Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibelval1st1 Structured version   Visualization version   GIF version

Theorem dibelval1st1 40021
Description: Membership in value of the partial isomorphism B for a lattice 𝐾. (Contributed by NM, 13-Feb-2014.)
Hypotheses
Ref Expression
dibelval1st1.b 𝐡 = (Baseβ€˜πΎ)
dibelval1st1.l ≀ = (leβ€˜πΎ)
dibelval1st1.h 𝐻 = (LHypβ€˜πΎ)
dibelval1st1.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
dibelval1st1.i 𝐼 = ((DIsoBβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
dibelval1st1 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ (πΌβ€˜π‘‹)) β†’ (1st β€˜π‘Œ) ∈ 𝑇)

Proof of Theorem dibelval1st1
StepHypRef Expression
1 dibelval1st1.b . . 3 𝐡 = (Baseβ€˜πΎ)
2 dibelval1st1.l . . 3 ≀ = (leβ€˜πΎ)
3 dibelval1st1.h . . 3 𝐻 = (LHypβ€˜πΎ)
4 eqid 2733 . . 3 ((DIsoAβ€˜πΎ)β€˜π‘Š) = ((DIsoAβ€˜πΎ)β€˜π‘Š)
5 dibelval1st1.i . . 3 𝐼 = ((DIsoBβ€˜πΎ)β€˜π‘Š)
61, 2, 3, 4, 5dibelval1st 40020 . 2 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ (πΌβ€˜π‘‹)) β†’ (1st β€˜π‘Œ) ∈ (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹))
7 dibelval1st1.t . . 3 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
81, 2, 3, 7, 4diael 39914 . 2 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (1st β€˜π‘Œ) ∈ (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹)) β†’ (1st β€˜π‘Œ) ∈ 𝑇)
96, 8syld3an3 1410 1 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ (πΌβ€˜π‘‹)) β†’ (1st β€˜π‘Œ) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   class class class wbr 5149  β€˜cfv 6544  1st c1st 7973  Basecbs 17144  lecple 17204  LHypclh 38855  LTrncltrn 38972  DIsoAcdia 39899  DIsoBcdib 40009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-1st 7975  df-disoa 39900  df-dib 40010
This theorem is referenced by:  diblss  40041
  Copyright terms: Public domain W3C validator