![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > diass | Structured version Visualization version GIF version |
Description: The value of the partial isomorphism A is a set of translations, i.e., a set of vectors. (Contributed by NM, 26-Nov-2013.) |
Ref | Expression |
---|---|
diass.b | ⊢ 𝐵 = (Base‘𝐾) |
diass.l | ⊢ ≤ = (le‘𝐾) |
diass.h | ⊢ 𝐻 = (LHyp‘𝐾) |
diass.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
diass.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
diass | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) ⊆ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | diass.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | diass.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | diass.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | diass.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | eqid 2740 | . . 3 ⊢ ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | |
6 | diass.i | . . 3 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
7 | 1, 2, 3, 4, 5, 6 | diaval 40989 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = {𝑓 ∈ 𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑓) ≤ 𝑋}) |
8 | ssrab2 4103 | . 2 ⊢ {𝑓 ∈ 𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑓) ≤ 𝑋} ⊆ 𝑇 | |
9 | 7, 8 | eqsstrdi 4063 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) ⊆ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 ⊆ wss 3976 class class class wbr 5166 ‘cfv 6573 Basecbs 17258 lecple 17318 LHypclh 39941 LTrncltrn 40058 trLctrl 40115 DIsoAcdia 40985 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-disoa 40986 |
This theorem is referenced by: diael 41000 diaelrnN 41002 dialss 41003 dia2dimlem12 41032 diaocN 41082 dibss 41126 |
Copyright terms: Public domain | W3C validator |