Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diass Structured version   Visualization version   GIF version

Theorem diass 41043
Description: The value of the partial isomorphism A is a set of translations, i.e., a set of vectors. (Contributed by NM, 26-Nov-2013.)
Hypotheses
Ref Expression
diass.b 𝐵 = (Base‘𝐾)
diass.l = (le‘𝐾)
diass.h 𝐻 = (LHyp‘𝐾)
diass.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
diass.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
diass (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ⊆ 𝑇)

Proof of Theorem diass
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 diass.b . . 3 𝐵 = (Base‘𝐾)
2 diass.l . . 3 = (le‘𝐾)
3 diass.h . . 3 𝐻 = (LHyp‘𝐾)
4 diass.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 eqid 2730 . . 3 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
6 diass.i . . 3 𝐼 = ((DIsoA‘𝐾)‘𝑊)
71, 2, 3, 4, 5, 6diaval 41033 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = {𝑓𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑓) 𝑋})
8 ssrab2 4046 . 2 {𝑓𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑓) 𝑋} ⊆ 𝑇
97, 8eqsstrdi 3994 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ⊆ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3408  wss 3917   class class class wbr 5110  cfv 6514  Basecbs 17186  lecple 17234  LHypclh 39985  LTrncltrn 40102  trLctrl 40159  DIsoAcdia 41029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-disoa 41030
This theorem is referenced by:  diael  41044  diaelrnN  41046  dialss  41047  dia2dimlem12  41076  diaocN  41126  dibss  41170
  Copyright terms: Public domain W3C validator