Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibelval1st1 Structured version   Visualization version   GIF version

Theorem dibelval1st1 41094
Description: Membership in value of the partial isomorphism B for a lattice 𝐾. (Contributed by NM, 13-Feb-2014.)
Hypotheses
Ref Expression
dibelval1st1.b 𝐵 = (Base‘𝐾)
dibelval1st1.l = (le‘𝐾)
dibelval1st1.h 𝐻 = (LHyp‘𝐾)
dibelval1st1.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dibelval1st1.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibelval1st1 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑌 ∈ (𝐼𝑋)) → (1st𝑌) ∈ 𝑇)

Proof of Theorem dibelval1st1
StepHypRef Expression
1 dibelval1st1.b . . 3 𝐵 = (Base‘𝐾)
2 dibelval1st1.l . . 3 = (le‘𝐾)
3 dibelval1st1.h . . 3 𝐻 = (LHyp‘𝐾)
4 eqid 2733 . . 3 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
5 dibelval1st1.i . . 3 𝐼 = ((DIsoB‘𝐾)‘𝑊)
61, 2, 3, 4, 5dibelval1st 41093 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑌 ∈ (𝐼𝑋)) → (1st𝑌) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋))
7 dibelval1st1.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
81, 2, 3, 7, 4diael 40987 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (1st𝑌) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋)) → (1st𝑌) ∈ 𝑇)
96, 8syld3an3 1407 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑌 ∈ (𝐼𝑋)) → (1st𝑌) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1535  wcel 2104   class class class wbr 5149  cfv 6558  1st c1st 8005  Basecbs 17234  lecple 17294  LHypclh 39928  LTrncltrn 40045  DIsoAcdia 40972  DIsoBcdib 41082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1963  ax-7 2003  ax-8 2106  ax-9 2114  ax-10 2137  ax-11 2153  ax-12 2173  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5366  ax-pr 5430  ax-un 7747
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1087  df-tru 1538  df-fal 1548  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2536  df-eu 2565  df-clab 2711  df-cleq 2725  df-clel 2812  df-nfc 2888  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3377  df-rab 3433  df-v 3479  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4915  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-iota 6510  df-fun 6560  df-fn 6561  df-f 6562  df-f1 6563  df-fo 6564  df-f1o 6565  df-fv 6566  df-1st 8007  df-disoa 40973  df-dib 41083
This theorem is referenced by:  diblss  41114
  Copyright terms: Public domain W3C validator