![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > diatrl | Structured version Visualization version GIF version |
Description: Trace of a member of the partial isomorphism A. (Contributed by NM, 17-Jan-2014.) |
Ref | Expression |
---|---|
diatrl.b | ⊢ 𝐵 = (Base‘𝐾) |
diatrl.l | ⊢ ≤ = (le‘𝐾) |
diatrl.h | ⊢ 𝐻 = (LHyp‘𝐾) |
diatrl.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
diatrl.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
diatrl.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
diatrl | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝐹 ∈ (𝐼‘𝑋)) → (𝑅‘𝐹) ≤ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | diatrl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | diatrl.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | diatrl.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | diatrl.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | diatrl.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
6 | diatrl.i | . . . 4 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
7 | 1, 2, 3, 4, 5, 6 | diaelval 41030 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐹 ∈ (𝐼‘𝑋) ↔ (𝐹 ∈ 𝑇 ∧ (𝑅‘𝐹) ≤ 𝑋))) |
8 | simpr 484 | . . 3 ⊢ ((𝐹 ∈ 𝑇 ∧ (𝑅‘𝐹) ≤ 𝑋) → (𝑅‘𝐹) ≤ 𝑋) | |
9 | 7, 8 | biimtrdi 253 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐹 ∈ (𝐼‘𝑋) → (𝑅‘𝐹) ≤ 𝑋)) |
10 | 9 | 3impia 1118 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝐹 ∈ (𝐼‘𝑋)) → (𝑅‘𝐹) ≤ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 class class class wbr 5151 ‘cfv 6569 Basecbs 17254 lecple 17314 LHypclh 39981 LTrncltrn 40098 trLctrl 40155 DIsoAcdia 41025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-disoa 41026 |
This theorem is referenced by: dialss 41043 dibelval1st2N 41148 diblss 41167 |
Copyright terms: Public domain | W3C validator |