, 71lattrd 18262 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘((𝑥𝑎) ∘ 𝑏)) 𝑋)
7319, 20, 2, 10, 47, 21diaelval 39350 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (((𝑥𝑎) ∘ 𝑏) ∈ (𝐼𝑋) ↔ (((𝑥𝑎) ∘ 𝑏) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘((𝑥𝑎) ∘ 𝑏)) 𝑋)))
7473adantr 482 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((𝑥𝑎) ∘ 𝑏) ∈ (𝐼𝑋) ↔ (((𝑥𝑎) ∘ 𝑏) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘((𝑥𝑎) ∘ 𝑏)) 𝑋)))
7544, 72, 74mpbir2and 711 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((𝑥𝑎) ∘ 𝑏) ∈ (𝐼𝑋))
7642, 75eqeltrd 2838 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((𝑥( ·𝑠𝑈)𝑎)(+g𝑈)𝑏) ∈ (𝐼𝑋))
771, 9, 14, 15, 16, 18, 22, 23, 76islssd 20303 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1087   = wceq 1541  wcel 2106   class class class wbr 5097  ccom 5629  cfv 6484  (class class class)co 7342  Basecbs 17010  +gcplusg 17060  Scalarcsca 17063   ·𝑠 cvsca 17064  lecple 17067  joincjn 18127  Latclat 18247  LSubSpclss 20299  HLchlt 37666  LHypclh 38301  LTrncltrn 38418  trLctrl 38475  TEndoctendo 39069  DVecAcdveca 39319  DIsoAcdia 39345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054  ax-riotaBAD 37269
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-tp 4583  df-op 4585  df-uni 4858  df-iun 4948  df-iin 4949  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-om 7786  df-1st 7904  df-2nd 7905  df-undef 8164  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-1o 8372  df-er 8574  df-map 8693  df-en 8810  df-dom 8811  df-sdom 8812  df-fin 8813  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-nn 12080  df-2 12142  df-3 12143  df-4 12144  df-5 12145  df-6 12146  df-n0 12340  df-z 12426  df-uz 12689  df-fz 13346  df-struct 16946  df-slot 16981  df-ndx 16993  df-base 17011  df-plusg 17073  df-mulr 17074  df-sca 17076  df-vsca 17077  df-proset 18111  df-poset 18129  df-plt 18146  df-lub 18162  df-glb 18163  df-join 18164  df-meet 18165  df-p0 18241  df-p1 18242  df-lat 18248  df-clat 18315  df-lss 20300  df-oposet 37492  df-ol 37494  df-oml 37495  df-covers 37582  df-ats 37583  df-atl 37614  df-cvlat 37638  df-hlat 37667  df-llines 37815  df-lplanes 37816  df-lvols 37817  df-lines 37818  df-psubsp 37820  df-pmap 37821  df-padd 38113  df-lhyp 38305  df-laut 38306  df-ldil 38421  df-ltrn 38422  df-trl 38476  df-tendo 39072  df-edring 39074  df-dveca 39320  df-disoa 39346
This theorem is referenced by:  diasslssN  39376  dia2dimlem5  39385  dia2dimlem7  39387  dia2dimlem9  39389  dia2dimlem10  39390  dia2dimlem13  39393  diblsmopel  39488
  Copyright terms: Public domain W3C validator