| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dibelval1st1 | Structured version Visualization version GIF version | ||
| Description: Membership in value of the partial isomorphism B for a lattice 𝐾. (Contributed by NM, 13-Feb-2014.) |
| Ref | Expression |
|---|---|
| dibelval1st1.b | ⊢ 𝐵 = (Base‘𝐾) |
| dibelval1st1.l | ⊢ ≤ = (le‘𝐾) |
| dibelval1st1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dibelval1st1.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dibelval1st1.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dibelval1st1 | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑋)) → (1st ‘𝑌) ∈ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dibelval1st1.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | dibelval1st1.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 3 | dibelval1st1.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | eqid 2734 | . . 3 ⊢ ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊) | |
| 5 | dibelval1st1.i | . . 3 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | dibelval1st 41089 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑋)) → (1st ‘𝑌) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋)) |
| 7 | dibelval1st1.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 8 | 1, 2, 3, 7, 4 | diael 40983 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (1st ‘𝑌) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋)) → (1st ‘𝑌) ∈ 𝑇) |
| 9 | 6, 8 | syld3an3 1410 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑋)) → (1st ‘𝑌) ∈ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 class class class wbr 5116 ‘cfv 6527 1st c1st 7980 Basecbs 17213 lecple 17263 LHypclh 39924 LTrncltrn 40041 DIsoAcdia 40968 DIsoBcdib 41078 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-1st 7982 df-disoa 40969 df-dib 41079 |
| This theorem is referenced by: diblss 41110 |
| Copyright terms: Public domain | W3C validator |