Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diatrl Structured version   Visualization version   GIF version

Theorem diatrl 40754
Description: Trace of a member of the partial isomorphism A. (Contributed by NM, 17-Jan-2014.)
Hypotheses
Ref Expression
diatrl.b 𝐵 = (Base‘𝐾)
diatrl.l = (le‘𝐾)
diatrl.h 𝐻 = (LHyp‘𝐾)
diatrl.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
diatrl.r 𝑅 = ((trL‘𝐾)‘𝑊)
diatrl.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
diatrl (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝐹 ∈ (𝐼𝑋)) → (𝑅𝐹) 𝑋)

Proof of Theorem diatrl
StepHypRef Expression
1 diatrl.b . . . 4 𝐵 = (Base‘𝐾)
2 diatrl.l . . . 4 = (le‘𝐾)
3 diatrl.h . . . 4 𝐻 = (LHyp‘𝐾)
4 diatrl.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 diatrl.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
6 diatrl.i . . . 4 𝐼 = ((DIsoA‘𝐾)‘𝑊)
71, 2, 3, 4, 5, 6diaelval 40743 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐹 ∈ (𝐼𝑋) ↔ (𝐹𝑇 ∧ (𝑅𝐹) 𝑋)))
8 simpr 483 . . 3 ((𝐹𝑇 ∧ (𝑅𝐹) 𝑋) → (𝑅𝐹) 𝑋)
97, 8biimtrdi 252 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐹 ∈ (𝐼𝑋) → (𝑅𝐹) 𝑋))
1093impia 1114 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝐹 ∈ (𝐼𝑋)) → (𝑅𝐹) 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099   class class class wbr 5144  cfv 6544  Basecbs 17206  lecple 17266  LHypclh 39694  LTrncltrn 39811  trLctrl 39868  DIsoAcdia 40738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3366  df-rab 3421  df-v 3465  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4907  df-iun 4996  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-disoa 40739
This theorem is referenced by:  dialss  40756  dibelval1st2N  40861  diblss  40880
  Copyright terms: Public domain W3C validator