Step | Hyp | Ref
| Expression |
1 | | eqidd 2739 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (Scalar‘𝑈) = (Scalar‘𝑈)) |
2 | | dialss.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
3 | | eqid 2738 |
. . . . 5
⊢
((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) |
4 | | dialss.u |
. . . . 5
⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) |
5 | | eqid 2738 |
. . . . 5
⊢
(Scalar‘𝑈) =
(Scalar‘𝑈) |
6 | | eqid 2738 |
. . . . 5
⊢
(Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈)) |
7 | 2, 3, 4, 5, 6 | dvabase 39021 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘(Scalar‘𝑈)) = ((TEndo‘𝐾)‘𝑊)) |
8 | 7 | eqcomd 2744 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((TEndo‘𝐾)‘𝑊) = (Base‘(Scalar‘𝑈))) |
9 | 8 | adantr 481 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → ((TEndo‘𝐾)‘𝑊) = (Base‘(Scalar‘𝑈))) |
10 | | eqid 2738 |
. . . . 5
⊢
((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) |
11 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝑈) =
(Base‘𝑈) |
12 | 2, 10, 4, 11 | dvavbase 39027 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘𝑈) = ((LTrn‘𝐾)‘𝑊)) |
13 | 12 | eqcomd 2744 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((LTrn‘𝐾)‘𝑊) = (Base‘𝑈)) |
14 | 13 | adantr 481 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → ((LTrn‘𝐾)‘𝑊) = (Base‘𝑈)) |
15 | | eqidd 2739 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (+g‘𝑈) = (+g‘𝑈)) |
16 | | eqidd 2739 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (
·𝑠 ‘𝑈) = ( ·𝑠
‘𝑈)) |
17 | | dialss.s |
. . 3
⊢ 𝑆 = (LSubSp‘𝑈) |
18 | 17 | a1i 11 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → 𝑆 = (LSubSp‘𝑈)) |
19 | | dialss.b |
. . 3
⊢ 𝐵 = (Base‘𝐾) |
20 | | dialss.l |
. . 3
⊢ ≤ =
(le‘𝐾) |
21 | | dialss.i |
. . 3
⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
22 | 19, 20, 2, 10, 21 | diass 39056 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) ⊆ ((LTrn‘𝐾)‘𝑊)) |
23 | 19, 20, 2, 21 | dian0 39053 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) ≠ ∅) |
24 | | simpll 764 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
25 | | simpr1 1193 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) |
26 | | simplr 766 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) |
27 | | simpr2 1194 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → 𝑎 ∈ (𝐼‘𝑋)) |
28 | 19, 20, 2, 10, 21 | diael 39057 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋)) → 𝑎 ∈ ((LTrn‘𝐾)‘𝑊)) |
29 | 24, 26, 27, 28 | syl3anc 1370 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → 𝑎 ∈ ((LTrn‘𝐾)‘𝑊)) |
30 | | eqid 2738 |
. . . . . . 7
⊢ (
·𝑠 ‘𝑈) = ( ·𝑠
‘𝑈) |
31 | 2, 10, 3, 4, 30 | dvavsca 39031 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ ((LTrn‘𝐾)‘𝑊))) → (𝑥( ·𝑠
‘𝑈)𝑎) = (𝑥‘𝑎)) |
32 | 24, 25, 29, 31 | syl12anc 834 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (𝑥( ·𝑠
‘𝑈)𝑎) = (𝑥‘𝑎)) |
33 | 32 | oveq1d 7290 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → ((𝑥( ·𝑠
‘𝑈)𝑎)(+g‘𝑈)𝑏) = ((𝑥‘𝑎)(+g‘𝑈)𝑏)) |
34 | 2, 10, 3 | tendocl 38781 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑥‘𝑎) ∈ ((LTrn‘𝐾)‘𝑊)) |
35 | 24, 25, 29, 34 | syl3anc 1370 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (𝑥‘𝑎) ∈ ((LTrn‘𝐾)‘𝑊)) |
36 | | simpr3 1195 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → 𝑏 ∈ (𝐼‘𝑋)) |
37 | 19, 20, 2, 10, 21 | diael 39057 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑏 ∈ (𝐼‘𝑋)) → 𝑏 ∈ ((LTrn‘𝐾)‘𝑊)) |
38 | 24, 26, 36, 37 | syl3anc 1370 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → 𝑏 ∈ ((LTrn‘𝐾)‘𝑊)) |
39 | | eqid 2738 |
. . . . . 6
⊢
(+g‘𝑈) = (+g‘𝑈) |
40 | 2, 10, 4, 39 | dvavadd 39029 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑥‘𝑎) ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑏 ∈ ((LTrn‘𝐾)‘𝑊))) → ((𝑥‘𝑎)(+g‘𝑈)𝑏) = ((𝑥‘𝑎) ∘ 𝑏)) |
41 | 24, 35, 38, 40 | syl12anc 834 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → ((𝑥‘𝑎)(+g‘𝑈)𝑏) = ((𝑥‘𝑎) ∘ 𝑏)) |
42 | 33, 41 | eqtrd 2778 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → ((𝑥( ·𝑠
‘𝑈)𝑎)(+g‘𝑈)𝑏) = ((𝑥‘𝑎) ∘ 𝑏)) |
43 | 2, 10 | ltrnco 38733 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥‘𝑎) ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑏 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑥‘𝑎) ∘ 𝑏) ∈ ((LTrn‘𝐾)‘𝑊)) |
44 | 24, 35, 38, 43 | syl3anc 1370 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → ((𝑥‘𝑎) ∘ 𝑏) ∈ ((LTrn‘𝐾)‘𝑊)) |
45 | | hllat 37377 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
46 | 45 | ad3antrrr 727 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → 𝐾 ∈ Lat) |
47 | | eqid 2738 |
. . . . . . 7
⊢
((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) |
48 | 19, 2, 10, 47 | trlcl 38178 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑥‘𝑎) ∘ 𝑏) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑥‘𝑎) ∘ 𝑏)) ∈ 𝐵) |
49 | 24, 44, 48 | syl2anc 584 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (((trL‘𝐾)‘𝑊)‘((𝑥‘𝑎) ∘ 𝑏)) ∈ 𝐵) |
50 | 19, 2, 10, 47 | trlcl 38178 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥‘𝑎) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑥‘𝑎)) ∈ 𝐵) |
51 | 24, 35, 50 | syl2anc 584 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (((trL‘𝐾)‘𝑊)‘(𝑥‘𝑎)) ∈ 𝐵) |
52 | 19, 2, 10, 47 | trlcl 38178 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑏 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘𝑏) ∈ 𝐵) |
53 | 24, 38, 52 | syl2anc 584 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (((trL‘𝐾)‘𝑊)‘𝑏) ∈ 𝐵) |
54 | | eqid 2738 |
. . . . . . 7
⊢
(join‘𝐾) =
(join‘𝐾) |
55 | 19, 54 | latjcl 18157 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧
(((trL‘𝐾)‘𝑊)‘(𝑥‘𝑎)) ∈ 𝐵 ∧ (((trL‘𝐾)‘𝑊)‘𝑏) ∈ 𝐵) → ((((trL‘𝐾)‘𝑊)‘(𝑥‘𝑎))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑏)) ∈ 𝐵) |
56 | 46, 51, 53, 55 | syl3anc 1370 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → ((((trL‘𝐾)‘𝑊)‘(𝑥‘𝑎))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑏)) ∈ 𝐵) |
57 | | simplrl 774 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → 𝑋 ∈ 𝐵) |
58 | 20, 54, 2, 10, 47 | trlco 38741 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥‘𝑎) ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑏 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑥‘𝑎) ∘ 𝑏)) ≤ ((((trL‘𝐾)‘𝑊)‘(𝑥‘𝑎))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑏))) |
59 | 24, 35, 38, 58 | syl3anc 1370 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (((trL‘𝐾)‘𝑊)‘((𝑥‘𝑎) ∘ 𝑏)) ≤ ((((trL‘𝐾)‘𝑊)‘(𝑥‘𝑎))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑏))) |
60 | 19, 2, 10, 47 | trlcl 38178 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑎 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘𝑎) ∈ 𝐵) |
61 | 24, 29, 60 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (((trL‘𝐾)‘𝑊)‘𝑎) ∈ 𝐵) |
62 | 20, 2, 10, 47, 3 | tendotp 38775 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑥‘𝑎)) ≤ (((trL‘𝐾)‘𝑊)‘𝑎)) |
63 | 24, 25, 29, 62 | syl3anc 1370 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (((trL‘𝐾)‘𝑊)‘(𝑥‘𝑎)) ≤ (((trL‘𝐾)‘𝑊)‘𝑎)) |
64 | 19, 20, 2, 10, 47, 21 | diatrl 39058 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋)) → (((trL‘𝐾)‘𝑊)‘𝑎) ≤ 𝑋) |
65 | 24, 26, 27, 64 | syl3anc 1370 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (((trL‘𝐾)‘𝑊)‘𝑎) ≤ 𝑋) |
66 | 19, 20, 46, 51, 61, 57, 63, 65 | lattrd 18164 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (((trL‘𝐾)‘𝑊)‘(𝑥‘𝑎)) ≤ 𝑋) |
67 | 19, 20, 2, 10, 47, 21 | diatrl 39058 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑏 ∈ (𝐼‘𝑋)) → (((trL‘𝐾)‘𝑊)‘𝑏) ≤ 𝑋) |
68 | 24, 26, 36, 67 | syl3anc 1370 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (((trL‘𝐾)‘𝑊)‘𝑏) ≤ 𝑋) |
69 | 19, 20, 54 | latjle12 18168 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧
((((trL‘𝐾)‘𝑊)‘(𝑥‘𝑎)) ∈ 𝐵 ∧ (((trL‘𝐾)‘𝑊)‘𝑏) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (((((trL‘𝐾)‘𝑊)‘(𝑥‘𝑎)) ≤ 𝑋 ∧ (((trL‘𝐾)‘𝑊)‘𝑏) ≤ 𝑋) ↔ ((((trL‘𝐾)‘𝑊)‘(𝑥‘𝑎))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑏)) ≤ 𝑋)) |
70 | 46, 51, 53, 57, 69 | syl13anc 1371 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (((((trL‘𝐾)‘𝑊)‘(𝑥‘𝑎)) ≤ 𝑋 ∧ (((trL‘𝐾)‘𝑊)‘𝑏) ≤ 𝑋) ↔ ((((trL‘𝐾)‘𝑊)‘(𝑥‘𝑎))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑏)) ≤ 𝑋)) |
71 | 66, 68, 70 | mpbi2and 709 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → ((((trL‘𝐾)‘𝑊)‘(𝑥‘𝑎))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑏)) ≤ 𝑋) |
72 | 19, 20, 46, 49, 56, 57, 59, 71 | lattrd 18164 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (((trL‘𝐾)‘𝑊)‘((𝑥‘𝑎) ∘ 𝑏)) ≤ 𝑋) |
73 | 19, 20, 2, 10, 47, 21 | diaelval 39047 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (((𝑥‘𝑎) ∘ 𝑏) ∈ (𝐼‘𝑋) ↔ (((𝑥‘𝑎) ∘ 𝑏) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘((𝑥‘𝑎) ∘ 𝑏)) ≤ 𝑋))) |
74 | 73 | adantr 481 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (((𝑥‘𝑎) ∘ 𝑏) ∈ (𝐼‘𝑋) ↔ (((𝑥‘𝑎) ∘ 𝑏) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘((𝑥‘𝑎) ∘ 𝑏)) ≤ 𝑋))) |
75 | 44, 72, 74 | mpbir2and 710 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → ((𝑥‘𝑎) ∘ 𝑏) ∈ (𝐼‘𝑋)) |
76 | 42, 75 | eqeltrd 2839 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → ((𝑥( ·𝑠
‘𝑈)𝑎)(+g‘𝑈)𝑏) ∈ (𝐼‘𝑋)) |
77 | 1, 9, 14, 15, 16, 18, 22, 23, 76 | islssd 20197 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) ∈ 𝑆) |